Comprehensive Oxidative Stress Profiling and Clinical Correlates in Spondyloarthritis: The Role of Glutathione Peroxidase and Modifiable Lifestyle Factors
Abstract
1. Introduction
2. Methods
2.1. Study Design and Participants
2.2. Ethical Approval
2.3. Data Collection
Demographic and Clinical Assessment
2.4. Imaging Assessment
2.5. Laboratory Investigations
2.5.1. Sample Collection and Laboratory Procedures
2.5.2. Inflammatory Markers
2.5.3. Oxidative Stress Markers
2.5.4. Oxidative Stress Definition
2.5.5. Statistical Analysis
2.5.6. Sample Size Calculation
3. Results
3.1. Baseline Characteristics
3.2. Disease Characteristics
3.3. Oxidative Stress Parameters
3.4. Clinical Correlations of Oxidative Stress Biomarkers
3.5. Lifestyle Factors and Oxidative Stress
3.6. Correlations with Inflammatory Parameters and Disease Activity
3.7. Radiological Correlations
3.8. Treatment Effects on Oxidative Stress
3.9. Multivariate Analysis
4. Discussion
4.1. Impact of Lifestyle Factors on Oxidative Stress
4.2. Inflammation and Disease Activity Correlations
4.3. Discussion of Radiological Correlations
4.4. Functional Impairment Correlations
4.5. Broader Clinical Implications and Comorbidity Considerations
4.6. Therapeutic Implications
4.7. Clinical Implementation Framework
4.8. Strengths and Limitations
5. Conclusions
Practical Implementation Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stolwijk, C.; van Onna, M.; Boonen, A.; van Tubergen, A. Global prevalence of spondyloarthritis: A systematic review and meta-regression analysis. Arthritis Care Res. 2016, 68, 1320–1331. [Google Scholar] [CrossRef]
- Boel, A.; López-Medina, C.; van der Heijde, D.M.F.M.; van Gaalen, F.A. Age at Onset in Axial Spondyloarthritis around the World: Data from the Assessment in SpondyloArthritis International Society Peripheral Involvement in Spondyloarthritis Study. Rheumatology 2022, 61, 1468–1475. [Google Scholar] [CrossRef]
- Navarro-Compán, V.; Sepriano, A.; Capelusnik, D.; Baraliakos, X. Axial spondyloarthritis. Lancet 2025, 405, 159–172. [Google Scholar] [CrossRef] [PubMed]
- Sieper, J.; Poddubnyy, D. Axial spondyloarthritis. Lancet 2017, 390, 73–84. [Google Scholar] [CrossRef] [PubMed]
- Nagit, R.-E.; Rezus, E.; Cianga, P. Exploring the Pathogenesis of Spondylarthritis beyond HLA-B27: A Descriptive Review. Int. J. Mol. Sci. 2024, 25, 6081. [Google Scholar] [CrossRef] [PubMed]
- Sies, H. Oxidative stress: Oxidants and antioxidants. Exp. Physiol. 1997, 82, 291–295. [Google Scholar] [CrossRef]
- Kiranatlioglu-Firat, F.; Demir, H.; Cuce, I.; Altın-Celik, P.; Eciroglu, H.; Bayram, F.; Donmez-Altuntas, H. Increased Oxidative and Chromosomal DNA Damage in Patients with Ankylosing Spondylitis: Its Role in Pathogenesis. Clin. Exp. Med. 2023, 23, 1721–1728. [Google Scholar] [CrossRef]
- Danaii, S.; Abolhasani, R.; Soltani-Zangbar, M.S.; Zamani, M.; Mehdizadeh, A.; Amanifar, B.; Yousefi, B.; Nazari, M.; Pourlak, T.; Hajialiloo, M.; et al. Oxidative Stress and Immunological Biomarkers in Ankylosing Spondylitis Patients. Gene Rep. 2020, 18, 100574. [Google Scholar] [CrossRef]
- Bilski, R.; Kamiński, P.; Kupczyk, D.; Jeka, S.; Baszyński, J.; Tkaczenko, H.; Kurhaluk, N. Environmental and Genetic Determinants of Ankylosing Spondylitis. Int. J. Mol. Sci. 2024, 25, 7814. [Google Scholar] [CrossRef]
- Forman, H.J.; Zhang, H. Targeting Oxidative Stress in Disease: Promise and Limitations of Antioxidant Therapy. Nat. Rev. Drug Discov. 2021, 20, 689–709. [Google Scholar] [CrossRef]
- ACR Meeting Abstracts. Targeting the Oxidative Stress Pathway in Experimental Spondyloarthritis Reduces Pro-Inflammatory Response in Rat Macrophages and Modulates Their Metabolic Requirements. Available online: https://acrabstracts.org/abstract/targeting-the-oxidative-stress-pathway-in-experimental-spondyloarthritis-reduces-pro-inflammatory-response-in-rat-macrophages-and-modulates-their-metabolic-requirements/ (accessed on 15 August 2025).
