Artificial Intelligence in Pancreatobiliary Endoscopy: Current Advances, Opportunities, and Challenges
Abstract
1. Introduction
2. AI Applications in EUS
| Modality | Clinical Task | Study (First Author, Year) | Methodology/Model | Design and Setting | Population/n | Comparator | Primary Outcome(s) | Key Findings | External Validation |
|---|---|---|---|---|---|---|---|---|---|
| EUS | Carcinoma vs. noncancerous solid pancreatic lesions | Cui, 2024 [26] | Multimodal AI: CNN on EUS + clinical features; multilayer perceptron fusion | Randomized crossover; multicenter (4 centers, China); reader study (12 endoscopists from 9 centers) | Retrospective 628 pts → train/validate 351 (6181 images), internal test 88 (1545); external 189 (1205); prospective crossover 130 | Endoscopists with vs. without AI assistance | AUROC: internal 0.996; external 0.955/0.924/0.976 (3 hospitals). External accuracy (Model 3): image 0.84–0.89; patient 0.84–0.91. Reader (novices): accuracy 0.90 with AI vs. 0.69 without (p < 0.001); sensitivity 0.91 (95% CI 0.83–0.95). | Multimodal fusion improved generalizability vs. image-only and substantially boosted novice accuracy; minimal benefit for experts; user feedback favored joint-AI | Yes (3 external sets; prospective crossover) |
| EUS | Autoimmune pancreatitis (AIP) vs. PDAC/CP/normal pancreas | Marya, 2021 [31] | CNN (ResNet-50V2); per-frame and per-video scoring; occlusion heatmaps | Single center (Mayo Clinic, USA); retrospective; internal split by patient | 583 pts; 1,174,461 images; test: 974 stills, 376 videos | 583 pts; 1,174,461 images; test: 974 stills, 376 videos | Video-only (pairwise): AIP vs. NP Sens 99%/Spec 98%/AUROC 0.992; AIP vs. CP 94%/71%/0.892; AIP vs. PDAC 90%/93%/0.963; AIP vs. all 90%/85%/0.946. Four-class accuracy: CNN 75.6% vs. humans 61.6% (p = 0.026). | CNN exceeded experts on four-class diagnosis; interpretable saliency aligned with known EUS features | No (internal only) |
| EUS | IPMN malignancy (high-grade dysplasia/invasive carcinoma) | Kuwahara, 2019 [41] | CNN (ResNet-50) on pre-operative EUS images | Retrospective; single center; surgical pathology reference | 50 patients (benign 27, malignant 23); 3970 EUS still images | Human pre-op diagnosis; mural nodule ≥5 mm; logistic regression | Per-patient AI probability: AUROC 0.98 (vs. mural nodule 0.74, LR 0.73, p < 0.001); Acc 94.0%/Sens 95.7%/Spec 92.6%/PPV 91.7%/NPV 96.2% (cutoff 0.41). Per-image AI value: AUROC 0.91; Acc 86.2% (cutoff 0.49). | Deep learning on pre-op EUS stills outperformed human and conventional predictors; AI probability was the only independent predictor of malignancy | No (internal cross-validation only) |
| EUS | Mucinous vs. non-mucinous pancreatic cystic lesions (PCLs) | Vilas Boas, 2022 [40] | CNN (Xception backbone); internal train/validation | Retrospective; single center; frames from recorded EUS videos | 28 pts; 5505 images (train 4404; validation 1101) | Final diagnosis by pathology/cytology/biomarkers; no reader comparator | AUC 1.00; Acc 98.5%/Sens 98.3%/Spec 98.9%/PPV 99.5%/NPV 96.4% (validation). | Single-center pilot CNN accurately differentiated mucinous vs. non-mucinous PCLs; no external or reader comparison | No |
