Therapy with Immune Checkpoint Inhibitors for Solid Tumors in Patients with Preexisting Systemic Autoimmune Diseases
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Lung Cancer
3.2. Melanoma
3.3. Other Less Studied Carcinomas
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| Anti-CTLA4 | Anti-cytotoxic T-lymphocyte antigen 4 |
| Anti-PD-1 | Anti-programmed cell death protein 1 |
| Anti-PD-L1 | Anti-programmed cell death protein 1 ligand |
| ASCO | American society of clinical oncology |
| AZT | Azathioprine |
| ChT | Chemotherapy |
| CI | Confidence interval |
| DCR | Disease control rate |
| ESMO | European Society of Medical Oncology |
| GU | Genitourinary |
| IFX | Infliximab |
| ICI | Immune checkpoint inhibitors |
| irAE | Immune-related adverse events |
| MCC | Merk cell carcinoma |
| MMF | Mycophenolate mofetil |
| mOS | Median overall survival |
| MTX | Methotrexate |
| NSCLC | Non-small cell lung cancer |
| NSIM | Non-selective immunosuppressants |
| ORR | Overall response rate |
| RA | Rheumatoid arthritis |
| SAID | Systemic autoimmmune diseases |
| SCC | Squamous cell carcinoma |
| SIM | Selective immunosuppressants |
| SS | Sjögren’s syndrome |
| TCZ | Tocilizumab |
| VDZ | Vedolizumab |
References
- Betrains, A.; Staels, F.; Schrijvers, R.; Meyts, I.; Humblet-Baron, S.; De Langhe, E.; Wouters, C.; Blockmans, D.; Vanderschueren, S. Systemic autoinflammatory disease in adults. Autoimmun. Rev. 2021, 20, 102774. [Google Scholar] [CrossRef] [PubMed]
- Giat, E.; Ehrenfeld, M.; Shoenfeld, Y. Cancer and autoimmune diseases. Autoimmun. Rev. 2017, 16, 1049–1057. [Google Scholar] [CrossRef] [PubMed]
- Haanen, J.; Ernstoff, M.S.; Wang, Y.; Menzies, A.M.; Puzanov, I.; Grivas, P.; Larkin, J.; Peters, S.; Thompson, J.A.; Obeid, M. Autoimmune diseases and immune-checkpoint inhibitors for cancer therapy: Review of the literature and personalized risk-based prevention strategy. Ann. Oncol. 2020, 31, 724–744. [Google Scholar] [CrossRef] [PubMed]
- Tison, A.; Garaud, S.; Chiche, L.; Cornec, D.; Kostine, M. Immune-checkpoint inhibitor use in patients with cancer and pre-existing autoimmune diseases. Nat. Rev. Rheumatol. 2022, 18, 641–656. [Google Scholar] [CrossRef] [PubMed]
- Asao, T.; Shukuya, T.; Uemura, K.; Kitadai, R.; Yamamoto, G.; Mouri, A.; Tamaoka, M.; Imai, R.; Tsukita, Y.; Isobe, K.; et al. Risk and survival of patients with non-small cell lung cancer and pre-existing autoimmune disorders receiving immune checkpoint blockade therapy: Survival analysis with inverse probability weighting from a nationwide, multi-institutional, retrospective study (NEJ047). Lung Cancer 2024, 194, 107894. [Google Scholar] [CrossRef] [PubMed]
- Ghanem, P.; Murray, J.C.; Marrone, K.A.; Scott, S.C.; Feliciano, J.L.; Lam, V.K.; Hann, C.L.; Ettinger, D.S.; Levy, B.P.; Forde, P.M.; et al. Improved lung cancer clinical outcomes in patients with autoimmune rheumatic diseases. RMD Open 2023, 9, e003471. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Leonardi, G.C.; Gainor, J.F.; Altan, M.; Kravets, S.; Dahlberg, S.E.; Gedmintas, L.; Azimi, R.; Rizvi, H.; Riess, J.W.; Hellmann, M.D.; et al. Safety of programmed death-1 pathway inhibitors among patients with non-small-cell lung cancer and preexisting autoimmune disorders. J. Clin. Oncol. 2018, 36, 1905–1912. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aung, W.Y.; Lee, C.S.; Morales, J.; Rahman, H.; Seetharamu, N. Safety and efficacy of immune checkpoint inhibitors in cancer patients and preexisting autoimmune disease: A systematic review and meta-analysis in non-small-cell lung cancer. Clin. Lung Cancer 2023, 24, 598–612. [Google Scholar] [CrossRef] [PubMed]