- Biniecka, M.; Kennedy, A.; Ng, C.T.; Chang, T.C.; Balogh, E.; Fox, E.; Veale, D.J.; Fearon, U.; O’SUllivan, J.N. Successful Tumour Necrosis Factor (TNF) Blocking Therapy Suppresses Oxidative Stress and Hypoxia-Induced Mitochondrial Mutagenesis in Inflammatory Arthritis. Arthritis Res. Ther. 2011, 13, R121. [Google Scholar] [CrossRef]
- Šteňová, E.; Bakošová, M.; Lauková, L.; Celec, P.; Vlková, B. Biological Anti-TNF-α Therapy and Markers of Oxidative and Carbonyl Stress in Patients with Rheumatoid Arthritis. Oxid. Med. Cell. Longev. 2021, 2021, 5575479. [Google Scholar] [CrossRef]
- Stanek, A.; Cieślar, G.; Romuk, E.; Kasperczyk, S.; Sieroń-Stołtny, K.; Birkner, E.; Sieroń, A. Decrease in Antioxidant Status of Plasma and Erythrocytes from Patients with Ankylosing Spondylitis. Clin. Biochem. 2010, 43, 566–570. [Google Scholar] [CrossRef] [PubMed]
- Yazici, C.; Köse, K.; Calis, M.; Kuzugüden, S.; Kirnap, M. Protein Oxidation Status in Patients with Ankylosing Spondylitis. Rheumatology 2004, 43, 1235–1239. [Google Scholar] [CrossRef] [PubMed]
- Mury, P.; Chirico, E.N.; Mura, M.; Millon, A.; Canet-Soulas, E.; Pialoux, V. Oxidative Stress and Inflammation, Key Targets of Atherosclerotic Plaque Progression and Vulnerability: Potential Impact of Physical Activity. Sports Med. 2018, 48, 2725–2741. [Google Scholar] [CrossRef] [PubMed]
- Adıgüzel, K.T.; Yurdakul, F.G.; Kürklü, N.S.; Yaşar, E.; Bodur, H. Relationship between Diet, Oxidative Stress, and Inflammation in Ankylosing Spondylitis. Arch. Rheumatol. 2021, 37, 1–10. [Google Scholar] [CrossRef]
- Dhahri, R.; Mejri, I.; Ghram, A.; Dghaies, A.; Slouma, M.; Boussaid, S.; Metoui, L.; Gharsallah, I.; Ayed, K.; Moatemri, Z.; et al. Assessment Tools for Pulmonary Involvement in Patients with Ankylosing Spondylitis: Is Diaphragmatic Ultrasonography Correlated to Spirometry? J. Multidiscip. Healthc. 2023, 16, 51–61. [Google Scholar] [CrossRef]
- Boussaid, S.; Dhahri, R.; Rahmouni, S.; Ceylan, H.İ.; Hassayoun, M.; Abbes, M.; Zouaoui, K.; Dergaa, I.; Rekik, S.; Boussaid, N.; et al. Impact of Biologic Drugs on Comorbidity Outcomes in Rheumatoid Arthritis: A Systematic Review. J. Clin. Med. 2025, 14, 4547. [Google Scholar] [CrossRef]
- Catan, L.; Boariu, M.; Amaricai, E.; Popa, D.; Puenea, G.; Drăgoi, M.; Stratul, Ș.; Drăgoi, R.G. Predicting Functional Disability in Patients with Spondyloarthritis Using a CRP-Based Algorithm: A 3-Year Prospective Study. Exp. Ther. Med. 2021, 21, 89. [Google Scholar] [CrossRef]
- Rudwaleit, M.; van der Heijde, D.; Landewé, R.; Listing, J.; Akkoc, N.; Brandt, J.; Braun, J.; Chou, C.T.; Collantes-Estevez, E.; Dougados, M.; et al. The Development of Assessment of SpondyloArthritis International Society Classification Criteria for Axial Spondyloarthritis (Part II): Validation and Final Selection. Ann. Rheum. Dis. 2009, 68, 777–783. [Google Scholar] [CrossRef]
- Tiwari, P.; Singh, N.; Sharma, B. Long-Term Treatment of Corticosteroids May Cause Hepatotoxicity and Oxidative Damage: A Case-Controlled Study. Indian J. Clin. Biochem. 2023, 39, 179–187. [Google Scholar] [CrossRef]
- Buttgereit, F.; da Silva, J.A.; Boers, M.; Burmester, G.R.; Cutolo, M.; Jacobs, J.; Kirwan, J.; Köhler, L.; van Riel, P.; Vischer, T.; et al. Standardised Nomenclature for Glucocorticoid Dosages and Glucocorticoid Treatment Regimens: Current Questions and Tentative Answers in Rheumatology. Ann. Rheum. Dis. 2002, 61, 718–722. [Google Scholar] [CrossRef] [PubMed]
- Baillet, A.; Gossec, L.; Carmona, L.; de Wit, M.; van Eijk-Hustings, Y.; Bertheussen, H.; Alison, K.; Toft, M.; Kouloumas, M.; Ferreira, R.J.; et al. Points to Consider for Reporting, Screening for and Preventing Selected Comorbidities in Chronic Inflammatory Rheumatic Diseases in Daily Practice: A EULAR Initiative. Ann. Rheum. Dis. 2016, 75, 965–973. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.H.; Macfarlane, D.J.; Lam, T.H.; Stewart, S.M. Validity of the International Physical Activity Questionnaire Short Form (IPAQ-SF): A Systematic Review. Int. J. Behav. Nutr. Phys. Act. 2011, 8, 115. [Google Scholar] [CrossRef] [PubMed]
- De Matteis, C.; Crudele, L.; Battaglia, S.; Loconte, T.; Rotondo, A.; Ferrulli, R.; Gadaleta, R.M.; Piazzolla, G.; Suppressa, P.; Sabbà, C.; et al. Identification of a Novel Score for Adherence to the Mediterranean Diet That Is Inversely Associated with Visceral Adiposity and Cardiovascular Risk: The Chrono Med Diet Score (CMDS). Nutrients 2023, 15, 1910. [Google Scholar] [CrossRef]
- Haute Autorité de Santé. Diagnostic, Prise en Charge Thérapeutique et Suivi des Spondylarthrites. Available online: https://www.has-sante.fr/jcms/c_800266 (accessed on 1 September 2025).
