Perceptual Discrepancies of Opioid Analgesics and Psychotropic Drugs: A Cross-Sectional Study of Korean Patients and Physicians
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Ethical Approval
2.2. Patient Recruitment
2.3. Physician Recruitment
2.4. Questionnaire Development and Validation
2.5. Sample Size Determination
2.6. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Primary Study Outcomes
3.3. Multivariable Analysis
3.4. Subgroup and Interaction Analyses
3.5. Education-Stratified Analysis of Patient Responses
3.6. Subgroup Analysis by Treatment Duration, Physician Specialty and Clinical Setting
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| EHR | Electronic Health Record | 
| FDR | False Discovery Rate | 
| K-eHEALS | Korean version of the eHealth Literacy Scale | 
| NHI | National Health Insurance | 
| NIMS | Narcotics Information Management System | 
| PDMP | Prescription Drug Monitoring Program | 
Appendix A. Survey Question Definitions
References
- Dowell, D.; Ragan, K.R.; Jones, C.M.; Baldwin, G.T.; Chou, R. Prescribing opioids for pain—The new CDC clinical practice guideline. N. Engl. J. Med. 2022, 387, 2011–2013. [Google Scholar] [CrossRef]
- Urquhart, D.M.; Wluka, A.E.; Van Tulder, M.; Heritier, S.; Forbes, A.; Fong, C.; Wang, Y.; Sim, M.R.; Gibson, S.J.; Arnold, C. Efficacy of low-dose amitriptyline for chronic low back pain: A randomized clinical trial. JAMA Intern. Med. 2018, 178, 1474–1481. [Google Scholar] [CrossRef] [PubMed]
- Maremmani, A.G.; Della Rocca, F.; Bacciardi, S.; Carbone, M.G.; Maremmani, I. Antipsychotic Potential of Opioids: Rethinking Substance-Induced Psychosis and Treatment Stratification. J. Clin. Med. 2025, 14, 5596. [Google Scholar] [CrossRef]
- Rullo, L.; Morosini, C.; Lacorte, A.; Cristani, M.; Coluzzi, F.; Candeletti, S.; Romualdi, P. Opioid system and related ligands: From the past to future perspectives. J. Anesth. Analg. Crit. Care 2024, 4, 70. [Google Scholar] [CrossRef]
- Korea Legislation Research Institute. Narcotics Control Act, Article 2. In Statutes of the Republic of Korea [Internet]; Korea Legislation Research Institute: Sejong-si, Republic of Korea, 2016; Available online: https://elaw.klri.re.kr/eng_service/lawView.do?hseq=37716&lang=ENG (accessed on 8 September 2025).
- Sivanesan, E.; Gitlin, M.C.; Candiotti, K.A. Opioid-induced hallucinations: A review of the literature, pathophysiology, diagnosis, and treatment. Anesth. Analg. 2016, 123, 836–843. [Google Scholar] [CrossRef]
- Shetty, A.; Delanerolle, G.; Cavalini, H.; Deng, C.; Yang, X.; Boyd, A.; Fernandez, T.; Phiri, P.; Bhaskar, A.; Shi, J.Q. A systematic review and network meta-analysis of pharmaceutical interventions used to manage chronic pain. Sci. Rep. 2024, 14, 1621. [Google Scholar] [CrossRef]
- Jang, K.W.; Lee, H.K.; Park, B.J.; Kang, H.-C.; Lee, S.-K.; Kim, C.-H.; Nam, S.K.; Roh, D. Social stigma and discrimination toward people with drug addiction: A National survey in Korea. Psychiatry Investig. 2023, 20, 671. [Google Scholar] [CrossRef]
- Kim, C.L.; Hong, S.J.; Lim, Y.H.; Jeong, J.H.; Moon, H.S.; Choi, H.R.; Park, S.K.; Kim, J.E.; You, H.; Kim, J.H. Patients’ perception about opioids and addiction in South Korea. Korean J. Pain. 2020, 33, 234–244. [Google Scholar] [CrossRef] [PubMed]
- Gabay, M. Federal controlled substances act: Controlled substances prescriptions. Hosp. Pharm. 2013, 48, 644. [Google Scholar] [CrossRef] [PubMed]
- Ferner, R.E.; Aronson, J.K. Medicines legislation and regulation in the United Kingdom 1500–2020. Br. J. Clin. Pharmacol. 2023, 89, 80–92. [Google Scholar] [CrossRef]