| EUS | Malignant vs. benign pancreatic cystic lesions | Kurita, 2019 [39] | Deep neural network (2 hidden layers) using cyst-fluid analytes + clinical variables; fivefold cross-validation | Retrospective; single center (Aichi Cancer Center Hospital, Japan) | 85 pts (malignant 23, benign 62); sampling: 59 surgery, 26 EUS-FNA | CEA; cytology; AI using CEA only | AI (full inputs): AUC 0.966/Acc 92.9%/Sens 95.7%/Spec 91.9%/PPV 81.5%/NPV 98.3%. CEA: AUC 0.719; Sens 60.9%/Spec 75.8%/Acc 71.8%. Cytology: AUC 0.739; Sens 47.8%/Spec 100%/Acc 85.9%. | AI combining cyst-fluid + clinical features outperformed CEA and cytology, yielding high sensitivity and overall accuracy | No (fivefold cross-validation only) |
| DSOC | Malignant biliary stricture (MBS) vs. benign | Zhang, 2023 [45] | Two-stage AI: quality-control gating + Vision Transformer (DeiT) classifier | Multicenter; internal/external validation; prospective testing (image and video | Prospective set: image-level; 29 videos; additional internal/external cohorts | Novice/expert endoscopists | Prospective image: Acc 0.923/AUC 0.976. Prospective video: Sens 92.3%/Spec 87.5%. | High performance across internal/external/prospective; video-level accurate; quality-control module essential; outperformed novices/experts; robust across subgroups. | Yes (external + prospective) |
| DSOC | Neoplasia detection (biliary) | Robles Medranda, 2023 [46] | CNN2; development + multicenter clinical validation | Multicenter clinical validation; prerecorded and real-time DSOC | Frame- and patient-level cohorts; 170 new patients (CNN2 validation) | Expert and non-expert endoscopists | Frame level: Sens 98.6%/Spec 98.0%/PPV 89.2%/NPV 99.2%. Patient level: Sens ~90.5%/Spec ~68.2%/PPV ~74.0%/NPV ~87.8%. | Multicenter DSOC CNN distinguished neoplastic lesions and outperformed non-experts and an expert; applicable to prerecorded and real-time use | Yes (multicenter clinical validation) |
| DSOC | MBS vs. benign (image level) | Saraiva, 2022 [47] | CNN (image level classifier) | Retrospective, single center (pilot) | 85 patients; 11,855 images | None (algorithmic) | 5-fold cross-validation: Acc 94.9%/Sens 94.7%/Spec 92.1%/AUC 0.988. | DSOC deep learning accurately discriminated malignant vs. benign; incorporating AI may increase diagnostic yield | No (cross validation only) |
3. AI Applications in Cholangioscopy and ERCP
3.1. (a) AI in Cholangioscopy
3.2. (b) AI in ERCP
4. Benefits of AI
5. Limitations and Challenges
6. Future Applications
6.1. (a) Future Directions
6.2. (b) Future Clinical Scenarios
7. Costs of AI Adoption in Endoscopy
8. Ethical Considerations for AI Use in Endoscopy
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Araújo, C.C.; Frias, J.; Mendes, F.; Martins, M.; Mota, J.; Almeida, M.J.; Ribeiro, T.; Macedo, G.; Mascarenhas, M. Unlocking the Potential of AI in EUS and ERCP: A Narrative Review for Pancreaticobiliary Disease. Cancers 2025, 17, 1132. [Google Scholar] [CrossRef]
- Jiang, H.; Ye, L.S.; Yuan, X.L.; Luo, Q.; Zhou, N.Y.; Hu, B. Artificial intelligence in pancreaticobiliary endoscopy: Current applications and future directions. J. Dig. Dis. 2024, 25, 564–572. [Google Scholar] [CrossRef]
- Wang, C.; Stone, J.; Berzin, T. Artificial Intelligence in Pancreaticobiliary Disease; Practical Gastro: Westhampton Beach, NY, USA, 2022. [Google Scholar]
- Vila, J.; Fernández-Urién, I.; Carrascosa, J. EUS and ERCP: A rationale categorization of a productive partnership. Endosc. Ultrasound 2021, 10, 25–32. [Google Scholar] [CrossRef]
- Subhash, A.; Abadir, A.; Iskander, J.M.; Tabibian, J.H. Applications, Limitations, and Expansion of Cholangioscopy in Clinical Practice. Gastroenterol. Hepatol. 2021, 17, 110–120. [Google Scholar]