- Kchir, M.M.; Hamdi, W.; Kochbati, S.; Azzouz, D.; Daoud, L.; Saadellaoui, K.; Ghannouchi, M.M.; Kaffel, D.; Ben Hamida, A.; Zouari, B. Validation of the Tunisian Versions of Bath Ankylosing Spondylitis Functional Index (BASFI) and Disease Activity Index (BASDAI). Tunis. Med. 2009, 87, 527–530. [Google Scholar]
- Van der Heijde, D.; Lie, E.; Kvien, T.K.; Sieper, J.; van den Bosch, F.; Listing, J.; Braun, J.; Landewé, R.; Assessment of SpondyloArthritis International Society (ASAS). ASDAS, a Highly Discriminatory ASAS-Endorsed Disease Activity Score in Patients with Ankylosing Spondylitis. Ann. Rheum. Dis. 2009, 68, 1811–1818. [Google Scholar] [CrossRef]
- Van der Heijde, D.M.; van ’t Hof, M.A.; van Riel, P.L.; Theunisse, L.A.; Lubberts, E.W.; van Leeuwen, M.A.; van Rijswijk, M.H.; van de Putte, L.B. Judging Disease Activity in Clinical Practice in Rheumatoid Arthritis: First Step in the Development of a Disease Activity Score. Ann. Rheum. Dis. 1990, 49, 916–920. [Google Scholar] [CrossRef]
- Hamdi, W.; Haouel, M.; Ghannouchi, M.M.; Mansour, A.; Kchir, M.M. Validation de la Version Dialectale Tunisienne de l’Ankylosing Spondylitis Quality of Life (ASQoL). Tunis. Med. 2012, 90, 564–570. (In Tunisian) [Google Scholar]
- Jenkinson, T.R.; Mallorie, P.A.; Whitelock, H.C.; Kennedy, L.G.; Garrett, S.L.; Calin, A. Defining Spinal Mobility in Ankylosing Spondylitis (AS): The Bath AS Metrology Index. J. Rheumatol. 1994, 21, 1694–1698. [Google Scholar]
- Creemers, M.C.; Franssen, M.J.; van ’t Hof, M.A.; Gribnau, F.W.; van de Putte, L.B.; van Riel, P.L. Assessment of Outcome in Ankylosing Spondylitis: An Extended Radiographic Scoring System. Ann. Rheum. Dis. 2005, 64, 127–129. [Google Scholar] [CrossRef] [PubMed]
- MacKay, K.; Mack, C.; Brophy, S.; Calin, A. The Bath Ankylosing Spondylitis Radiology Index (BASRI): A New, Validated Approach to Disease Assessment. Arthritis Rheum. 1998, 41, 2263–2270. [Google Scholar] [CrossRef] [PubMed]
- Maksymowych, W.P.; Inman, R.D.; Salonen, D.; Dhillon, S.S.; Williams, M.; Stone, M.; Conner-Spady, B.; Palsat, J.; Lambert, R.G. Spondyloarthritis Research Consortium of Canada Magnetic Resonance Imaging Index for Assessment of Sacroiliac Joint Inflammation in Ankylosing Spondylitis. Arthritis Rheum. 2005, 53, 703–709. [Google Scholar] [CrossRef] [PubMed]
- Fest, J.; Ruiter, R.; Ikram, M.A.; Voortman, T.; van Eijck, C.H.J.; Stricker, B.H. Reference Values for White Blood Cell-Based Inflammatory Markers in the Rotterdam Study: A Population-Based Prospective Cohort Study. Sci. Rep. 2018, 8, 10566. [Google Scholar] [CrossRef]
- Li, J.; Liu, S.; Cui, Y. Oxidative and Antioxidative Stress-Linked Biomarkers in Ankylosing Spondylitis: A Systematic Review and Meta-Analysis. Oxid. Med. Cell. Longev. 2020, 2020, 4759451. [Google Scholar] [CrossRef]
- Uriu-Adams, J.Y.; Keen, C.L. Copper, Oxidative Stress, and Human Health. Mol. Asp. Med. 2005, 26, 268–298. [Google Scholar] [CrossRef]
- Chang, C.; Worley, B.L.; Phaëton, R.; Hempel, N. Extracellular Glutathione Peroxidase GPx3 and Its Role in Cancer. Cancers 2020, 12, 2197. [Google Scholar] [CrossRef]
- Salinas, E.; Ciminari, M.E.; Pérez, C.M.V.; Gómez, N.N. Anti-Inflammatory and Antioxidant Effects and Zinc Deficiency. In Handbook of Famine, Starvation, and Nutrient Deprivation; Preedy, V.R., Patel, V.B., Eds.; Springer: Cham, Switzerland, 2018; pp. 1951–1968. [Google Scholar] [CrossRef]
- Stocker, R.; Yamamoto, Y.; McDonagh, A.F.; Glazer, A.N.; Ames, B.N. Bilirubin Is an Antioxidant of Possible Physiological Importance. Science 1987, 235, 1043–1046. [Google Scholar] [CrossRef]