- Passiglia, F.; Cetoretta, V.; De Filippis, M.; Napoli, V.; Novello, S. Exploring the immune-checkpoint inhibitors’ efficacy/tolerability in special non-small cell lung cancer (NSCLC) populations: Focus on steroids and autoimmune disease. Transl. Lung Cancer Res. 2021, 10, 2876–2889. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tison, A.; Quéré, G.; Misery, L.; Funck-Brentano, E.; Danlos, F.X.; Routier, E.; Robert, C.; Loriot, Y.; Lambotte, O.; Bonniaud, B.; et al. Safety and Efficacy of Immune Checkpoint Inhibitors in Patients with Cancer and Preexisting Autoimmune Disease: A Nationwide, Multicenter Cohort Study. Arthritis Rheumatol. 2019, 71, 2100–2111. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.A.; Pruitt, S.L.; Xuan, L.; Makris, U.; Gerber, D.E. How does autoimmune disease impact treatment and outcomes among patients with lung cancer? A national SEER-Medicare analysis. Lung Cancer 2018, 115, 97–102. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jacob, S.; Rahbari, K.; Tegtmeyer, K.; Zhao, J.; Tran, S.; Helenowski, I.; Zhang, H.; Walunas, T.; Varga, J.; Dematte, J.; et al. Lung Cancer Survival in Patients with Autoimmune Disease. JAMA Netw. Open. 2020, 3, e2029917. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lopez-Olivo, M.A.; Kachira, J.J.; Abdel-Wahab, N.; Pundole, X.; Aldrich, J.D.; Carey, P.; Khan, M.; Geng, Y.; Pratt, G.; Suarez-Almazor, M.E. A systematic review and meta-analysis of observational studies and uncontrolled trials reporting on the use of checkpoint blockers in patients with cancer and pre-existing autoimmune disease. Eur. J. Cancer 2024, 207, 114148. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kumar, R.; Chan, A.; Bandikatla, S.; Ranjan, S.; Ngo, P. Safety of immune checkpoint inhibitors in patients with preexisting autoimmune disorders. Curr. Probl. Cancer 2022, 46, 100864. [Google Scholar] [CrossRef] [PubMed]
- Plaçais, L.; Dalle, S.; Dereure, O.; Trabelsi, S.; Dalac, S.; Legoupil, D.; Montaudié, H.; Arnault, J.P.; De Quatrebarbes, J.; Saiag, P.; et al. Risk of irAEs in patients with autoimmune diseases treated by immune checkpoint inhibitors for stage III or IV melanoma: Results from a matched case-control study. Ann. Rheum. Dis. 2022, 81, 1445–1452. [Google Scholar] [CrossRef] [PubMed]
- Johnson, D.B.; Sullivan, R.J.; Ott, P.A.; Carlino, M.S.; Khushalani, N.I.; Ye, F.; Guminski, A.; Puzanov, I.; Lawrence, D.P.; Buchbinder, E.I.; et al. Ipilimumab Therapy in Patients with Advanced Melanoma and Preexisting Autoimmune Disorders. JAMA Oncol. 2016, 2, 234–240. [Google Scholar] [CrossRef] [PubMed]
- Menzies, A.M.; Johnson, D.B.; Ramanujam, S.; Atkinson, V.G.; Wong, A.N.M.; Park, J.J.; McQuade, J.L.; Shoushtari, A.N.; Tsai, K.K.; Eroglu, Z.; et al. Anti-PD-1 therapy in patients with advanced melanoma and preexisting autoimmune disorders or major toxicity with ipilimumab. Ann. Oncol. 2017, 28, 368–376. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Brown, L.J.; Weppler, A.; Bhave, P.; Allayous, C.; Patrinely, J.R., Jr.; Ott, P.; Sandhu, S.; Haydon, A.; Lebbe, C.; Johnson, D.B.; et al. Combination anti-PD1 and ipilimumab therapy in patients with advanced melanoma and pre-existing autoimmune disorders. J. Immunother. Cancer. 2021, 9, e002121. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lohray, R.; Verma, K.K.; Wang, L.L.; Haynes, D.; Lewis, D.J. Avelumab for Advanced Merkel Cell Carcinoma: Global Real-World Data on Patient Response and Survival. Pragmat. Obs. Res. 2023, 14, 149–154. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zaremba, A.; Chorti, E.; Jockenhöfer, F.; Bolz, S.; Sirin, S.; Glas, M.; Becker, J.C.; Ugurel, S.; Roesch, A.; Schadendorf, D.; et al. Metastatic Merkel cell carcinoma and myasthenia gravis: Contraindication for therapy with immune checkpoint inhibitors? J. Immunother. Cancer 2019, 7, 141. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rabinowits, G.; Park, S.J.; Ellison, D.M.; Worden, F.P.; Gentry, R.W.; Strasswimmer, J.; Venna, S.S.; Migden, M.R.; Chandra, S.; Ruiz, E.S.; et al. Checkpoint inhibition in immunosuppressed or immunocompromised patients with advanced cutaneous squamous cell carcinoma (CSCC): Data from prospective CemiplimAb-rwlc Survivorship and Epidemiology (C.A.S.E.) study. JCO 2021, 39, 9547. [Google Scholar] [CrossRef]
- Pham, J.P.; Sivasubramaniam, V.; Gallagher, R.; Forstner, D.; Wong, M.; Liu, J. Safety of cemiplimab for advanced cutaneous squamous cell carcinoma in a patient with p-ANCA-associated vasculitis. J. Eur. Acad. Dermatol. Venereol. 2023, 37, e363–e365. [Google Scholar] [CrossRef] [PubMed]
- Cai, Q.; Huo, G.W.; Zhu, F.Y.; Yue, P.; Yuan, D.Q.; Chen, P. Safety and efficacy of immune checkpoint inhibitors in advanced cancer patients with autoimmune disease: A meta-analysis. Hum. Vaccin. Immunother. 2022, 18, 2145102. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, X.; Li, S.; Ke, L.; Cui, H. Immune checkpoint inhibitors in Cancer patients with rheumatologic preexisting autoimmune diseases: A systematic review and meta-analysis. BMC Cancer 2024, 24, 490. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xie, W.; Huang, H.; Xiao, S.; Fan, Y.; Deng, X.; Zhang, Z. Immune checkpoint inhibitors therapies in patients with cancer and preexisting autoimmune diseases: A meta-analysis of observational studies. Autoimmun. Rev. 2020, 19, 102687. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, A.; Saito, Y.; Okamoto, K.; Narumi, K.; Furugen, A.; Takekuma, Y.; Sugawara, M.; Kobayashi, M. Preexisting autoimmune disease is a risk factor for immune-related adverse events: A meta-analysis. Support. Care Cancer. 2021, 29, 7747–7753. [Google Scholar] [CrossRef] [PubMed]
- Le, J.; Sun, Y.; Deng, G.; Dian, Y.; Xie, Y.; Zeng, F. Immune checkpoint inhibitors in cancer patients with autoimmune disease: Safety and efficacy. Hum. Vaccin. Immunother. 2025, 21, 2458948. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Casagrande, S.; Sopetto, G.B.; Bertalot, G.; Bortolotti, R.; Racanelli, V.; Caffo, O.; Giometto, B.; Berti, A.; Veccia, A. Immune-Related Adverse Events Due to Cancer Immunotherapy: Immune Mechanisms and Clinical Manifestations. Cancers 2024, 16, 1440. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gougis, P.; Jochum, F.; Abbar, B.; Dumas, E.; Bihan, K.; Lebrun-Vignes, B.; Moslehi, J.; Spano, J.P.; Laas, E.; Hotton, J.; et al. Clinical spectrum and evolution of immune-checkpoint inhibitors toxicities over a decade-a worldwide perspective. eClinicalMedicine 2024, 70, 102536. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dimitriou, F.; Staeger, R.; Ak, M.; Maissen, M.; Kudura, K.; Barysch, M.J.; Levesque, M.P.; Cheng, P.F.; Dummer, R.; Mangana, J. Frequency, Treatment and Outcome of Immune-Related Toxicities in Patients with Immune-Checkpoint Inhibitors for Advanced Melanoma: Results from an Institutional Database Analysis. Cancers 2021, 13, 2931. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ricciuti, B.; Dahlberg, S.E.; Adeni, A.; Sholl, L.M.; Nishino, M.; Awad, M.M. Immune Checkpoint Inhibitor Outcomes for Patients with Non-Small-Cell Lung Cancer Receiving Baseline Corticosteroids for Palliative Versus Nonpalliative Indications. J. Clin. Oncol. 2019, 37, 1927–1934. [Google Scholar] [CrossRef] [PubMed]
- Goodman, R.S.; Johnson, D.B.; Balko, J.M. Corticosteroids and Cancer Immunotherapy. Clin. Cancer Res. 2023, 29, 2580–2587. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Okiyama, N.; Tanaka, R. Immune-related adverse events in various organs caused by immune checkpoint inhibitors. Allergol. Int. 2022, 71, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Boutros, C.; Tarhini, A.; Routier, E.; Lambotte, O.; Ladurie, F.L.; Carbonnel, F.; Izzeddine, H.; Marabelle, A.; Champiat, S.; Berdelou, A.; et al. Safety profiles of anti-CTLA-4 and anti-PD-1 antibodies alone and in combination. Nat. Rev. Clin. Oncol. 2016, 13, 473–486. [Google Scholar] [CrossRef] [PubMed]

| Author | Year | Type of Study | Total Patients | Tumor | SAID | Safety Data | Efficacy Data | Comments |
|---|---|---|---|---|---|---|---|---|
| Asao, T., et al. | 2024 | Retrospective cohort study | 229 | Advanced or recurrent NSCLC | RA, thyroiditis, SS | Flare rate 25.4%. | DCR 59.1%. mOS 16.5 months. DCR and PFS: no data | |
| Ghanem, P., et al. | 2023 | Retrospective cohort study | 10,963 | Local or advanced NSCLC or SCLC | Multiple | Flare rate 29%. | mOS not reached. mOS 1.2 years in stage IV patients. DCR, ORR, and PFS: no data | Worse results in patients with NSIM treatment before the ICI therapy |
| Leonardi, G., et al. | 2018 | Retrospective cohort study | 56 | Advanced NSCLC | Multiple | Flare rate 23%. 14% discontinued due to toxicity irAR rate: 38% | ORR: 22% DCR 53%. OS and PFS: no data | Patients with active symptoms had more risk of flare |
| Aung, W.Y., et al. | 2023 | Meta-analysis | 11,567 | Advanced NSCLC | Multiple | Flare rate 23% | ORR 24% DCR, OS, and PFS: no data. | Increased disease control in patients with SAID |
| Author | Year | Type of Study | Total Patients | Tumor | SAID | Safety Data | Efficacy Data |
|---|---|---|---|---|---|---|---|
| Kumar, R., et al. | 2022 | Retrospective cohort study | 40 | Melanoma, lung cancer, breast cancer, and others | Multiple | irAEs incidence:
| ORR: 10–40% mOS: 13 months DCR and PFS: no data |
| Plaçais, L., et al. | 2022 | Case–control matched study | 110 | Melanoma | Multiple | irAEs risk of patients with SAID vs. no SAID:
| 24-month OS: 64.8%. ORR, DCR, and PFS: no data |
| Johnson, D.B., et al. | 2016 | Retrospective cohort study | 30 | Melanoma (ipilimumab in monotherapy) | Multiple | Flare rate: 27%. Grade ≥ 3 irAE: 33%. 1 death related to irAE (colitis). | mOS: 12.0 months. mPFS: 3.0 months. ORR: 20%. DCR: 30%. |
| Menzies, A.M., et al. | 2019 | Retrospective cohort study | 119 | Melanoma (nivolumab or pembrolizumab in monotherapy) | Multiple | Flare rate: 38%. irAEs rate: 29%, 10% grade ≥ 3. | ORR: 33%. mPFS: 6.2 months. mOS not reached. PFS: no data. |
| Brown, L.J., et al. | 2020 | Retrospective cohort study | 55 | Melanoma (combination therapy) | Multiple | Flare rate: 33%. irAEs rate: 67%, 38% grade ≥ 3. | ORR: 55%. mPFS: 10 months. DCR and PFS: no data |