- Jang, K.W.; Kim, J.; Jung, H.W.; Lee, S.-K.; Park, B.J.; Kang, H.-C.; Kim, C.-H.; Lee, H.K.; Roh, D. Public perception towards drug abuse in South Korea: The effects of overconfidence and affirmation. Psychiatry Investig. 2024, 21, 746. [Google Scholar] [CrossRef]
- Motyka, M.A.; Al-Imam, A. Representations of psychoactive drugs’ use in mass culture and their impact on audiences. Int. J. Environ. Res. Public Health 2021, 18, 6000. [Google Scholar] [CrossRef]
- Luu, V.T. Seung-ri and the Burning Sun Scandal: A Study of K-Pop Idol Reputations and Identities. Master’s Thesis, Nanyang Technological University, Singapore, 2022. [Google Scholar] [CrossRef]
- Kim, J.; Shin, Y.-J. Qualitative study on the narcotics information management system (NIMS) experience of doctors and pharmacists using narcotic analgesics. Korean J. Clin. Pharm. 2023, 33, 22–34. [Google Scholar] [CrossRef]
- Lee, I.-H.; Kim, S.Y.; Park, S.; Ryu, J.G.; Je, N.K. Impact of the narcotics information management system on opioid use among outpatients with musculoskeletal and connective tissue disorders: Quasi-experimental study using interrupted time series. JMIR Public Health Surveill. 2024, 10, e47130. [Google Scholar] [CrossRef] [PubMed]
- Sirey, J.A.; Bruce, M.L.; Alexopoulos, G.S.; Perlick, D.A.; Friedman, S.J.; Meyers, B.S. Stigma as a barrier to recovery: Perceived stigma and patient-rated severity of illness as predictors of antidepressant drug adherence. Psychiatr. Serv. 2001, 52, 1615–1620. [Google Scholar] [CrossRef] [PubMed]
- Harsanyi, H.; Cuthbert, C.; Schulte, F. The stigma surrounding opioid use as a barrier to cancer-pain management: An overview of experiences with fear, shame, and poorly controlled pain in the context of advanced cancer. Curr. Oncol. 2023, 30, 5835–5848. [Google Scholar] [CrossRef]
- Garett, R.; Young, S.D. The role of misinformation and stigma in opioid use disorder treatment uptake. Subst. Use Misuse 2022, 57, 1332–1336. [Google Scholar] [CrossRef]
- Chung, S.; Park, B.K.; Nahm, E.-S. The Korean eHealth Literacy Scale (K-eHEALS): Reliability and Validity Testing in Younger Adults Recruited Online. J. Med. Internet Res. 2018, 20, e138. [Google Scholar] [CrossRef]
- Stellefson, M.; Paige, S.R.; Tennant, B.; Alber, J.M.; Chaney, B.H.; Chaney, D.; Grossman, S. Reliability and validity of the telephone-based eHealth literacy scale among older adults: Cross-sectional survey. J. Med. Internet Res. 2017, 19, e362. [Google Scholar] [CrossRef]
- Mawatari, H.; Shinjo, T.; Morita, T.; Kohara, H.; Yomiya, K. Revision of pharmacological treatment recommendations for cancer pain: Clinical guidelines from the Japanese Society of Palliative Medicine. J. Palliat. Med. 2022, 25, 1095–1114. [Google Scholar] [CrossRef]
- Yang, C.-Y.; Lo, Y.-S.; Chen, R.-J.; Liu, C.-T. A clinical decision support engine based on a national medication repository for the detection of potential duplicate medications: Design and evaluation. JMIR Med. Inform. 2018, 6, e9064. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.-Y.; Wu, M.-F.; Poon, S.-K.; Liu, Y.-M.; Chen, H.-C.; Wu, C.-L.; Sheu, W.H.; Liou, W.-S. Improving medication safety by cloud technology: Progression and value-added applications in Taiwan. Int. J. Med. Inform. 2019, 126, 65–71. [Google Scholar] [CrossRef]
- Kim, H.K. The Narcotics Control Act should Separate ‘Psychotropic Drugs’. In Bosa News [Internet]; Korea Legislation Research Institute: Sejong-si, Republic of Korea, 2023; Available online: http://www.bosa.co.kr/news/articleView.html?idxno=2191390 (accessed on 8 September 2025).