- Yardim-Akaydin, S.; Sepici, A.; Özkan, Y.; Torun, M.; Şimşek, B.; Sepici, V. Oxidation of Uric Acid in Rheumatoid Arthritis: Is Allantoin a Marker of Oxidative Stress? Free Radic. Res. 2004, 38, 623–628. [Google Scholar] [CrossRef]
- Cochran, W.G. Sampling Techniques, 3rd ed.; John Wiley & Sons: New York, NY, USA, 1977. [Google Scholar]
- Kupczyk, D.; Bilski, R.; Szeleszczuk, Ł.; Mądra-Gackowska, K.; Studzińska, R. The Role of Diet in Modulating Inflammation and Oxidative Stress in Rheumatoid Arthritis, Ankylosing Spondylitis, and Psoriatic Arthritis. Nutrients 2025, 17, 1603. [Google Scholar] [CrossRef]
- Aiginger, P.; Kolarz, G.; Willvonseder, R. Copper in Ankylosing Spondylitis and Rheumatoid Arthritis. Scand. J. Rheumatol. 1978, 7, 75–78. [Google Scholar] [CrossRef] [PubMed]
- Oriente, P.; Scarpa, R.; Pucino, A.; Torella, M.; Riccio, A.; Oriente, C.B. Supportive Laboratory Findings in Psoriatic Arthritis. Clin. Rheumatol. 1984, 3, 189–193. [Google Scholar] [CrossRef] [PubMed]
- Svenson, K.L.G.; Halloren, R.; Johansson, E.; Lindh, U. Reduced Zinc in Peripheral Blood Cells from Patients with Inflammatory Connective Tissue Diseases. Inflammation 1985, 9, 189–199. [Google Scholar] [CrossRef] [PubMed]
- Chung, J.; Ha, J.W.; Park, Y.B.; Lee, S.W. Serum Glutathione Peroxidase-3 Concentration at Diagnosis as a Biomarker for Assessing Disease Activity and Damage of Antineutrophil Cytoplasmic Antibody-Associated Vasculitis. Front. Mol. Biosci. 2025, 12, 1549454. [Google Scholar] [CrossRef]
- Wang, X.; Mao, Y.; Ji, S.; Hu, H.; Li, Q.; Liu, L.; Shi, S.; Liu, Y. Gamma-Glutamyl Transpeptidase and Indirect Bilirubin May Participate in Systemic Inflammation of Patients with Psoriatic Arthritis. Adv. Rheumatol. 2023, 63, 53. [Google Scholar] [CrossRef]
- Wang, L.; Gao, L.; Jin, D.; Wang, P.; Yang, B.; Deng, W.; Xie, Z.; Tang, Y.; Wu, Y.; Shen, H. The Relationship of Bone Mineral Density to Oxidant/Antioxidant Status and Inflammatory and Bone Turnover Markers in a Multicenter Cross-Sectional Study of Young Men with Ankylosing Spondylitis. Calcif. Tissue Int. 2015, 97, 12–22. [Google Scholar] [CrossRef]
- Lai, Y.; Zhang, Y.; Lei, Z.; Huang, Y.; Ni, T.; He, P.; Li, X.; Xu, C.; Xia, J.; Wang, M. Association Between Serum Uric Acid Concentration and Radiographic Axial Spondylarthritis: A Cross-Sectional Study of 202 Patients. Chin. Med. J. 2023, 136, 1114–1116. [Google Scholar] [CrossRef]
- Cai, M.; Liu, W.; Wu, Y.; Zheng, Q.; Liu, D.; Shi, G. Serum Uric Acid Is Longitudinally Related to Patients’ Global Assessment of Disease Activity in Male Patients with Axial Spondyloarthritis. BMC Musculoskelet. Disord. 2022, 23, 717. [Google Scholar] [CrossRef]
- Bartoli, F.; Crocamo, C.; Mazza, M.G.; Clerici, M.; Carrà, G. Uric Acid Levels in Subjects with Bipolar Disorder: A Comparative Meta-Analysis. J. Psychiatr. Res. 2016, 81, 133–139. [Google Scholar] [CrossRef]
- Wen, S.; Cheng, M.; Wang, H.; Yue, J.; Wang, H.; Li, G.; Zheng, L.; Zhong, Z.; Peng, F. Serum Uric Acid Levels and the Clinical Characteristics of Depression. Clin. Biochem. 2012, 45, 49–53. [Google Scholar] [CrossRef]
- Bruehl, S.; Milne, G.; Schildcrout, J.; Shi, Y.; Anderson, S.; Shinar, A.; Polkowski, G.; Mishra, P.; Billings, F.T., IV. Oxidative Stress Is Associated with Characteristic Features of the Dysfunctional Chronic Pain Phenotype. Pain 2022, 163, 786–794. [Google Scholar] [CrossRef] [PubMed]
- Clemmensen, O.J.; Siggaard-Andersen, J.; Worm, A.M.; Stahl, D.; Frost, F.; Bloch, I. Psoriatic Arthritis Treated with Oral Zinc Sulphate. Br. J. Dermatol. 1980, 103, 411–415. [Google Scholar] [CrossRef] [PubMed]
