Pentosidine and Bone Properties in Autosomal Dominant Polycystic Kidney Disease
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Imaging and Mayo Clinic Imaging Classification
2.3. Bone Mineral Density and Trabecular Score
2.4. Bone Material Strength Measurement
2.5. Statistical Analyses
3. Results
3.1. Study 1: Pentosidine Plasma Levels in ADPKD vs. Other CKD Etiologies
3.1.1. Pentosidine in CKD G5
3.1.2. Pentosidine in CKD G5D
3.1.3. Pentosidine in CKD G1–G4 and Healthy Individuals
3.2. Study 2: Pentosidine and Parameters of Mineral and Bone Metabolism
3.3. Study 3: Pentosidine, Bone Material Strength Index, and DXA-Derived Bone Phenotype
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ADPKD | Autosomal dominant polycystic kidney disease |
| AGEs | Advanced glycation end-products |
| ALP | Alkaline phosphatase |
| BALP | Bone-specific alkaline phosphatase |
| BMD | Bone mineral density |
| BMI | Body mass index |
| BMSi | Bone material strength index |
| Ca | Calcium |
| CKD | Chronic kidney disease |
| CGN | Chronic primary glomerulonephritis |
| hsCRP | High-sensitivity C-reactive protein |
| DM | Diabetes mellitus |
| FA | Forearm |
| FN | Femoral neck |
| eGFR | Estimated glomerular filtration rate |
| mGFR | Measured glomerular filtration rate |
| HPLC | Reverse-phase high-performance liquid chromatography |
| HT/RVD | Hypertension/renovascular disease |
| Ht/TKV | Height-adjusted total kidney volume |
| LS | Lumbar spine |
| Mg | Magnesium |
| MIC | Mayo Imaging Classification |
| Pi | Phosphate |
| PMMA | Polymethylmethacrylate |
| PTH | Intact parathormone |
| TBS | Trabecular bone score |
References
- Cornec-Le Gall, E.; Alam, A.; Perrone, R.D. Autosomal dominant polycystic kidney disease. Lancet 2019, 393, 919–935. [Google Scholar] [CrossRef] [PubMed]
- Van Laecke, S.; Van Biesen, W. Novel non-cystic features of polycystic kidney disease: Having new eyes or seeking new landscapes. Clin. Kidney J. 2021, 14, 746–755. [Google Scholar] [CrossRef] [PubMed]
- Lai, S.; Perrotta, A.M.; Tartaglione, L.; Mastroluca, D.; Tinti, F.; Menè, P.; Pasquali, M.; Ferraro, P.M.; Mazzaferro, S.; Rotondi, S.; et al. Chronic kidney disease- mineral and bone disorder in autosomal dominant policystic kidney disease. Bone. 2025, 201, 117652. [Google Scholar] [CrossRef]
- Evenepoel, P.; Claes, K.; Cavalier, E.; Meijers, B.; Stenvinkel, P.; Behets, G.; Jankowska, M.; D’Haese, P. and BammensB. et al. A distinct bone phenotype in ADPKD patients with end-stage renal disease. Kidney Int. 2019, 95, 412–419. [Google Scholar] [CrossRef]
- Zubidat, D.; Hanna, C.; Randhawa, A.K.; Smith, B.H.; Chedid, M.; Kaidbay, D.N.; Nardelli, L.; Mkhaimer, Y.G.; Neal, R.M.; Madsen, C.D.; et al. Bone health in autosomal dominant polycystic kidney disease (ADPKD) patients after kidney transplantation. Bone Rep. 2023, 18, 101655. [Google Scholar] [CrossRef]
- Jankowska, M.; Haarhaus, M.; Qureshi, A.R.; Lindholm, B.; Evenepoel, P.; Stenvinkel, P. Sclerostin—A Debutant on the Autosomal Dominant Polycystic Kidney Disease Scene? Kidney Int. Rep. 2017, 2, 481–485. [Google Scholar] [CrossRef]