- Gunning, J.N.; Romann, L.R.; Hintz, E.A. Framing chronic pain in US news coverage of the opioid epidemic (2012–2022). Health Commun. 2024, 39, 3122–3133. [Google Scholar] [CrossRef]
- Yang, R.; Gao, S.; Jiang, Y. Digital divide as a determinant of health in the US older adults: Prevalence, trends, and risk factors. BMC Geriatr. 2024, 24, 1027. [Google Scholar] [CrossRef] [PubMed]
- Horvat, M.; Eržen, I.; Vrbnjak, D. Barriers and facilitators to medication adherence among the vulnerable elderly: A focus group study. Healthcare 2024, 12, 1723. [Google Scholar] [CrossRef]
- Saukkonen, P.; Elovainio, M.; Virtanen, L.; Kaihlanen, A.M.; Nadav, J.; Lääveri, T.; Vänskä, J.; Viitanen, J.; Reponen, J.; Heponiemi, T. The Interplay of Work, Digital Health Usage, and the Perceived Effects of Digitalization on Physicians’ Work: Network Analysis Approach. J. Med. Internet Res. 2022, 24, e38714. [Google Scholar] [CrossRef]
- Weiner, J.; Meisel, Z.; Bao, Y. Prescription Drug Monitoring Programs: Evolution and Evidence; LDI/CHERISH Issue Brief; University of Pennsylvania: Philadelphia, PA, USA, 1 June 2017. Available online: https://repository.upenn.edu/handle/20.500.14332/38094 (accessed on 8 September 2025).
- Puac-Polanco, V.; Chihuri, S.; Fink, D.S.; Cerdá, M.; Keyes, K.M.; Li, G. Prescription drug monitoring programs and prescription opioid–related outcomes in the United States. Epidemiol. Rev. 2020, 42, 134–153. [Google Scholar] [CrossRef]
- Richwine, C.; Everson, J. National estimates and Physician-Reported impacts of prescription drug monitoring program use. J. Gen. Intern. Med. 2023, 38, 881–888. [Google Scholar] [CrossRef] [PubMed]
- Kadakia, N.N.; Rogers, R.L.; Reed, J.B.; Dark, E.R.; Plake, K.I. Patient education interventions for prescription opioids: A systematic review. J. Am. Pharm. Assoc. 2020, 60, e31–e42. [Google Scholar] [CrossRef]
- Kim, S.-Y.; Cho, N.-W.; Yoo, M.-S.; Han, S.-Y.; Oh, J.-W. Narcotics information management system in South Korea: System development and innovation. BMC Health Serv. Res. 2023, 23, 73. [Google Scholar] [CrossRef]
- Burke-Shyne, N.; Csete, J.; Wilson, D.; Fox, E.; Wolfe, D.; Rasanathan, J.J.K. How Drug Control Policy and Practice Undermine Access to Controlled Medicines. Health Hum. Rights 2017, 19, 237–252. [Google Scholar]
- Zhou, K.; Chen, L.; Li, M. The impact of medical risk perception on patient satisfaction: The moderating role of shared Decision-Making. Risk Manag. Healthc. Policy 2024, 2981–2995. [Google Scholar] [CrossRef] [PubMed]