- Lei, L.; Su, J.; Chen, J.; Chen, W.; Chen, X.; Peng, C. Abnormal Serum Copper and Zinc Levels in Patients with Psoriasis: A Meta-Analysis. Indian J. Dermatol. 2019, 64, 224–230. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Zhou, X.; Zhu, W. Trace Elements Homeostatic Imbalance in Psoriasis: A Meta-Analysis. Biol. Trace Elem. Res. 2019, 191, 313–322. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Djafarian, K.; Mojtahed, A.; Varkaneh, H.K.; Shab-Bidar, S. The Effect of Zinc Supplementation on Plasma C-Reactive Protein Concentrations: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Eur. J. Pharmacol. 2018, 834, 10–16. [Google Scholar] [CrossRef]
- Faghfouri, A.H.; Baradaran, B.; Khabbazi, A.; Zarezadeh, M.; Tavakoli-Rouzbehani, O.M.; Varkaneh, H.K.; Shab-Bidar, S.; Ghaedi, E. Profiling Inflammatory Cytokines Following Zinc Supplementation: A Systematic Review and Meta-Analysis of Controlled Trials. Br. J. Nutr. 2021, 126, 1441–1450. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, G.; Jiang, R.; Chen, Y.; Li, Y.; Feng, D.; Zhao, J.; Wang, S.; Liu, W. Correlation Between Total Bilirubin, Total Bilirubin/Albumin Ratio, and Disease Activity in Patients with Rheumatoid Arthritis. Int. J. Gen. Med. 2023, 16, 273–280. [Google Scholar] [CrossRef]
- Djordjevic, K.; Milojevic Samanovic, A.; Veselinovic, M.; Zivkovic, V.; Mikhaylovsky, V.; Mikerova, M.; Stojanovic, S.; Sredojevic, D.; Jakovljevic, V. Oxidative Stress-Mediated Therapy in Patients with Rheumatoid Arthritis: A Systematic Review and Meta-Analysis. Antioxidants 2023, 12, 1938. [Google Scholar] [CrossRef]
- Túnez, I.; Feijóo, M.; Huerta, G.; Montilla, P.; Muñoz, E.; Ruíz, A.; Valdelvira, M.E.; Salcedo, M. The Effect of Infliximab on Oxidative Stress in Chronic Inflammatory Joint Disease. Curr. Med. Res. Opin. 2007, 23, 1259–1267. [Google Scholar] [CrossRef]
- Solmaz, D.; Kozacı, D.; Sarı, İ.; Taylan, A.; Önen, F.; Akkoç, N.; Akar, S. Oxidative Stress and Related Factors in Patients with Ankylosing Spondylitis. Eur. J. Rheumatol. 2016, 3, 20–24. [Google Scholar] [CrossRef]
- Nawaz, H.; Ali, A.; Rehman, T.; Aslam, A. Chronological Effects of Non-Steroidal Anti-Inflammatory Drug Therapy on Oxidative Stress and Antioxidant Status in Patients with Rheumatoid Arthritis. Clin. Rheumatol. 2021, 40, 1767–1778. [Google Scholar] [CrossRef]
- Chen, T.; Zhou, Z.; Peng, M.; Hu, H.; Sun, R.; Xu, J.; Zhu, C.; Li, Y.; Zhang, Q.; Luo, Y.; et al. Glutathione Peroxidase 3 Is a Novel Clinical Diagnostic Biomarker and Potential Therapeutic Target for Neutrophils in Rheumatoid Arthritis. Arthritis Res. Ther. 2023, 25, 66. [Google Scholar] [CrossRef]
- Onu, A.; Trofin, D.M.; Tutu, A.; Onu, I.; Galaction, A.I.; Sardaru, D.P.; Trofin, D.; Onita, C.A.; Iordan, D.A.; Matei, D.V. Integrative Strategies for Preventing and Managing Metabolic Syndrome: The Impact of Exercise and Diet on Oxidative Stress Reduction—A Review. Life 2025, 15, 757. [Google Scholar] [CrossRef]
- Du, R.; Tang, X.; Yang, C.; Shi, J.; Lai, Y.; Ding, S.; Huang, W. Association between the Duration of Smoking Cessation and α-Klotho Levels in the U.S. Middle-Aged and Elderly Population. Heliyon 2024, 10, e38298. [Google Scholar] [CrossRef]
| Parameter | Mean ± SD [Range] or n (%) |
|---|---|
| Age (years) | 40.5 ± 11.4 [23–68] |
| Male gender, n (%) | 84 (83.2%) |
| BMI (kg/m2) | 26.07 ± 4.46 [17.24–37.72] |
| Reduced bone mineral density, n (%) | 50% (n = 83 patients with DEXA) |
| Depression, n (%) | 19 (18.8%) (screened in n = 98 by HAD questionnaire) |
| Hypertension, n (%) | 9 (9%) |
| Dyslipidemia, n (%) | 5 (5%) |
| Myocardial infarction, n (%) | 4 (4%) |
| Diabetes, n (%) | 3 (3%) |
| Infection, n (%) | 3 (3%) |
| Peptic ulcer, n (%) | 2 (2%) |
| Stroke, n (%) | 1 (1%) |
| Acute limb ischemia, n (%) | 1 (1%) |