- Gitomer, B.; Pereira, R.; Salusky, I.B.; Stoneback, J.W.; Isakova, T.; Cai, X.; Dalrymple, L.S.; Ofsthun, N.; You, Z.; Malluche, H.H.; et al. Mineral bone disease in autosomal dominant polycystic kidney disease. Kidney Int. 2021, 99, 977–985. [Google Scholar] [CrossRef]
- Xiao, Z.; Zhang, S.; Cao, L.; Qiu, N.; David, V.; Quarles, L.D. Conditional disruption of Pkd1 in osteoblasts results in osteopenia due to direct impairment of bone formation. J. Biol. Chem. 2010, 285, 1177–1187. [Google Scholar] [CrossRef]
- Xiao, Z.; Dallas, M.; Qiu, N.; Nicolella, D.; Cao, L.; Johnson, M.; Bonewald, L.; Quarles, L.D. Conditional deletion of Pkd1 in osteocytes disrupts skeletal mechanosensing in mice. FASEB J. 2011, 25, 2418–2432. [Google Scholar] [CrossRef]
- Xiao, Z.; Cao, L.; Liang, Y.; Huang, J.; Stern, A.R.; Dallas, M.; Johnson, M.; Quarles, L.D. Osteoblast-specific deletion of Pkd2 leads to low-turnover osteopenia and reduced bone marrow adiposity. PLoS ONE 2014, 9, e114198. [Google Scholar] [CrossRef] [PubMed]
- Nowak, K.L.; Wang, W.; Farmer-Bailey, H.; Gitomer, B.; Malaczewski, M.; Klawitter, J.; Jovanovich, A.; Chonchol, M. Vascular Dysfunction, Oxidative Stress, and Inflammation in Autosomal Dominant Polycystic Kidney Disease. Clin. J. Am. Soc. Nephrol. 2018, 13, 1493–1501. [Google Scholar] [CrossRef] [PubMed]
- Menon, V.; Rudym, D.; Chandra, P.; Miskulin, D.; Perrone, R.; Sarnak, M. Inflammation, oxidative stress, and insulin resistance in polycystic kidney disease. Clin. J. Am. Soc. Nephrol. 2011, 6, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Impellizzeri, P.; Nascimben, F.; Di Fabrizio, D.; Antonuccio, P.; Antonelli, E.; Peri, F.M.; Calabrese, U.; Arena, S.; Romeo, C. Pathogenesis of Congenital Malformations: Possible Role of Oxidative Stress. Am. J. Perinatol. 2022, 39, 816–823. [Google Scholar] [CrossRef] [PubMed]
- Klawitter, J.; Jackson, M.J.; Smith, P.H.; Hopp, K.; Chonchol, M.; Gitomer, B.Y.; Cadnapaphornchai, M.A.; Christians, U.; Klawitter, J. Kynurenines in polycystic kidney disease. J. Nephrol. 2023, 36, 83–91. [Google Scholar] [CrossRef]
- Ziolkowski, S.; Liu, S.; Montez-Rath, M.E.; Denburg, M.; Winkelmayer, W.C.; Chertow, G.M.; O’Shaughnessy, M.M. Association between cause of kidney failure and fracture incidence in a national US dialysis population cohort study. Clin. Kidney J. 2022, 15, 2245–2257. [Google Scholar] [CrossRef]
- Blencowe, L.A.; Božović, A.; Wong, E.; Kulasingam, V.; Cheung, A.M. Total serum pentosidine quantification using liquid chromatography-tandem mass spectrometry. Bone Rep. 2024, 20, 101737. [Google Scholar] [CrossRef]
- Quadros, K.R.S.; Roza, N.A.V.; França, R.A.; Esteves, A.B.A.; Barreto, J.; Dominguez, W.V.; Furukawa, L.N.S.; Caramori, J.T.; Sposito, A.C.; de Oliveira, R.B. Advanced Glycation End Products and Bone Metabolism in Patients with Chronic Kidney Disease. JBMR Plus 2023, 7, e10727. [Google Scholar] [CrossRef]
- Schwartz, A.V.; Garnero, P.; Hillier, T.A.; Sellmeyer, D.E.; Strotmeyer, E.S.; Feingold, K.R.; Resnick, H.E.; Tylavsky, F.A.; Black, D.M.; Cummings, S.R.; et al. Pentosidine and increased fracture risk in older adults with type 2 diabetes. J. Clin. Endocrinol. Metab. 2009, 94, 2380–2386. [Google Scholar] [CrossRef]