- Avoundjian, T.; Troszak, L.; Cohen, J.; Foglia, M.B.; Trafton, J.; Midboe, A. Impact of Informed Consent and Education on Care Engagement After Opioid Initiation in the Veterans Health Administration. J. Pain Res. 2022, 15, 1553–1562. [Google Scholar] [CrossRef] [PubMed]
- Hartung, D.M.; Kassakian, S.Z.; Hendricks, M.A. Effect of integration of prescription drug monitoring program data in the electronic health record on queries by primary care providers. Health Inform. J. 2024, 30, 14604582241259337. [Google Scholar] [CrossRef] [PubMed]



| Variables | Patient (n = 322) | Physician (n = 300) | p-Value | 
|---|---|---|---|
| Demographics | |||
| Age (years), mean ± SD | 51.25 ± 15.36 | 49.14 ± 7.34 | 0.027 | 
| Age (group), n (%) | <0.001 | ||
| <60 years | 228 (70.8) | 276 (92.0) | |
| ≥60 years | 94 (29.2) | 24 (8.0) | |
| Gender, n (%) | <0.001 | ||
| Male | 116 (36.0) | 250 (83.3) | |
| Female | 206 (64.0) | 50 (16.7) | |
| Patient Clinical Characteristics | |||
| Prescription Duration, n (%) | |||
| 6–12 months | 90 (28.0) | N/A | |
| >12–36 months | 123 (38.2) | N/A | |
| >36–60 months | 76 (23.6) | N/A | |
| >60 months | 33 (10.2) | N/A | |
| Educational Attainment, n (%) | |||
| High school or Less | 58 (18.0) | N/A | |
| Associate Degree | 70 (21.7) | N/A | |
| Bachelor’s Degree | 181 (56.2) | N/A | |
| Graduate Degree | 13 (4.0) | N/A | |
| K-eHEALS (score), mean ± SD | 26.30 ± 6.43 | N/A | |
| Residence, n (%) | |||
| Urban | 277 (86.0) | N/A | |
| Rural | 45 (14.0) | N/A | |
| Primary Indication, n (%) | |||
| Sleep disorder | 81 (25.2) | N/A | |
| Anxiety disorder | 57 (17.7) | N/A | |
| Depressive disorder | 38 (11.8) | N/A | |
| Pain | 23 (7.1) | N/A | |
| Other diseases | 123 (38.2) | N/A | |
| Physician Professional Characteristics | |||
| Medical Specialty, n (%) | |||
| Psychiatry | N/A | 193 (64.4) | |
| Neurology | N/A | 82 (27.3) | |
| Anesthesiology and Pain Medicine | N/A | 25 (8.3) | |
| Work Setting, n (%) | |||
| Private clinic | N/A | 131 (43.7) | |
| University hospital | N/A | 124 (41.3) | |
| Employed physician | N/A | 45 (15.0) | |
| Work Period (year) | N/A | 17.63 ± 7.15 | |
| Work Residence, n (%) | |||
| Urban | N/A | 255 (85.0) | |
| Rural | N/A | 45 (15.0) | 
| Survey Questions | Patients (n = 322), n (%) | Physicians (n = 300) n (%) | Patients | Physicians | Proportion Difference (95% CI) | p-Value | FDR-Adjusted p-Value | |
|---|---|---|---|---|---|---|---|---|
| Proportion, % (95% CI) | ||||||||
| Narcotics Knowledge and Awareness | Q1 | 32 (9.9) | 176 (58.7) | 9.9 (6.9–13.7) | 58.7 (52.9–64.3) | 48.8 (42.3–55.2) | <0.001 | <0.001 | 
| Q2 | 167 (51.9) | 272 (90.7) | 51.9 (46.3–57.4) | 90.7 (86.8–93.7) | 38.8 (32.4–45.2) | <0.001 | <0.001 | |
