The Relationship Between Blood Parameters and Gastrointestinal Bleeding in Atrial Fibrillation Patients Receiving Oral Anticoagulants
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Study Population
- Case Group: AF patients receiving OACs with confirmed GI bleeding (hematemeza, melena, or hematochezia), verified by endoscopy or imaging where applicable.
- Control Group: AF patients receiving OACs presenting for non-bleeding reasons (e.g., routine follow-up, unrelated complaints) during the same period.
- Incomplete medical records or missing laboratory data.
- Anticoagulation for non-AF indications (e.g., venous thromboembolism, mechanical valves).
- Non-GI bleeding (e.g., epistaxis, hematuria).
- Active malignancy, acute infection, or conditions confounding inflammatory marker levels.
2.3. Data Collection
- Demographic Characteristics: Age, sex.
- Clinical Data: Comorbidities (hypertension, diabetes, heart failure, prior bleeding, renal or liver dysfunction), medication use (OAC type, proton pump inhibitors [PPIs], antiplatelets), and endoscopic findings.
- Risk Scores: CHA2DS2-VASc (stroke risk) and HAS-BLED (bleeding risk) scores.
- Laboratory Parameters: Hemoglobin, urea, creatinine, glomerular filtration rate (GFR), albumin, uric acid, C-reactive protein (CRP), total cholesterol, low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglycerides, and complete blood count (CBC) with differential (neutrophils, lymphocytes, platelets).
- Inflammatory Indices:
- ○
- Uric acid/albumin ratio = uric acid (mg/dL)/albumin (g/L).
- ○
- CRP/albumin ratio = CRP (mg/L)/albumin (g/L).
- ○
- Neutrophil-to-lymphocyte ratio (NLR) = neutrophil count/lymphocyte count.
- ○
- Platelet-to-lymphocyte ratio (PLR) = platelet count/lymphocyte count.
- ○
- Systemic immune-inflammation index (SII) = (platelet count × neutrophil count)/lymphocyte count.
- ○
- Triglyceride–glucose (TyG) index = ln [triglyceride (mg/dL) × fasting glucose (mg/dL)/2].
- ○
- Atherogenic index of plasma (AIP) = log (triglyceride/HDL cholesterol).
2.4. Statistical Analysis
- Independent t-test for normally distributed continuous variables.
- Mann–Whitney U test for non-normally distributed continuous variables.
- Chi-squared test or Fisher’s exact test for categorical variables.
3. Results
3.1. Demographic and Clinical Characteristics
3.2. Laboratory Parameters
3.3. Inflammatory Indices
3.4. Endoscopic Findings
4. Discussion
4.1. Inflammatory Markers: Mechanisms and Implications
4.2. Biochemical Predictors: Clinical and Pathophysiological Insights
4.3. Renal Function and Bleeding Risk
4.4. Clinical Scores: Strengths and Limitations
4.5. Emergency Department Management Strategies
4.6. Subgroup Analyses and Personalized Medicine
4.7. Limitations and Future Directions
- Prospective, multicenter studies to validate biomarkers in larger cohorts.
- Analysis of specific NOAC types and dosages to identify drug-specific risks.
- Integration of inflammatory markers into established risk scores such as the HAS-BLED or Glasgow-Blatchford scores.
- Exploration of anti-inflammatory therapies to reduce bleeding risk.