- Hagino, H.; Moriwaki, K.; Wada, T.; Osaki, M.; Nagashima, H.; Matsumoto, H. Urinary pentosidine level is associated with the risk of fracture in community-dwelling older adults: A prospective observational study. Osteoporos. Int. 2023, 34, 1703–1709. [Google Scholar] [CrossRef]
- Tanaka, S.; Saito, M.; Hagino, H.; Mori, S.; Nakamura, T.; Ohta, H.; Sone, T.; Takahashi, K.; Mitomo, Y.; Sugimoto, T.; et al. Association of Urinary Pentosidine Levels With the Risk of Fractures in Patients With Severe Osteoporosis: The Japanese Osteoporosis Intervention Trial-05 (JOINT-05). JBMR Plus 2022, 6, e10673. [Google Scholar] [CrossRef]
- Shiraki, M.; Kuroda, T.; Tanaka, S.; Saito, M.; Fukunaga, M.; Nakamura, T. Nonenzymatic collagen cross-links induced by glycoxidation (pentosidine) predicts vertebral fractures. J. Bone Miner. Metab. 2008, 26, 93–100. [Google Scholar] [CrossRef]
- Shiraki, M.; Kashiwabara, S.; Imai, T.; Tanaka, S.; Saito, M. The association of urinary pentosidine levels with the prevalence of osteoporotic fractures in postmenopausal women. J. Bone Miner. Metab. 2019, 37, 1067–1074. [Google Scholar] [CrossRef]
- Brandt, I.A.G.; Jessen, M.H.; Rimestad, D.E.; Højgaard, M.K.F.; Vestergaard, P. Advanced glycation end products and bone—How do we measure them and how do they correlate with bone mineral density and fractures? A systematic review and evaluation of precision of measures. Bone 2022, 165, 116569. [Google Scholar] [CrossRef]
- Suliman, M.E.; Heimbürger, O.; Bárány, P.; Anderstam, B.; Pecoits-Filho, R.; Rodríguez Ayala, E.; Qureshi, A.R.; Fehrman-Ekholm, I.; Lindholm, B.; Stenvinkel, P. Plasma pentosidine is associated with inflammation and malnutrition in end-stage renal disease patients starting on dialysis therapy. J. Am. Soc. Nephrol. 2003, 14, 1614–1622. [Google Scholar] [CrossRef]
- Machowska, A.; Sun, J.; Qureshi, A.R.; Isoyama, N.; Leurs, P.; Anderstam, B.; Heimburger, O.; Barany, P.; Stenvinkel, P.; Lindholm, B. Plasma Pentosidine and Its Association with Mortality in Patients with Chronic Kidney Disease. PLoS ONE 2016, 11, e0163826. [Google Scholar] [CrossRef] [PubMed]
- Schoeb, M.; Hamdy, N.A.T.; Malgo, F.; Winter, E.M.; Appelman-Dijkstra, N.M. Added Value of Impact Microindentation in the Evaluation of Bone Fragility: A Systematic Review of the Literature. Front. Endocrinol. 2020, 11, 15. [Google Scholar] [CrossRef] [PubMed]
- Schoeb, M.; Avci, T.M.; Winter, E.M.; Appelman-Dijkstra, N.M. Safety Outcomes of Impact Microindentation: A Prospective Observational Study in the Netherlands. JBMR Plus 2023, 7, e10799. [Google Scholar] [CrossRef]
- Stenvinkel, P.; Heimbürger, O.; Paultre, F.; Diczfalusy, U.; Wang, T.; Berglund, L.; Jogestrand, T. Strong association between malnutrition, inflammation, and atherosclerosis in chronic renal failure. Kidney Int. 1999, 55, 1899–1911. [Google Scholar] [CrossRef]