| Q3 | 110 (34.2) | 240 (80.0) | 34.2 (29.0–39.6) | 80.0 (75.0–84.4) | 45.8 (39.0–52.7) | <0.001 | <0.001 | |
| Narcotics Control System Accessibility | Q4 | 87 (27.0) | 112 (37.3) | 27.0 (22.2–32.2) | 37.3 (31.8–43.1) | 10.3 (3.0–17.6) | 0.006 | 0.008 | 
| Q5 | 168 (52.2) | 243 (81.0) | 52.2 (46.6–57.7) | 81.0 (76.1–85.3) | 28.8 (21.8–35.9) | <0.001 | <0.001 | |
| Q6 | 47 (14.6) | 103 (34.3) | 14.6 (10.9–18.9) | 34.3 (29.0–40.0) | 19.7 (13.1–26.4) | <0.001 | <0.001 | |
| Q7 | 135 (41.9) | 120 (40.0) | 41.9 (36.5–47.5) | 40.0 (34.4–45.8) | 1.9 (−5.8–9.7) | 0.626 | 0.692 | |
| Misuse and Abuse | Q8 | 253 (78.6) | 30 (10.0) | 78.6 (73.7–82.9) | 10.0 (6.8–14.0) | 68.6 (62.9–74.2) | <0.001 | <0.001 | 
| Q9 | 52 (16.1) | 52 (17.3) | 16.1 (12.3–20.6) | 17.3 (13.2–22.1) | 1.2 (−4.7–7.1) | 0.692 | 0.692 | |
| Variables | Univariate OR (95% CI) | FDR-Adjusted p-Value | Adjusted OR (95% CI) | FDR-Adjusted p-Value | Predicted Probability (95% CI) | Risk Difference (95% CI) | Hosmer–Lemeshow Goodness-of-Fit Test p-Value (FDR-Adjusted) | ||
|---|---|---|---|---|---|---|---|---|---|
| Patient | Physician | ||||||||
| Narcotics Knowledge and Awareness | Q1 | 12.86 (8.36–19.80) | <0.001 | 14.22 (8.62–23.48) | <0.001 | 9.6 (6.3–12.9) | 59.4 (53.5–65.4) | 49.8 (42.9–56.7) | 0.936 | 
| Q2 | 9.02 (5.77–14.09) | <0.001 | 8.50 (5.21–13.86) | <0.001 | 52.1 (46.5–57.7) | 89.7 (85.3–94.1) | 37.7 (30.2–45.1) | 0.105 | |
| Q3 | 7.71 (5.35–11.10) | <0.001 | 7.61 (5.03–11.51) | <0.001 | 34.4 (29.1–39.7) | 78.8 (73.5–84.0) | 44.4 (36.5–52.2) | 0.768 | |
| Narcotics Control System Accessibility | Q4 | 1.61 (1.15–2.26) | 0.008 | 1.55 (1.05–2.28) | 0.034 | 27.0 (22.0–32.0) | 36.7 (30.6–42.9) | 9.7 (1.3–18.1) | 0.007 | 
| Q5 | 3.91 (2.72–5.61) | <0.001 | 3.87 (2.57–5.80) | <0.001 | 52.3 (46.7–57.8) | 80.7 (75.5–85.8) | 28.4 (20.4–36.4) | 0.936 | |
| Q6 | 3.06 (2.09–4.52) | <0.001 | 3.06 (1.96–4.78) | <0.001 | 14.5 (10.6–18.5) | 34.3 (28.4–40.2) | 19.8 (12.3–27.3) | 0.647 | |
| Q7 | 0.92 (0.67–1.27) | 0.693 | 0.95 (0.66–1.37) | 0.768 | 41.9 (36.4–47.4) | 40.6 (34.3–46.8) | 1.3 (−7.4–10.1) | 0.208 | |
| Misuse and Abuse | Q8 | 0.03 (0.02–0.05) | <0.001 | 0.04 (0.02–0.06) | <0.001 | 77.6 (73.0–82.2) | 12.8 (8.3–17.2) | 64.9 (57.8–71.9) | 0.743 | 
| Q9 | 1.09 (0.71–1.66) | 0.693 | 1.62 (0.98–2.66) | 0.065 | 14.5 (10.7–18.2) | 21.3 (16.4–26.2) | 6.8 (0.7–12.9) | 0.943 | |
| Survey Questions | Patient <60 (n = 228) | Physician <60 (n = 276) | FDR-Adjusted p-Value | Patient ≥60 (n = 92) | Physician ≥60 (n = 24) | FDR-Adjusted p-Value | 
|---|---|---|---|---|---|---|
| Narcotics Knowledge and Awareness, n (%) | ||||||