- Ogura, T.; Hirose, Y.; Ueno, S.; Okuda, A.; Nishioka, N.; Miyano, A.; Yamamoto, Y.; Ueshima, K.; Higuchi, K. Prospective registration study of diagnostic yield and sample size in forceps biopsy using a novel device under digital cholangioscopy guidance with macroscopic on-site evaluation. J. Hepato-Biliary-Pancreat. Sci. 2022, 30, 686–692. [Google Scholar] [CrossRef]
- Goyal, H.; Mann, R.; Gandhi, Z.; Perisetti, A.; Zhang, Z.; Sharma, N.; Saligram, S.; Inamdar, S.; Tharian, B. Application of artificial intelligence in pancreaticobiliary diseases. Ther. Adv. Gastrointest. Endosc. 2021, 14, 2631774521993059. [Google Scholar] [CrossRef]
- Huang, B.; Huang, H.; Zhang, S.; Zhang, D.; Shi, Q.; Liu, J.; Guo, J. Artificial intelligence in pancreatic cancer. Theranostics 2022, 12, 6931–6954. [Google Scholar] [CrossRef] [PubMed]
- Low, D.J.; Hong, Z.; Lee, J.H. Artificial intelligence implementation in pancreaticobiliary endoscopy. Expert Rev. Gastroenterol. Hepatol. 2022, 16, 493–498. [Google Scholar] [CrossRef] [PubMed]
- Njei, B.; McCarty, T.R.; Mohan, B.P.; Fozo, L.; Navaneethan, U. Artificial intelligence in endoscopic imaging for detection of malignant biliary strictures and cholangiocarcinoma: A systematic review. Ann. Gastroenterol. 2023, 36, 223–230. [Google Scholar] [CrossRef]
- Firmino, M.; Angelo, G.; Morais, H.; Dantas, M.R.; Valentim, R. Computer-aided detection (CADe) and diagnosis (CADx) system for lung cancer with likelihood of malignancy. Biomed. Eng. Online 2016, 15, 2. [Google Scholar] [CrossRef] [PubMed]
- Sooklal, S.; Chahal, P. Endoscopic Ultrasound. Surg. Clin. N. Am. 2020, 100, 1133–1150. [Google Scholar] [CrossRef]
- Yin, M.; Liu, L.; Gao, J.; Lin, J.; Qu, S.; Xu, W.; Liu, X.; Xu, C.; Zhu, J. Deep learning for pancreatic diseases based on endoscopic ultrasound: A systematic review. Int. J. Med. Inform. 2023, 174, 105044. [Google Scholar] [CrossRef]
- Catalano, M.F.; Sahai, A.; Levy, M.; Romagnuolo, J.; Wiersema, M.; Brugge, W.; Freeman, M.; Yamao, K.; Canto, M.; Hernandez, L.V. EUS-based criteria for the diagnosis of chronic pancreatitis: The Rosemont classification. Gastrointest. Endosc. 2009, 69, 1251–1261. [Google Scholar] [CrossRef] [PubMed]
- Szatmary, P.; Grammatikopoulos, T.; Cai, W.; Huang, W.; Mukherjee, R.; Halloran, C.; Beyer, G.; Sutton, R. Acute Pancreatitis: Diagnosis and Treatment. Drugs 2022, 82, 1251–1276. [Google Scholar] [CrossRef] [PubMed]
- Kuwahara, T.; Hara, K.; Mizuno, N.; Haba, S.; Okuno, N.; Fukui, T.; Urata, M.; Yamamoto, Y. Current status of artificial intelligence analysis for the treatment of pancreaticobiliary diseases using endoscopic ultrasonography and endoscopic retrograde cholangiopancreatography. DEN Open 2023, 4, e267. [Google Scholar] [CrossRef]
- Rousta, F.; Esteki, A.; Shalbaf, A.; Sadeghi, A.; Moghadam, P.K.; Voshagh, A. Application of artificial intelligence in pancreas endoscopic ultrasound imaging- A systematic review. Comput. Methods Programs Biomed. 2024, 250, 108205. [Google Scholar] [CrossRef] [PubMed]
- Kuwahara, T.; Hara, K.; Mizuno, N.; Haba, S.; Okuno, N.; Kuraishi, Y.; Fumihara, D.; Yanaidani, T.; Ishikawa, S.; Yasuda, T.; et al. Artificial intelligence using deep learning analysis of endoscopic ultrasonography images for the differential diagnosis of pancreatic masses. Endoscopy 2023, 55, 140–149. [Google Scholar] [CrossRef]
- Jiang, J.; Chao, W.L.; Culp, S.; Krishna, S.G. Artificial Intelligence in the Diagnosis and Treatment of Pancreatic Cystic Lesions and Adenocarcinoma. Cancers 2023, 15, 2410. [Google Scholar] [CrossRef]