- Investigation of hypolipidemia’s role in bleeding risk, particularly in patients receiving NOAC.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Martin, A.C.; Benamouzig, R.; Gouin-Thibault, I.; Schmidt, J. Management of gastrointestinal bleeding and resumption of oral anticoagulant therapy in patients with atrial fibrillation: A multidisciplinary discussion. Am. J. Cardiovasc. Drugs 2023, 23, 407–418. [Google Scholar] [CrossRef] [PubMed]
- Connolly, S.J.; Ezekowitz, M.D.; Yusuf, S.; Eikelboom, J.; Oldgren, J.; Parekh, A.; Pogue, J.; Reilly, P.A.; Themeles, E.; Varrone, J.; et al. Dabigatran versus warfarin in patients with atrial fibrillation. N. Engl. J. Med. 2009, 361, 1139–1151. [Google Scholar] [CrossRef] [PubMed]
- Borre, E.D.; Goode, A.; Raitz, G.; Shah, B.; Lowenstern, A.; Chatterjee, R.; Sharan, L.; LaPointe, N.M.A.; Yapa, R.; Kelly, D.; et al. Predicting thromboembolic and bleeding event risk in patients with non-valvular atrial fibrillation: A systematic review. Thromb. Haemost. 2018, 118, 2171–2187. [Google Scholar] [CrossRef]
- Ballestri, S.; Romagnoli, E.; Arioli, D.; Coluccio, V.; Marrazzo, A.; Athanasiou, A.; Di Girolamo, M.; Cappi, C.; Marietta, M. Risk and management of bleeding complications with direct oral anticoagulants in patients with atrial fibrillation and venous thromboembolism: A narrative review. Adv. Ther. 2023, 40, 41–66. [Google Scholar]
- Lip, G.Y.; Nieuwlaat, R.; Pisters, R.; Lane, D.A.; Crijns, H.J. Refining clinical risk stratification for predicting stroke and thromboembolism in atrial fibrillation using a novel risk factor-based approach: The Euro Heart Survey on atrial fibrillation. Chest 2010, 137, 263–272. [Google Scholar] [CrossRef]
- Gallego, P.; Roldán, V.; Torregrosa, J.M.; Gálvez, J.; Valdés, M.; Vicente, V.; Marín, F.; Lip, G.Y.H. Relation of the HAS-BLED bleeding risk score to major bleeding, cardiovascular events, and mortality in anticoagulated patients with atrial fibrillation. Circ. Arrhythm. Electrophysiol. 2012, 5, 312–318. [Google Scholar] [PubMed]
- Chang, G.; Xie, Q.; Ma, L.; Hu, K.; Zhang, Z.; Mu, G.; Cui, Y. Accuracy of HAS-BLED and other bleeding risk assessment tools in predicting major bleeding events in atrial fibrillation: A network meta-analysis. J. Thromb. Haemost. 2020, 18, 791–801. [Google Scholar] [CrossRef]
- Chandrashekara, S.; Mukhtar Ahmad, M.; Renuka, P.; Anupama, K.R.; Renuka, K. Characterization of neutrophil-to-lymphocyte ratio as a measure of inflammation in rheumatoid arthritis. Int. J. Rheum. Dis. 2017, 20, 1457–1467. [Google Scholar] [CrossRef]
- Zhai, G.; Wang, J.; Liu, Y.; Zhou, Y. Platelet-lymphocyte ratio as a new predictor of in-hospital mortality in cardiac intensive care unit patients. Sci. Rep. 2021, 11, 23578. [Google Scholar] [CrossRef]
- Hu, B.; Gao, J.; Wang, J.L.; Zhu, K.; Zhang, C.; Wang, B.X.; Wang, J. Systemic immune-inflammation index predicts prognosis of patients after curative resection for hepatocellular carcinoma. Clin. Cancer Res. 2014, 20, 6212–6222. [Google Scholar] [CrossRef]