| Neoplasia, n (%) | 1 (1%) |
| Lifestyle factors | |
| Current smokers, n (%) | 40 (39.6%) |
| Smoking exposure (PY) | 5.95 |
| Alcohol consumption | 13 (12.87%) |
| Physical activity (IPAQ, MET-min/week) | 2269.89 ± 3543.05 [0–22,848] |
| Mediterranean diet score (CMDS) | 9.52 ± 4.84 [0–20] |
| Parameter | Mean ± SD [Range] or n (%) |
|---|---|
| Age at onset (years) | 35.1 ± 10.7 [18–67] |
| Disease duration (years) | 5.7 ± 6.5 [0.5–31] |
| SpA phenotypes, n (%) | |
| Isolated axial SpA | 58% (n = 59) |
| Axial and peripheral SpA | 36.6% (n = 37) |
| Isolated peripheral SpA | 5% (n = 5) |
| Inflammatory bowel disease | 7.9% (n = 8) |
| Psoriasis | 10.9% (n = 11) |
| Extra-articular manifestations, n (%) | |
| Uveitis | 12% (n = 12) |
| Pulmonary involvement | 13% (n = 13) |
| Renal involvement | 11% (n = 11) |
| Cardiac involvement | 5% (n = 5) |
| Laboratory inflammatory markers | |
| ESR (mm/h) | 28.2 ± 25.1 [5–105] |
| CRP (mg/L) | 10.16 ± 16.78 [2–91]. |
| NLR | 2.2 ± 1.3 [0.3–7.1] |
| PLR | 129.9 ± 67.1 [50.6–443.6] |
| NMR | 9.3 ± 6.2 [1.1–42.1] |
| MLR | 0.26 ± 0.12 [0.05–0.9] |
| SII | 660,278.5 ± 516,767.1 [51,789.4–2,539,466.6] |
| Disease activity | |
| BASDAI | 2.39 ± 1.68 [0–8.10] |
| ASDAS-CRP | 2.06 ± 1.16 [0–5.7] |
| DAS44-CRP | 1.15 ± 0.68 [0.67–3.04]. |
| BASFI | 4.15 ± 2.29 [0–9.1] |
| ASQoL | 7.93 ± 5.58 [0–18] |
| BASMI | 2.76 ± 2.04 [0–9] |
| Severe SpA, n (%) | 83.2% (n = 84) |
| Imaging findings | |
| BASRI score | 6.91 ± 4.13 [0–16] |
| mSASSS | 10.47 ± 14.45 [0–58] |
| SPARCC spine score | 26.95 ± 25.91 [0–64] |
| SPARCC sacroiliac score | 15.50 ± 21.40 [0–71] |
| Treatment, n (%) | |
| NSAIDs | 60.4% (n = 61) |
| Corticosteroids | 3% (n = 3) |
| CsDMARDs | 20.8% (n = 21) |
| Anti-TNFα therapy | 46.5% (n = 47) |
| Biomarker | Mean ± SD [Range] |
|---|---|
| Cu (µmol/L) | 20.03 ± 5.06 [13–47] |
| Zn (µmol/L) | 11.75 ± 2.17 [7.10–21.30] |
| Cu/Zn ratio | 1.78 ± 0.67 [0.83–5.80] |
| GPx (U/L) | 21,634.92 ± 19,127.18 [7259–95,350] |
| Cp (g/L) | 0.26 ± 0.04 [0.17–0.49] |
| TF (g/L) | 2.41 ± 0.42 [1.50–4.10] |
| BR (μmol/L) | 8.90 ± 3.65 [2–18] |
| Hp (g/L) | 1.75 ± 0.71 [0.30–3.53] |
| UA (μmol/L) | 289.00 ± 64.72 [157–498] |
| Biomarker | Lifestyle Factors | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Smoker | Alcohol Consumption | Physical Activity Level | Adherence to the Mediterranean Diet | |||||||||
| Yes | No | p | Yes | No | p | Active | Inactive | p | Yes | No | p | |
| Cu (µmol/L) | 19.6 ± 4 | 20.3 ± 5.7 | 0.483 | 19.4 ± 3.6 | 20.1 ± 5.3 | 0.620 | 19.8 ± 5.5 | 20.2 ± 3.8 | 0.727 | 20.3 ± 6.9 | 19.8 ± 4.2 | 0.661 |
| Zn (µmol/L) | 12.2 ± 2.5 | 11.5 ± 1.9 | 0.086 | 12.4 ± 2 | 11.7 ± 2.2 | 0.227 | 11.6 ± 2 | 12.2 ± 2.7 | 0.275 | 11.7 ± 2.1 | 11.8 ± 2.3 | 0.867 |
| Cu/Zn ratio | 1.7 ± 0.5 | 1.9 ± 0.8 | 0.151 | 1.6 ± 0.3 | 1.8 ± 0.7 | 0.258 | 1.8 ± 0.7 | 1.7 ± 0.5 | 0.734 | 1.8 ± 0.9 | 1.7 ± 0.5 | 0.558 |
| GPx (U/L) | 21,663.9 ± 18,918 | 21,615.6 ± 19,433 | 0.990 | 17,141.5 ± 10,945.3 | 22,347.3 ± 20,076.4 | 0.365 | 25,220.2 ± 21,720.8 | 14,413.3 ± 7493.1 | 0.014 | 24,702 ± 21,339.6 | 21,164.2 ± 18,648.5 | 0.449 |
| Cp (g/L) | 0.27 ± 0.06 | 0.26 ± 0.04 | 0.257 | 0.3 ± 0 | 0.3 ± 0.1 | 0.739 | 0.27 ± 0.05 | 0.27 ± 0.03 | 0.506 | 0.27 ± 0.06 | 0.27 ± 0.04 | 0.871 |
| TF (g/L) | 2.3 ± 0.5 | 2.5 ± 0.4 | 0.080 | 2.4 ± 0.2 | 2.4 ± 0.5 | 0.658 | 2.4 ± 0.4 | 2.4 ± 0.4 | 0.737 | 2.4 ± 0.4 | 2.4 ± 0.5 | 0.697 |
| BR (µmol/L) | 8.3 ± 3.7 | 9.3 ± 3.6 | 0.193 | 9.6 ± 4.2 | 8.8 ± 3.6 | 0.493 | 9.6 ± 3.6 | 7.6 ± 3.4 | 0.017 | 9.3 ± 3.7 | 8.9 ± 3.6 | 0.668 |
| Hp (g/L) | 1.9 ± 0.7 | 1.6 ± 0.7 | 0.066 | 2 ± 0.6 | 1.7 ± 0.7 | 0.248 | 1.7 ± 0.7 | 1.8 ± 0.8 | 0.619 | 1.7 ± 0.7 | 1.8 ± 0.7 | 0.794 |