| Study | Year | Study Type | Total Patients | Main Tumors Studied | SAID | Safety Data | Efficacy Data |
|---|---|---|---|---|---|---|---|
| Cai, Q., et al. | 2022 | Meta-analysis (14 studies) | 8716 | NSCLC, melanoma, RCC, urothelial carcinomas. | Multiple | Any-grade irAEs rate: 29–100% vs. 9.5–96.4% (SAID versus no SAID) Grade ≥ 3 irAEs: 7.1–56% versus 4.1–45.4% (SAID versus no SAID) RR: 1.74 (95% CI, 1.27–2.37), higher risk in the SAID group. | No difference in PFS (HR: 1.09, 95% CI, 0.96–1.24). No difference in OS (HR: 1.07, 95% CI, 0.94–1.22). |
| Liu, X., et al. | 2024 | Meta-analysis (23 studies). | 643 | Melanoma, NSCLC, urological cancer. | Multiple | irAEs rate: 64% (95% CI, 55–72%) Combined flare rate: 41% (95% CI, 31–50%) | ORR: 30% (95% CI, 15–46%). DCR: 44% (95% CI, 24–66%). |
| Xie, W., et al. | 2020 | Meta-analysis (14 studies) | 619 | Melanoma, NSCLC, RCC, urothelial cancer. | Multiple | irAEs: 33% (95% CI, 24–42%) Flare rate: 35% (95% CI, 29–41%) | ORR: 30% (95% CI, 22–39%). DCR: 40% and 39% (95% CI, 23–54%). mOS: 10.5–22.5 months mPFS: 3.0–14.4 months. |
| Yamaguchi, A., et al. | 2021 | Meta-analysis (38 studies) | 206 | NSCLC, melanoma, RCC, urothelial carcinoma. | Multiple | irAEs rate: 62.1% (SAID) versus 51.9% (no SAID). OR = 2.14 (95% CI, 1.58–2.89) | ORR, DCR, OS, and PFS: No data |
| Le, J., et al. | 2025 | Meta-analysis (52 studies). | No data | NSCLC, melanoma | Multiple | irAEs incidence 0.610 (95% CI, 0.531–0.686). Flare incidence 0.295 (95% CI, 0.248–0.343). | ORR pooled rate: 0.333 (95% CI, 0.262–0.407). DCR pooled rate: 0.554 (95% CI, 0.426–0.678). No difference in OS (SAID versus no SAID) HR: 0.97 (95% CI, 0.88–1.08). No difference in PFS (SAID versus no SAID) HR 0.79 (95% CI, 0.52–1.20). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campos Ramírez, S.E.; Gómez Mugarza, P.; Gomila Pons, P.; Blanco Abad, C.; Felices Lobera, M.P.; Ruffini Egea, S.E.; Rivero Sobreviela, P.; Gallart Caballero, L.; Morillas Martínez, P.; Comín Orce, A.M. Therapy with Immune Checkpoint Inhibitors for Solid Tumors in Patients with Preexisting Systemic Autoimmune Diseases. J. Clin. Med. 2025, 14, 7765. https://doi.org/10.3390/jcm14217765
Campos Ramírez SE, Gómez Mugarza P, Gomila Pons P, Blanco Abad C, Felices Lobera MP, Ruffini Egea SE, Rivero Sobreviela P, Gallart Caballero L, Morillas Martínez P, Comín Orce AM. Therapy with Immune Checkpoint Inhibitors for Solid Tumors in Patients with Preexisting Systemic Autoimmune Diseases. Journal of Clinical Medicine. 2025; 14(21):7765. https://doi.org/10.3390/jcm14217765
Chicago/Turabian StyleCampos Ramírez, Sara Elena, Pablo Gómez Mugarza, Paula Gomila Pons, Carmen Blanco Abad, María Pilar Felices Lobera, Sofía Elena Ruffini Egea, Pilar Rivero Sobreviela, Luis Gallart Caballero, Paula Morillas Martínez, and Ana María Comín Orce. 2025. "Therapy with Immune Checkpoint Inhibitors for Solid Tumors in Patients with Preexisting Systemic Autoimmune Diseases" Journal of Clinical Medicine 14, no. 21: 7765. https://doi.org/10.3390/jcm14217765
APA StyleCampos Ramírez, S. E., Gómez Mugarza, P., Gomila Pons, P., Blanco Abad, C., Felices Lobera, M. P., Ruffini Egea, S. E., Rivero Sobreviela, P., Gallart Caballero, L., Morillas Martínez, P., & Comín Orce, A. M. (2025). Therapy with Immune Checkpoint Inhibitors for Solid Tumors in Patients with Preexisting Systemic Autoimmune Diseases. Journal of Clinical Medicine, 14(21), 7765. https://doi.org/10.3390/jcm14217765