- Izuhara, Y.; Miyata, T.; Ueda, Y.; Suzuki, D.; Asahi, K.; Inagi, R.; Sakai, H.; Kurokawa, K. A sensitive and specific ELISA for plasma pentosidine. Nephrol. Dial. Transplant. 1999, 14, 576–580. [Google Scholar] [CrossRef]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., 3rd; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Irazabal, M.V.; Rangel, L.J.; Bergstralh, E.J.; Osborn, S.L.; Harmon, A.J.; Sundsbak, J.L.; Bae, K.T.; Chapman, A.B.; Grantham, J.J.; Mrug, M.; et al. Imaging classification of autosomal dominant polycystic kidney disease: A simple model for selecting patients for clinical trials. J. Am. Soc. Nephrol. 2015, 26, 160–172. [Google Scholar] [CrossRef]
- Jankowski, L.G.; Warner, S.; Gaither, K.; Lenchik, L.; Fan, B.; Lu, Y.; Shepherd, J. Cross-calibration, Least Significant Change and Quality Assurance in Multiple Dual-Energy X-ray Absorptiometry Scanner Environments: 2019 ISCD Official Position. J. Clin. Densitom. 2019, 22, 472–483. [Google Scholar] [CrossRef]
- Miyata, T.; Ueda, Y.; Horie, K.; Nangaku, M.; Tanaka, S.; van Ypersele de Strihou, C.; Kurokawa, K. Renal catabolism of advanced glycation end products: The fate of pentosidine. Kidney Int. 1998, 53, 416–422. [Google Scholar] [CrossRef]
- Boletta, A. Targeting Metabolic Reprogramming in Polycystic Kidney Disease. J. Am. Soc. Nephrol. 2024, 35, 1768–1770. [Google Scholar] [CrossRef]
- Gerdemann, A.; Lemke, H.D.; Nothdurft, A.; Heidland, A.; Münch, G.; Bahner, U.; Schinzel, R. Low-molecular but not high-molecular advanced glycation end products (AGEs) are removed by high-flux dialysis. Clin. Nephrol. 2000, 54, 276–283. [Google Scholar] [PubMed]
- Willett, T.L.; Dapaah, D.Y.; Uppuganti, S.; Granke, M.; Nyman, J.S. Bone collagen network integrity and transverse fracture toughness of human cortical bone. Bone 2019, 120, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Willett, T.L.; Voziyan, P.; Nyman, J.S. Causative or associative: A critical review of the role of advanced glycation end-products in bone fragility. Bone 2022, 163, 116485. [Google Scholar] [CrossRef]
- Nakano, M.; Nakamura, Y.; Suzuki, T.; Miyazaki, A.; Takahashi, J.; Saito, M.; Shiraki, M. Pentosidine and carboxymethyl-lysine associate differently with prevalent osteoporotic vertebral fracture and various bone markers. Sci. Rep. 2020, 10, 22090. [Google Scholar] [CrossRef] [PubMed]
- Kindler, J.M.; Laing, E.M.; Liu, W.; Dain, J.A.; Lewis, R.D. Pentosidine Is Associated with Cortical Bone Geometry and Insulin Resistance in Otherwise Healthy Children. J. Bone Miner. Res. 2019, 34, 1446–1450. [Google Scholar] [CrossRef]
- Panuccio, V.; Mallamaci, F.; Tripepi, G.; Parlongo, S.; Cutrupi, S.; Asahi, K.; Miyata, T.; Zoccali, C. Low parathyroid hormone and pentosidine in hemodialysis patients. Am. J. Kidney Dis. 2002, 40, 810–815. [Google Scholar] [CrossRef]
- Mitome, J.; Yamamoto, H.; Saito, M.; Yokoyama, K.; Marumo, K.; Hosoya, T. Nonenzymatic cross-linking pentosidine increase in bone collagen and are associated with disorders of bone mineralization in dialysis patients. Calcif. Tissue Int. 2011, 88, 521–529. [Google Scholar] [CrossRef] [PubMed]