- Kalkan, S.; Cagan Efe, S.; Karagöz, A.; Zeren, G.; Yılmaz, M.F.; Şimşek, B.; Batgerel, U.; Özkalaycı, F.; Tanboğa, İ.H.; Oduncu, V.; et al. A new predictor of mortality in ST-elevation myocardial infarction: The uric acid albumin ratio. Angiology 2022, 73, 461–469. [Google Scholar] [CrossRef] [PubMed]
- Zappulla, P.; Calvi, V. Gastrointestinal bleeding and direct oral anticoagulants among patients with atrial fibrillation: Risk, prevention, management, and quality of life. TH Open 2021, 5, e200–e210. [Google Scholar] [CrossRef]
- Chen, X.; Li, X.; Zhao, G.; Xu, W. Neutrophil-lymphocyte ratio predict outcome of upper gastrointestinal bleeding in emergency. Front. Med. 2024, 11, 1366715. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Ju, H.; Zhang, W.C.; He, C. Relationship between platelet-to-lymphocyte ratio and early rebleeding after endoscopic variceal ligation: A bicenter retrospective study. Ann. Med. 2024, 56, 2400315. [Google Scholar]
- Trifan, G.; Testai, F. Systemic immune-inflammation index predicts poor outcome after spontaneous supratentorial intracerebral hemorrhage. J. Stroke Cerebrovasc. Dis. 2020, 29, 105057. [Google Scholar]
- Bae, S.; Kim, K.; Yun, S.; Lee, S. Predictive performance of blood urea nitrogen to serum albumin ratio in elderly patients with gastrointestinal bleeding. Am. J. Emerg. Med. 2020, 41, 152–157. [Google Scholar] [CrossRef]
- Chopra, D.; Rosenberg, M.; Moayyedi, P.; Narula, N. Is blood urea concentration an independent predictor of positive endoscopic findings in presumed upper gastrointestinal bleeding? Dig. Dis. 2019, 38, 77–84. [Google Scholar] [CrossRef]
- Vinogradova, Y.; Coupland, C.; Hill, T.; Hippisley-Cox, J. Risks and benefits of direct oral anticoagulants versus warfarin in a real-world setting: Cohort study in primary care. BMJ 2018, 362, k2505. [Google Scholar] [CrossRef]
- Ingrasciotta, Y.; Crisafulli, S.; Pizzimenti, V.; Marciano, I.; Mancuso, A.; Ando, G.; Andò, G.; Corrao, S.; Capranzano, P.; Trifirò, G. Pharmacokinetics of new oral anticoagulants: Implications for use in routine care. Expert Opin. Drug Metab. Toxicol. 2018, 14, 1057–1069. [Google Scholar] [CrossRef]
- Liang, Z.; Liu, H.; Xue, L.; Ma, B.; Yang, L.Z.; Liang, Q.L.; Zhou, Z. A retrospective study about association of dynamic systemic immune-inflammation index (SII) with 180-day functional outcome after basal ganglia intracerebral hemorrhage. Heliyon 2023, 9, e16937. [Google Scholar] [CrossRef] [PubMed]
- Moshage, H.J.; Janssen, J.A.; Franssen, J.H.; Hafkenscheid, J.C.; Yap, S.H. Study of the molecular mechanism of decreased liver synthesis of albumin in inflammation. J. Clin. Investig. 1997, 79, 1635–1641. [Google Scholar] [CrossRef] [PubMed]
- Wojakowski, E.; Cheruvil, C.; Hassan, A.; Holsen, M.; Chen, L.; Rossi, M.; Wilcox, N.; Woodruff, A.E. Albumin and bleeding risk in patients treated with rivaroxaban. J. Thromb. Thrombolysis 2020, 50, 1004–1011. [Google Scholar] [CrossRef]