| UA (µmol/L) | 293.4 ± 54.2 | 286 ± 71.3 | 0.582 | 298.9 ± 69.5 | 287.5 ± 64.3 | 0.557 | 289.3 ± 63.7 | 290.6 ± 69.5 | 0.928 | 296.9 ± 56.7 | 287.1 ± 68 | 0.511 |
| Parameters | Cu | Zn | Cu/Zn Ratio | GPx | Cp | TF | BR | Hp | UA |
|---|---|---|---|---|---|---|---|---|---|
| Laboratory inflammatory markers | |||||||||
| ESR | 0.521 *** | −0.091 | 0.469 *** | −0.099 | 0.516 *** | 0.059 | −0.133 | 0.371 *** | −0.110 |
| CRP | 0.518 *** | −0.042 | 0.432 *** | −0.211 * | 0.541 *** | 0.052 | −0.355 ** | 0.637 *** | −0.180 |
| NLR | 0.262 ** | −0.122 | 0.235 ** | −0.125 | 0.339 ** | −0.090 | −0.169 | 0.355 *** | −0.055 |
| PLR | 0.308 ** | −0.181 | 0.308 ** | −0.151 | 0.334 ** | −0.099 | −0.221 ** | 0.352 *** | −0.152 |
| MLR | 0.071 | −0.219 ** | 0.146 | −0.179 | 0.081 | −0.070 | −0.158 | 0.178 | −0.104 |
| NMR | 0.196 | 0.067 | 0.107 | −0.015 | 0.259 ** | −0.062 | −0.117 | 0.210 ** | −0.052 |
| SII | 0.336 ** | −0.109 | 0.287 ** | −0.146 | 0.404 *** | −0.077 | −0.197 | 0.429 *** | −0.069 |
| Disease activity | |||||||||
| BASDAI | 0.154 | −0.061 | 0.148 | −0.073 | 0.171 | −0.131 | −0.170 | 0.228 ** | −0.095 |
| ASDAS-CRP | 0.498 *** | −0.117 | 0.430 *** | −0.105 | 0.487 *** | −0.003 | −0.207 | 0.441 *** | −0.031 |
| DAS44-CRP | 0.086 | −0.124 | 0.129 | −0.036 | 0.209 | −0.053 | 0.013 | 0.185 | 0.026 |
| Radiological Score | Cu | Zn | Cu/Zn Ratio | GPx | Cp | TF | BR | Hp | UA |
|---|---|---|---|---|---|---|---|---|---|
| mSASSS | 0.098 | 0.168 | −0.027 | 0.137 | 0.100 | 0.016 | −0.049 | 0.177 | 0.053 |
| Cervical BASRI | 0.134 | 0.047 | 0.075 | 0.160 | 0.108 | 0.084 | 0.021 | 0.019 | −0.236 * |
| Lumbar BASRI | 0.078 | 0.142 | −0.025 | 0.133 | 0.069 | −0.067 | −0.003 | 0.130 | 0.067 |
| Hip BASRI | −0.052 | 0.139 | −0.114 | 0.119 | 0.000 | −0.031 | 0.144 | −0.003 | −0.222 * |
| Sacroiliac BASRI | 0.157 | 0.066 | 0.063 | 0.119 | 0.182 | 0.011 | −0.040 | 0.214 * | −0.001 |
| Total BASRI score | 0.100 | 0.158 | −0.017 | 0.125 | 0.125 | 0.066 | 0.043 | 0.141 | −0.109 |
| SPARCC Spine score | 0.316 | 0.289 | −0.031 | 0.245 | 0.438 | −0.163 | −0.135 | 0.179 | 0.291 |
| SPARCC Sacroiliac score | 0.077 | 0.258 | −0.093 | −0.113 | 0.218 | 0.039 | −0.101 | 0.311 | 0.016 |
| NSAIDs | Anti-TNFα Therapy | CsDMARDs | Corticosteroids | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Yes | No | p | Yes | No | p | Yes | No | p | Yes | No | p | |
| Cu (µmol/L) | 20 ± 4 | 20.1 ± 6.4 | 0.923 | 19.9 ± 6.1 | 20.1 ± 4 | 0.849 | 20.9 ± 5.1 | 19.8 ± 5.1 | 0.408 | 21.3 ± 2.3 | 20 ± 5.1 | 0.656 |
| Zn (µmol/L) | 11.8 ± 2.2 | 11.6 ± 2.1 | 0.679 | 11.7 ± 2.1 | 11.8 ± 2.2 | 0.705 | 11.1 ± 2.3 | 11.9 ± 2.1 | 0.132 | 11.8 ± 4.6 | 11.8 ± 2.1 | 0.972 |
| Cu/Zn ratio | 1.8 ± 0.5 | 1.8 ± 0.9 | 0.655 | 1.8 ± 0.8 | 1.8 ± 0.5 | 0.788 | 2 ± 0.7 | 1.7 ± 0.7 | 0.145 | 2 ± 0.9 | 1.8 ± 0.7 | 0.544 |
| GPx (U/L) | 19,861.9 ± 15,932.9 | 24,294.5 ± 23,089.6 | 0.271 | 23,491.1 ± 21,205 | 19,892.4 ± 16,985.4 | 0.362 | 19,215 ± 17,612.7 | 22,280.3 ± 19,572.3 | 0.527 | 11,416 ± 1612.2 | 21,854.7 ± 19,273.2 | 0.448 |
| Cp (g/L) | 0.27 ± 0.04 | 0.27 ± 0.06 | 0.819 | 0.26 ± 0.06 | 0.27 ± 0.04 | 0.636 | 0.27 ± 0.05 | 0.27 ± 0.05 | 0.777 | 0.29 ± 0.01 | 0.27 ± 0.05 | 0.416 |
| TF (g/L) | 2.3 ± 0.3 | 2.6 ± 0.5 | 0.002 | 2.5 ± 0.4 | 2.4 ± 0.4 | 0.110 | 2.4 ± 0.6 | 2.4 ± 0.4 | 0.743 | 2.9 ± 1.1 | 2.4 ± 0.4 | 0.109 |
| BR (μmol/L) | 8.3 ± 3.6 | 9.8 ± 3.6 | 0.042 | 9.4 ± 3.8 | 8.5 ± 3.5 | 0.205 | 9.8 ± 3.8 | 8.7 ± 3.6 | 0.247 | 7.7 ± 4.6 | 8.9 ± 3.6 | 0.555 |
| Hp (g/L) | 1.8 ± 0.7 | 1.6 ± 0.7 | 0.143 | 1.7 ± 0.7 | 1.8 ± 0.8 | 0.261 | 1.8 ± 0.8 | 1.7 ± 0.7 | 0.914 | 2.3 ± 0.2 | 1.7 ± 0.7 | 0.213 |