| Q1: Distinguish medical narcotics from illicit drugs | 23 (10.1) | 160 (58.0) | <0.001 | 9 (9.6) | 16 (66.7) | <0.001 | 
| Q2: Awareness of prescribed medications as classified as medical narcotics | 127 (55.7) | 249 (90.2) | <0.001 | 40 (42.6) | 23 (95.8) | <0.001 | 
| Q3: Awareness of the NIMS reporting | 82 (36.0) | 219 (79.3) | <0.001 | 28 (29.8) | 21 (87.5) | <0.001 | 
| Narcotics Control System Accessibility, n (%) | ||||||
| Q4: Awareness of the narcotics prescription status inquiry system | 68 (29.8) | 100 (36.2) | 0.166 | 19 (20.2) | 12 (50.0) | 0.004 | 
| Q5: Awareness of physician’s right to refuse prescription | 117 (51.3) | 220 (79.7) | <0.001 | 51 (54.3) | 23 (95.8) | <0.001 | 
| Q6: Awareness of the NIMS Data Service | 36 (15.8) | 90 (32.6) | <0.001 | 11 (11.7) | 13 (54.2) | <0.001 | 
| Q7: Willingness to try the NIMS Data Service | 102 (44.7) | 107 (38.8) | 0.198 | 33 (35.1) | 13 (54.2) | 0.098 | 
| Misuse and Abuse, n (%) | ||||||
| Q8: Perceived misuse and abuse of prescription medication | 183 (80.3) | 29 (10.5) | <0.001 | 70 (74.5) | 1 (4.2) | <0.001 | 
| Q9: Awareness of dosage increase since initiation | 38 (16.7) | 48 (17.4) | 0.830 | 14 (14.9) | 4 (16.7) | 0.760 | 
| Survey Questions | Education | Overall p-Value | Post Hoc Test | ||||
|---|---|---|---|---|---|---|---|
| High School or Less | Associate Degree | Bachelor’s Degree | Graduate Degree | ||||
| Narcotics Knowledge and Awareness, n (%) | Q1: 32 (9.9) | 0 (0.0) | 1 (1.4) | 25 (13.8) | 6 (46.2) | <0.001 | 0.017 | 
| Q2: 167 (51.9) | 7 (12.1) | 22 (31.4) | 126 (69.6) | 12 (92.3) | <0.001 | <0.001 | |
| Q3: 110 (34.2) | 6 (10.3) | 15 (21.4) | 79 (43.6) | 10 (76.9) | <0.001 | <0.001 | |
| Narcotics Control System Accessibility, n (%) | Q4: 87 (27.0) | 5 (8.6) | 13 (18.6) | 64 (35.4) | 5 (38.5) | <0.001 | <0.001 | 
| Q5: 168 (52.2) | 28 (48.3) | 28 (40.0) | 105 (58.0) | 7 (53.8) | 0.072 | >0.999 | |
| Q6: 47 (14.6) | 2 (3.4) | 4 (5.7) | 36 (19.9) | 5 (38.5) | <0.001 | 0.017 | |
| Q7: 135 (41.9) | 18 (31.0) | 21 (30.0) | 91 (50.3) | 5 (38.5) | 0.007 | 0.063 | |
| Misuse and Abuse, n (%) | Q8: 253 (78.6) | 45 (77.6) | 60 (85.7) | 138 (76.2) | 10 (76.9) | 0.430 | >0.999 | 
| Q9: 52 (16.1) | 11 (19.0) | 6 (8.6) | 34 (18.8) | 1 (7.7) | 0.178 | >0.999 | |
| Category | Subgroup | Outcome | OR (95% CI) | FDR-Adjusted p-Value | 
|---|---|---|---|---|
| Patient | Patient: | Q1 | 20.41 (7.74–53.84) | <0.001 | 
| Subgroup | Treatment duration | Q2 | 6.15 (2.83–13.36) | <0.001 | 
| 6–12 months | Q3 | 6.29 (3.19–12.41) | <0.001 | |
| (n = 90) | Q4 | 1.00 (0.53–1.88) | 0.995 | |
| Q5 | 3.57 (1.83–6.94) | <0.001 | ||
| Q6 | 2.70 (1.25–5.83) | 0.018 | ||