- Samakkarnthai, P.; Sfeir, J.G.; Atkinson, E.J.; Achenbach, S.J.; Wennberg, P.W.; Dyck, P.J.; Tweed, A.J.; Volkman, T.L.; Amin, S.; Farr, J.N.; et al. Determinants of Bone Material Strength and Cortical Porosity in Patients with Type 2 Diabetes Mellitus. J. Clin. Endocrinol. Metab. 2020, 105, e3718–e3729. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, R.; Zoulakis, M.; Axelsson, K.F.; Darelid, A.; Rudäng, R.; Sundh, D.; Litsne, H.; Johansson, L.; Lorentzon, M. Increased Bone Material Strength Index Is Positively Associated With the Risk of Incident Osteoporotic Fractures in Older Swedish Women. J. Bone Miner. Res. 2023, 38, 860–868. [Google Scholar] [CrossRef]
- Rokidi, S.; Bravenboer, N.; Gamsjaeger, S.; Chavassieux, P.; Zwerina, J.; Paschalis, E.; Papapoulos, S.; Appelman-Dijkstra, N. Impact microindentation measurements correlate with cortical bone material properties measured by Fourier transform infrared imaging in humans. Bone 2020, 137, 115437. [Google Scholar] [CrossRef] [PubMed]





| Cohort 1 N = 336 | Cohort 2 N = 79 | Cohort 3 N = 109 | |
|---|---|---|---|
| Study 1: Pentosidine in ADPKD vs. Other etiologies of CKD | + | + | + |
| Study 2: Pentosidine and bone biomarkers | - | + | + |
| Study 3: Pentosidine and measures of bone properties (DXA and BMSi) | - | - | + |
| Country | Sweden | Sweden | Poland |
| Age, years | 54 (38–63) | 45 (31–57) | 45 (34–49) |
| Men (%) | 60 | 41 | 53 |
| CKD G5 (n) | 366 | 79 | 0 |
| CKD G1-4 (n) | 0 | 0 | 94 |
| Healthy (n) | 0 | 0 | 15 |
| ADPKD (n) | 42 | 14 | 80 |
| DM (n) | 109 | 7 | 0 |
| BMI (kg/m2) | 24.0 (23–26) | 23.9 (21.6–25.9) | 25.0 (23.2–28.7) |
| Pentosidine -method of measurement | HPLC | HPLC | ELISA |
| Bone biomarkers: iPTH, Ca, Pi, Mg, BALP, ALP, 25(0H) D-vitamin | - | + | + |
| Dual-energy X-ray absorptiometry (DXA) | - | - | + |
| Bone material strength (BMSi) OsteoProbe® | - | - | + |
| ADPKD N = 42 | DM N = 109 | GN N = 92 | HT/RVD N = 75 | Other/UKN N = 48 | p-Value | |
|---|---|---|---|---|---|---|
| Age (years) | 52.0 (48.0–59.0) | 58.0 (48.0–65.0) | 49.0 (38.5–59.5) | 59.0 (48.0–65.0) | 57.5 (42.0–65.0) | <0.001 |
| Men, n (%) | 20 (47.6%) | 74 (67.9%) | 54 (58.7%) | 49 (65.3%) | 26 (54.2%) | 0.13 |
| DM, n (%) | 0 (0.0%) | 109 (100%) | 2 (2.2%) | 3 (4.0%) | 0 (0.0%) | <0.001 |
| BMI (kg/m2) | 24.7 (22.1–27.7) | 25.5 (22.2–29.4) | 24.7 (21.6–27.2) | 23.5 (21.7–26.4) | 22.5 (19.9–25.2) | <0.001 |
| Albumin (g/L) | 35.0 (34.0–39.0) | 32.0 (28.0–35.0) | 34.5 (31.0–38.0) | 33.0 (30.0–37.0) | 34.0 (29.5–39.5) | <0.001 |
| hsCRP (mg/L) | 3.5 (1.3–11.4) | 6.3(2.2–15.0) | 4.0 (1.6–10.2) | 6.8 (2.7–20.2) | 7.9 (1.1–17.0) | 0.099 |
| Pentosidine (pmol/mL) | 1361 (1218–1797) | 972 (616–1470) | 933 (658–1359) | 1282 (782–1532) | 741 (654–1133) | <0.001 |
| Pentosidine/albumin (pmol/mg) | 39.8 (24.6–52.6) | 34.37 (21.3–44.3) | 26.2 (19.9–43.5) | 37.9 (31.4–53.0) | 23.2 (18.2–32.9) | 0.009 |
| ADPKD N = 14 | Non-ADPKD N = 65 | p | |
|---|---|---|---|
| Age, years | 50 | 44 | <0.001 |
| Males, % | 58 | 63 | 0.153 |
| BMI, kg/m2 | 24 (23–26) | 24 (22–26) | 0.631 |
| Albumin, g/L | 37 (33–39) | 36 (34–39) | 0.962 |
| hsCRP, mg/dL | 1.1 (0.6–5.3) | 0.82 (0.4–2.2) | 0.196 |
| Pentosidine (pmol/mL) | 861 (652–2164) | 728 (536–1061) | 0.056 |
| Pentosidine, pmol/mg of albumin | 23.27 (16.72–65.58) | 20.22 (13.74–31.21) | 0.063 |