| UA (μmol/L) | 291.2 ± 65.5 | 285.8 ± 64.2 | 0.688 | 283.6 ± 64 | 293.8 ± 65.6 | 0.437 | 275.6 ± 61 | 292.4 ± 65.6 | 0.301 | 245.7 ± 87.6 | 290.4 ± 64 | 0.241 |
| Biomarker | Variable | Standardized Coefficient (Beta) | Confidence Interval (95%) | p-Value | |
|---|---|---|---|---|---|
| Min | Max | ||||
| Cu | Male | 2.706 | 0.392 | 5.804 | 0.049 |
| CRP | 0.065 | 0.007 | 0.137 | 0.048 | |
| BASDAI | −1.678 | −2.703 | −0.652 | 0.002 | |
| ASDAS-CRP | 3.288 | 1.643 | 4.932 | 0.000 | |
| ASQol | 0.365 | 0.005 | 0.725 | 0.047 | |
| Zn | Male | 1.131 | 0.366 | 2.689 | 0.047 |
| Cardiac involvement | 1.955 | 0.746 | 4.318 | 0.043 | |
| ASDAS_CRP | −0.285 | −0.744 | −0.103 | 0.045 | |
| Cu/Zn | Osteoporosis | 0.282 | 0.043 | 0.608 | 0.049 |
| ASDAS-CRP | 0.233 | 0.034 | 0.432 | 0.023 | |
| BASDAI | −0.109 | −0.311 | −0.013 | 0.048 | |
| CsDMARDs | 0.320 | 0.026 | 0.613 | 0.034 | |
| GPx | Depression | −5289.191 | −8944.921 | −1633.461 | 0.006 |
| Uveitis | 19,094.811 | 9665.834 | 47,855.456 | 0.048 | |
| BASDAI | 6498.011 | 3216.553 | 16,212.575 | 0.047 | |
| Mediterranean diet score (CMDS) | −1284.338 | −3050.693 | −482.016 | 0.046 | |
| Cp | CRP | 0.001 | 0.001 | 0.002 | 0.001 |
| ASDAS-CRP | 0.021 | 0.007 | 0.036 | 0.004 | |
| BASDAI | −0.015 | −0.023 | −0.006 | 0.001 | |
| TF | Smoking | −0.194 | −0.428 | −0.040 | 0.044 |
| Dyslipidemia | −0.317 | −0.608 | −0.025 | 0.034 | |
| Depression | 0.557 | 0.219 | 0.896 | 0.002 | |
| NSAID use | −0.232 | −0.474 | −0.011 | 0.046 | |
| BR | Osteoporosis | −2.720 | −5.068 | −0.372 | 0.024 |
| Depression | −1.956 | −4.546 | −0.634 | 0.044 | |
| Hypertension | −2.443 | −5.683 | −0.797 | 0.037 | |
| CRP | −0.119 | −0.199 | −0.039 | 0.004 | |
| Anti-TNF therapy | 1.514 | 0.615 | 3.643 | 0.049 | |
| Hp | Smoking | 0.316 | 0.043 | 0.671 | 0.026 |
| CRP | 0.027 | 0.016 | 0.038 | 0.000 | |
| NSAID use | 0.150 | 0.101 | 0.460 | 0.047 | |
| AU | Male | 102.012 | 61.132 | 145.811 | 0.000 |
| BMI | 6.997 | 3.082 | 10.913 | 0.001 | |
| CRP | −1.029 | −1.989 | −0.069 | 0.036 | |
| Cervical BASRI | −11.106 | −20.084 | −1.058 | 0.048 | |
| Physical activity score (IPAQ) | −0.033 | −0.067 | −0.003 | 0.049 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dhahri, R.; Fenniche, I.; Dergaa, I.; Ceylan, H.İ.; Bragazzi, N.L.; Ben Ammar, L.; Ayed, H.B.; Afif, B.; Mazigh, C.; Gharsallah, I. Comprehensive Oxidative Stress Profiling and Clinical Correlates in Spondyloarthritis: The Role of Glutathione Peroxidase and Modifiable Lifestyle Factors. J. Clin. Med. 2025, 14, 7747. https://doi.org/10.3390/jcm14217747
Dhahri R, Fenniche I, Dergaa I, Ceylan Hİ, Bragazzi NL, Ben Ammar L, Ayed HB, Afif B, Mazigh C, Gharsallah I. Comprehensive Oxidative Stress Profiling and Clinical Correlates in Spondyloarthritis: The Role of Glutathione Peroxidase and Modifiable Lifestyle Factors. Journal of Clinical Medicine. 2025; 14(21):7747. https://doi.org/10.3390/jcm14217747
Chicago/Turabian StyleDhahri, Rim, Insaf Fenniche, Ismail Dergaa, Halil İbrahim Ceylan, Nicola Luigi Bragazzi, Lobna Ben Ammar, Hiba Ben Ayed, Ba Afif, Chakib Mazigh, and Imène Gharsallah. 2025. "Comprehensive Oxidative Stress Profiling and Clinical Correlates in Spondyloarthritis: The Role of Glutathione Peroxidase and Modifiable Lifestyle Factors" Journal of Clinical Medicine 14, no. 21: 7747. https://doi.org/10.3390/jcm14217747
APA StyleDhahri, R., Fenniche, I., Dergaa, I., Ceylan, H. İ., Bragazzi, N. L., Ben Ammar, L., Ayed, H. B., Afif, B., Mazigh, C., & Gharsallah, I. (2025). Comprehensive Oxidative Stress Profiling and Clinical Correlates in Spondyloarthritis: The Role of Glutathione Peroxidase and Modifiable Lifestyle Factors. Journal of Clinical Medicine, 14(21), 7747. https://doi.org/10.3390/jcm14217747