- Yamashita, Y.; Shimokawa, T.; Napoléon, B.; Fusaroli, P.; Gincul, R.; Kudo, M.; Kitano, M. Value of contrast-enhanced harmonic endoscopic ultrasonography with enhancement pattern for diagnosis of pancreatic cancer: A meta-analysis. Dig. Endosc. 2019, 31, 125–133. [Google Scholar] [CrossRef]
- Li, J.; Zhang, P.; Yang, X.; Zhu, L.; Wang, T.; Zhang, P.; Liu, R.; Sheng, B.; Wang, K. SSM-Net: Semi-supervised multi-task network for joint lesion segmentation and classification from pancreatic EUS images. Artif. Intell. Med. 2024, 154, 102919. [Google Scholar] [CrossRef]
- Singhi, A.D.; Koay, E.J.; Chari, S.T.; Maitra, A. Early Detection of Pancreatic Cancer: Opportunities and Challenges. Gastroenterology 2019, 156, 2024–2040. [Google Scholar] [CrossRef]
- Dhali, A.; Kipkorir, V.; Srichawla, B.S.; Kumar, H.; Rathna, R.B.; Ongidi, I.; Chaudhry, T.; Morara, G.; Nurani, K.; Cheruto, D.; et al. Artificial intelligence assisted endoscopic ultrasound for detection of pancreatic space-occupying lesion: A systematic review and meta-analysis. Int. J. Surg. 2023, 109, 4298–4308. [Google Scholar] [CrossRef]
- Jain, A.; Pabba, M.; Jain, A.; Singh, S.; Ali, H.; Vinayek, R.; Aswath, G.; Sharma, N.; Inamdar, S.; Facciorusso, A. Impact of artificial intelligence on pancreaticobiliary endoscopy. Cancers 2025, 17, 379. [Google Scholar] [CrossRef]
- Tovar, D.R.; Rosenthal, M.H.; Maitra, A.; Koay, E.J. Potential of artificial intelligence in the risk stratification for and early detection of pancreatic cancer. Artif. Intell. Surg. 2023, 3, 14–26. [Google Scholar] [CrossRef]
- Cui, H.; Zhao, Y.; Xiong, S.; Feng, Y.; Li, P.; Lv, Y.; Chen, Q.; Wang, R.; Xie, P.; Luo, Z.; et al. Diagnosing Solid Lesions in the Pancreas With Multimodal Artificial Intelligence: A Randomized Crossover Trial. JAMA Netw. Open 2024, 7, e2422454. [Google Scholar] [CrossRef]
- Ozkan, M.; Cakiroglu, M.; Kocaman, O.; Kurt, M.; Yilmaz, B.; Can, G.; Korkmaz, U.; Dandil, E.; Eksi, Z. Age-based computer-aided diagnosis approach for pancreatic cancer on endoscopic ultrasound images. Endosc. Ultrasound 2016, 5, 101–107. [Google Scholar] [CrossRef]
- Zhang, M.M.; Yang, H.; Jin, Z.D.; Yu, J.G.; Cai, Z.Y.; Li, Z.S. Differential diagnosis of pancreatic cancer from normal tissue with digital imaging processing and pattern recognition based on a support vector machine of EUS images. Gastrointest. Endosc. 2010, 72, 978–985. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Shi, S.; Hua, J.; Xu, J.; Zhang, B.; Liu, J.; Yang, X.J.; Yu, X.J. Differentiation of solid-pseudopapillary tumors of the pancreas from pancreatic neuroendocrine tumors by using endoscopic ultrasound. Clin. Res. Hepatol. Gastroenterol. 2020, 44, 947–953. [Google Scholar] [CrossRef] [PubMed]
- Ni, J.K.; Ling, Z.L.; Liang, X.; Song, Y.H.; Zhang, G.M.; Chen, C.X.; Wang, L.M.; Wang, P.; Li, G.C.; Ma, S.Y.; et al. A convolutional neural network-based system for identifying neuroendocrine neoplasms and multiple types of lesions in the pancreas using EUS (with videos). Gastrointest. Endosc. 2024, in press. [CrossRef] [PubMed]
- Marya, N.B.; Powers, P.D.; Chari, S.T.; Gleeson, F.C.; Leggett, C.L.; Abu Dayyeh, B.K.; Chandrasekhara, V.; Iyer, P.G.; Majumder, S.; Pearson, R.K.; et al. Utilisation of artificial intelligence for the development of an EUS-convolutional neural network model trained to enhance the diagnosis of autoimmune pancreatitis. Gut 2021, 70, 1335–1344. [Google Scholar] [CrossRef]