- Tapaskar, N.; Jones, B.; Mei, S.; Sengupta, N. Comparison of clinical prediction tools and identification of risk factors for adverse outcomes in acute lower GI bleeding. Gastrointest. Endosc. 2019, 89, 1005–1013.e2. [Google Scholar] [CrossRef] [PubMed]
- Bonville, D.A.; Parker, T.S.; Levine, D.M.; Gordon, B.R.; Hydo, L.J.; Eachempati, S.R.; Barie, P.S. The relationship of hypocholesterolemia to cytokine concentrations and mortality in critically ill patients with systemic inflammatory response syndrome. Surg. Infect. 2004, 5, 39–49. [Google Scholar] [CrossRef]
- Hrabovský, V.; Blaha, V.; Hyspler, R.; Tichá, A.; Skrobanková, M.; Švagera, Z. Changes in cholesterol metabolism during acute upper gastrointestinal bleeding: Liver cirrhosis and non-cirrhosis compared. Biomed. Pap. Med. Fac. Univ. Palacky. Olomouc Czech Repub. 2019, 163, 253–258. [Google Scholar] [CrossRef]
- Yao, X.; Shah, N.D.; Sangaralingham, L.R.; Gersh, B.J.; Noseworthy, P.A. Non-vitamin K antagonist oral anticoagulant dosing in patients with atrial fibrillation and renal dysfunction. J. Am. Coll. Cardiol. 2017, 69, 2779–2790. [Google Scholar] [CrossRef] [PubMed]
| Parameter | NOAC Users | Warfarin Users | ||||
|---|---|---|---|---|---|---|
| Case Group (n = 42) | Control Group (n = 36) | p-Value | Case Group (n = 43) | Control Group (n = 34) | p-Value | |
| Age (years) * | 74.2 ± 8.7 | 71.8 ± 9.1 | 0.245 | 73.9 ± 9.0 | 72.1 ± 8.8 | 0.389 |
| Male, n (%) | 20 (47.6) | 18 (50.0) | 0.832 | 22 (51.2) | 17 (50.0) | 0.913 |
| Hypertension, n (%) | 30 (71.4) | 25 (69.4) | 0.842 | 31 (72.1) | 23 (67.6) | 0.662 |
| Diabetes, n (%) | 15 (35.7) | 12 (33.3) | 0.818 | 16 (37.2) | 11 (32.4) | 0.652 |
| Heart Failure, n (%) | 18 (42.9) | 10 (27.8) | 0.159 | 20 (46.5) | 12 (35.3) | 0.315 |
| Prior Bleeding, n (%) | 12 (28.6) | 4 (11.1) | 0.048 | 14 (32.6) | 5 (14.7) | 0.064 |
| Renal Dysfunction, n (%) | 8 (19.0) | 12 (33.3) | 0.139 | 9 (20.9) | 11 (32.4) | 0.234 |
| Liver Dysfunction, n (%) | 3 (7.1) | 6 (16.7) | 0.185 | 4 (9.3) | 7 (20.6) | 0.149 |
| PPI Use, n (%) | 25 (59.5) | 20 (55.6) | 0.711 | 26 (60.5) | 19 (55.9) | 0.678 |
| CHA2DS2-VASc * | 4.1 ± 1.6 | 3.8 ± 1.5 | 0.376 | 4.0 ± 1.7 | 3.7 ± 1.6 | 0.412 |
| HAS-BLED * | 3.5 ± 1.2 | 2.6 ± 1.0 | <0.001 | 3.7 ± 1.3 | 2.8 ± 1.1 | <0.001 |
| Parameter | NOAC Users | Warfarin Users | ||||
|---|---|---|---|---|---|---|
| Case Group (n = 42) | Control Group (n = 36) | p-Value | Case Group (n = 43) | Control Group (n = 34) | p-Value | |
| Hemoglobin (g/dL) * | 9.8 ± 2.1 | 12.5 ± 1.9 | <0.001 | 9.5 ± 2.0 | 12.3 ± 1.8 | <0.001 |
| Urea (mmol/L) ** | 8.2 (4.1–15.6) | 7.5 (3.8–14.2) | 0.214 | 9.1 (4.5–16.8) | 7.3 (3.9–13.5) | 0.012 |
| Creatinine (µmol/L) ** | 85.0 (50–130) | 95.0 (60–150) | 0.032 | 90.0 (55–140) | 92.0 (60–145) | 0.456 |