| ADPKD N= 80 | Other CKD N = 14 | Healthy N = 15 | p-Value | |
|---|---|---|---|---|
| Age (years) | 43.5 (33.5–49.5) | 40.5 (37–42) | 42 (30–49) | 0.07 |
| Sex (% Males) | 58 (53) | 8 (57) | 5 (33) | 0.10 |
| DM | 0 | 0 | 0 | n/a |
| BMI, kg/m2 | 25.1 (23.3–28.7) | 23.8 (22.0–28.7) | 25.4 (24.3–28.8) | 0.85 |
| eGFR CKDEPI, mL/min/1.73 m2 | 58 (41–101) | 40 (33–47) | >90 | n/a |
| Albumin, g/L | 42 (40–44) | 41 (38–42) | 43 (42–44) | 0.005 |
| hsCRP, g/L | 1.14 (0.58–2.67) | 1.03 (0.8–1.57) | 0.66 (0.3–1.45) | 0.42 |
| Pentosidine, ng/mL | 214.2(130.7–327.8) | 160.5 (120.7–180.7) | 133.9 (110.7–187.5) | 0.023 |
| Pentosidine /albumin, ng/g | 90.1 (58.4–142.0) | 58.2 (51.3–71.5) | 65.8 (45.1–83.0) | 0.066 |
| BMSi | 75.6 (65.6–81.3) | 74.9 (72.7–82.2) | 77.9 (71.7–81.9) | 0.587 |
| Cohort 2 | Cohort 3 | ||||||
|---|---|---|---|---|---|---|---|
| Parameter | ADPKD G5D | CKD 5D | p-Value | ADPKD G1–G4 | CKD3 | Healthy | p-Value |
| Calcium, mmol/L | 2.36 (2.28–2.43) | 2.27 (2.17–2.41) | 0.009 | 2.37 (2.32–2.47) | 2.42 (2.32–2.47) | 2.39 (2.32–2.47) | 0.729 |
| Phosphate, mmol/L | 1.6 (1.5–1.9) | 1.7(1.2–2.0) | 0.426 | 1.03 (0.90–1.10) | 1.02 ( 0.90–1.16) | 1.06 (1.03–1.19) | 0.173 |
| Magnesium, mmol/L | 0.90 (0.80–1.02) | 0.84 (0.76–0.93) | 0.089 | 0.78 (0.74–0.82) | 0.78 (0.74–0.82) | 0.82 (0.82–0.86) | 0.026 |
| Intact PTH, ng/L | 177 (107–303) | 270 (168–465) | 0.097 | 44.9 (29.2–72) | 48.6 (42–98) | 30 (20.2–40.8) | 0.034 |
| 25(OH) D-vitamin, nmol/L | 48 (29–66) | 34 (26–45) | 0.017 | 25.3 (16.3–32.9) | 25.2 (17.5–41.4) | 28.9 (22.3–36.4) | 0.644 |
| ALP, U/L | 62.2 (43.1–67.9) | 61.3 (47.1–89.8) | 0.345 | 59 (43–75) | 65 (58–75) | 61 (54–72) | 0.438 |
| BALP, μg/L | 11.6 (9.2–18.8) | 17.9 (11.6–29.5) | 0.011 | 8.3 (6.6–12) | 10.5 (8.8–14.3) | 10.2 (8.2–12.9) | 0.055 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jankowska, M.; Qureshi, A.R.; Haarhaus, M.; Magnusson, P.; Dębska-Ślizień, A.; Barany, P.; Heimburger, O.; Stenvinkel, P.; Lindholm, B. Pentosidine and Bone Properties in Autosomal Dominant Polycystic Kidney Disease. J. Clin. Med. 2025, 14, 7577. https://doi.org/10.3390/jcm14217577
Jankowska M, Qureshi AR, Haarhaus M, Magnusson P, Dębska-Ślizień A, Barany P, Heimburger O, Stenvinkel P, Lindholm B. Pentosidine and Bone Properties in Autosomal Dominant Polycystic Kidney Disease. Journal of Clinical Medicine. 2025; 14(21):7577. https://doi.org/10.3390/jcm14217577
Chicago/Turabian StyleJankowska, Magdalena, Abdul Rashid Qureshi, Mathias Haarhaus, Per Magnusson, Alicja Dębska-Ślizień, Peter Barany, Olof Heimburger, Peter Stenvinkel, and Bengt Lindholm. 2025. "Pentosidine and Bone Properties in Autosomal Dominant Polycystic Kidney Disease" Journal of Clinical Medicine 14, no. 21: 7577. https://doi.org/10.3390/jcm14217577
APA StyleJankowska, M., Qureshi, A. R., Haarhaus, M., Magnusson, P., Dębska-Ślizień, A., Barany, P., Heimburger, O., Stenvinkel, P., & Lindholm, B. (2025). Pentosidine and Bone Properties in Autosomal Dominant Polycystic Kidney Disease. Journal of Clinical Medicine, 14(21), 7577. https://doi.org/10.3390/jcm14217577