| Q7 | 1.13 (0.61–2.10) | 0.775 | ||
| Q8 | 0.04 (0.02–0.09) | <0.001 | ||
| Q9 | 1.22 (0.55–2.70) | 0.775 | ||
| Patient: | Q1 | 22.58 (10.06–50.65) | <0.001 | |
| Treatment duration | Q2 | 9.33 (5.18–16.81) | <0.001 | |
| >12–36 months | Q3 | 9.02 (5.27–15.47) | <0.001 | |
| (n = 123) | Q4 | 1.36 (0.82–2.27) | 0.259 | |
| Q5 | 3.10 (1.86–5.18) | <0.001 | ||
| Q6 | 3.76 (1.97–7.17) | <0.001 | ||
| Q7 | 1.00 (0.61–1.61) | 0.985 | ||
| Q8 | 0.03 (0.01–0.05) | <0.001 | ||
| Q9 | 1.60 (0.84–3.02) | 0.195 | ||
| Patient: | Q1 | 6.63 (3.06–14.35) | <0.001 | |
| Treatment duration | Q2 | 8.36 (3.94–17.75) | <0.001 | |
| >36–60 months | Q3 | 6.85 (3.43–13.66) | <0.001 | |
| (n = 76) | Q4 | 2.03 (0.98–4.19) | 0.071 | |
| Q5 | 4.60 (2.32–9.12) | <0.001 | ||
| Q6 | 2.39 (1.10–5.19) | 0.041 | ||
| Q7 | 0.69 (0.37–1.31) | 0.295 | ||
| Q8 | 0.03 (0.01–0.08) | <0.001 | ||
| Q9 | 1.07 (0.47–2.42) | 0.875 | ||
| Patient: | Q1 | 9.34 (2.94–29.66) | <0.001 | |
| Treatment duration | Q2 | 21.42 (5.99–76.63) | <0.001 | |
| >60 months | Q3 | 6.37 (2.20–18.42) | 0.001 | |
| (n = 33) | Q4 | 3.82 (1.15–12.65) | 0.037 | |
| Q5 | 3.54 (1.22–10.29) | 0.030 | ||
| Q6 | 4.09 (1.27–13.19) | 0.030 | ||
| Q7 | 0.78 (0.29–2.07) | 0.619 | ||
| Q8 | 0.06 (0.02–0.21) | <0.001 | ||
| Q9 | 7.91 (0.88–71.42) | 0.074 | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, Y.; Chun, E.H.; Minn, Y.-K.; Ahn, S.H.; Kim, J.H.; Kang, H.Y.; Lee, H.S.; Kim, J.E. Perceptual Discrepancies of Opioid Analgesics and Psychotropic Drugs: A Cross-Sectional Study of Korean Patients and Physicians. J. Clin. Med. 2025, 14, 7734. https://doi.org/10.3390/jcm14217734
Lee Y, Chun EH, Minn Y-K, Ahn SH, Kim JH, Kang HY, Lee HS, Kim JE. Perceptual Discrepancies of Opioid Analgesics and Psychotropic Drugs: A Cross-Sectional Study of Korean Patients and Physicians. Journal of Clinical Medicine. 2025; 14(21):7734. https://doi.org/10.3390/jcm14217734
Chicago/Turabian StyleLee, Yongsoo, Eun Hee Chun, Yang-Ki Minn, So Hyun Ahn, Jae Hun Kim, Hee Yong Kang, Hye Sun Lee, and Jung Eun Kim. 2025. "Perceptual Discrepancies of Opioid Analgesics and Psychotropic Drugs: A Cross-Sectional Study of Korean Patients and Physicians" Journal of Clinical Medicine 14, no. 21: 7734. https://doi.org/10.3390/jcm14217734
APA StyleLee, Y., Chun, E. H., Minn, Y.-K., Ahn, S. H., Kim, J. H., Kang, H. Y., Lee, H. S., & Kim, J. E. (2025). Perceptual Discrepancies of Opioid Analgesics and Psychotropic Drugs: A Cross-Sectional Study of Korean Patients and Physicians. Journal of Clinical Medicine, 14(21), 7734. https://doi.org/10.3390/jcm14217734
 
        

 
       