| GFR (mL/min/1.73 m2) * | 65.2 ± 15.3 | 58.7 ± 14.8 | 0.042 | 62.4 ± 14.7 | 60.8 ± 15.1 | 0.627 |
| Albumin (g/L) * | 32.1 ± 5.4 | 38.2 ± 4.9 | <0.001 | 31.8 ± 5.2 | 37.5 ± 4.7 | <0.001 |
| Uric Acid (mg/dL) * | 6.8 ± 1.7 | 5.9 ± 1.5 | 0.024 | 6.5 ± 1.6 | 6.0 ± 1.4 | 0.134 |
| CRP (mg/L) ** | 12.5 (2.0–150.0) | 10.0 (1.5–100.0) | 0.126 | 13.0 (2.5–140.0) | 11.0 (1.8–90.0) | 0.154 |
| Total Cholesterol (mg/dL) * | 145.3 ± 30.2 | 170.5 ± 28.7 | <0.001 | 150.2 ± 29.8 | 165.7 ± 27.5 | 0.021 |
| LDL (mg/dL) * | 85.6 ± 22.4 | 100.4 ± 20.8 | 0.002 | 88.4 ± 21.6 | 98.2 ± 19.7 | 0.041 |
| HDL (mg/dL) * | 38.2 ± 10.1 | 45.7 ± 9.8 | 0.003 | 40.1 ± 9.9 | 43.8 ± 10.2 | 0.112 |
| Triglycerides (mg/dL) ** | 110.0 (60–200) | 120.0 (70–220) | 0.091 | 115.0 (65–210) | 125.0 (75–230) | 0.102 |
| INR * | - | - | - | 3.8 ± 1.2 | 2.4 ± 0.8 | <0.001 |
| Parameter | NOAC Users | Warfarin Users | ||||
|---|---|---|---|---|---|---|
| Case Group (n = 42) | Control Group (n = 36) | p-Value | Case Group (n = 43) | Control Group (n = 34) | p-Value | |
| Uric Acid/Albumin * | 2.2 ± 0.8 | 1.6 ± 0.5 | <0.001 | 2.0 ± 0.6 | 1.6 ± 0.4 | <0.001 |
| CRP/Albumin ** | 1.7 (0.7–54.6) | 1.2 (0.6–29.1) | 0.082 | 1.8 (0.7–48.4) | 1.3 (0.7–18.1) | 0.111 |
| PLR ** | 171.4 (54.0–1476.7) | 134.0 (29.7–833.3) | 0.037 | 172.7 (76.4–970.0) | 145.9 (55.7–375.5) | 0.134 |
| NLR ** | 4.6 (1.0–29.3) | 2.5 (1.0–28.7) | 0.009 | 3.6 (1.1–37.0) | 2.9 (0.7–11.2) | 0.364 |
| SII ** | 872.5 (162.5–12994.7) | 586.5 (256.6–7166.7) | 0.005 | 804.1 (280.3–17945.0) | 616.9 (43.0–3039.1) | 0.105 |
| TyG Index * | 3.8 ± 0.3 | 3.8 ± 0.3 | 0.677 | 3.9 ± 0.2 | 3.8 ± 0.3 | 0.573 |
| AIP * | 0.4 ± 0.2 | 0.4 ± 0.2 | 0.806 | 0.4 ± 0.3 | 0.4 ± 0.2 | 0.772 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yurdakul, H.; Cakas, M.; Yildirim, S.E.; Yildirim, T.; Serin, S.; Caglar, B. The Relationship Between Blood Parameters and Gastrointestinal Bleeding in Atrial Fibrillation Patients Receiving Oral Anticoagulants. J. Clin. Med. 2025, 14, 7642. https://doi.org/10.3390/jcm14217642
Yurdakul H, Cakas M, Yildirim SE, Yildirim T, Serin S, Caglar B. The Relationship Between Blood Parameters and Gastrointestinal Bleeding in Atrial Fibrillation Patients Receiving Oral Anticoagulants. Journal of Clinical Medicine. 2025; 14(21):7642. https://doi.org/10.3390/jcm14217642
Chicago/Turabian StyleYurdakul, Hayrullah, Muhammet Cakas, Seda Elcim Yildirim, Tarik Yildirim, Suha Serin, and Bahadir Caglar. 2025. "The Relationship Between Blood Parameters and Gastrointestinal Bleeding in Atrial Fibrillation Patients Receiving Oral Anticoagulants" Journal of Clinical Medicine 14, no. 21: 7642. https://doi.org/10.3390/jcm14217642
APA StyleYurdakul, H., Cakas, M., Yildirim, S. E., Yildirim, T., Serin, S., & Caglar, B. (2025). The Relationship Between Blood Parameters and Gastrointestinal Bleeding in Atrial Fibrillation Patients Receiving Oral Anticoagulants. Journal of Clinical Medicine, 14(21), 7642. https://doi.org/10.3390/jcm14217642