- Ahmad, O.F.; Stassen, P.; Webster, G.J. Artificial intelligence in biliopancreatic endoscopy: Is there any role? Best Pract. Res. Clin. Gastroenterol. 2021, 52–53, 101724. [Google Scholar] [CrossRef] [PubMed]
- Săftoiu, A.; Vilmann, P.; Dietrich, C.F.; Iglesias-Garcia, J.; Hocke, M.; Seicean, A.; Ignee, A.; Hassan, H.; Streba, C.T.; Ioncică, A.M.; et al. Quantitative contrast-enhanced harmonic EUS in differential diagnosis of focal pancreatic masses (with videos). Gastrointest. Endosc. 2015, 82, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Săftoiu, A.; Vilmann, P.; Gorunescu, F.; Janssen, J.; Hocke, M.; Larsen, M.; Iglesias-Garcia, J.; Arcidiacono, P.; Will, U.; Giovannini, M.; et al. Efficacy of an artificial neural network-based approach to endoscopic ultrasound elastography in diagnosis of focal pancreatic masses. Clin. Gastroenterol. Hepatol. 2012, 10, 84–90.e1. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Fernández-del Castillo, C.; Adsay, V.; Chari, S.; Falconi, M.; Jang, J.Y.; Kimura, W.; Levy, P.; Pitman, M.B.; Schmidt, C.M.; et al. International consensus guidelines 2012 for the management of IPMN and MCN of the pancreas. Pancreatology 2012, 12, 183–197. [Google Scholar] [CrossRef]
- Jais, B.; Rebours, V.; Malleo, G.; Salvia, R.; Fontana, M.; Maggino, L.; Bassi, C.; Manfredi, R.; Moran, R.; Lennon, A.M.; et al. Serous cystic neoplasm of the pancreas: A multinational study of 2622 patients under the auspices of the International Association of Pancreatology and European Pancreatic Club (European Study Group on Cystic Tumors of the Pancreas). Gut 2016, 65, 305–312. [Google Scholar] [CrossRef]
- Baba, T.; Yamaguchi, T.; Ishihara, T.; Kobayashi, A.; Oshima, T.; Sakaue, N.; Kato, K.; Ebara, M.; Saisho, H. Distinguishing benign from malignant intraductal papillary mucinous tumors of the pancreas by imaging techniques. Pancreas 2004, 29, 212–217. [Google Scholar] [CrossRef]
- Rangwani, S.; Juakiem, W.; Krishna, S.G.; El-Dika, S. Role of Endoscopic Ultrasound in the Evaluation of Pancreatic Cystic Neoplasms: A Concise Review. Diagnostics 2023, 13, 705. [Google Scholar] [CrossRef]
- Kurita, Y.; Kuwahara, T.; Hara, K.; Mizuno, N.; Okuno, N.; Matsumoto, S.; Obata, M.; Koda, H.; Tajika, M.; Shimizu, Y.; et al. Diagnostic ability of artificial intelligence using deep learning analysis of cyst fluid in differentiating malignant from benign pancreatic cystic lesions. Sci. Rep. 2019, 9, 6893. [Google Scholar] [CrossRef]
- Vilas-Boas, F.; Ribeiro, T.; Afonso, J.; Cardoso, H.; Lopes, S.; Moutinho-Ribeiro, P.; Ferreira, J.; Mascarenhas-Saraiva, M.; Macedo, G. Deep Learning for Automatic Differentiation of Mucinous versus Non-Mucinous Pancreatic Cystic Lesions: A Pilot Study. Diagnostics 2022, 12, 2041. [Google Scholar] [CrossRef]
- Kuwahara, T.; Hara, K.; Mizuno, N.; Okuno, N.; Matsumoto, S.; Obata, M.; Kurita, Y.; Koda, H.; Toriyama, K.; Onishi, S.; et al. Usefulness of Deep Learning Analysis for the Diagnosis of Malignancy in Intraductal Papillary Mucinous Neoplasms of the Pancreas. Clin. Transl. Gastroenterol. 2019, 10, e00045. [Google Scholar] [CrossRef]
- van Huijgevoort, N.C.M.; Del Chiaro, M.; Wolfgang, C.L.; van Hooft, J.E.; Besselink, M.G. Diagnosis and management of pancreatic cystic neoplasms: Current evidence and guidelines. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 676–689. [Google Scholar] [CrossRef]
- Yu, S.; Takasu, N.; Watanabe, T.; Fukumoto, T.; Okazaki, S.; Tezuka, K.; Sugawara, S.; Hirai, I.; Kimura, W. Validation of the 2012 Fukuoka Consensus Guideline for Intraductal Papillary Mucinous Neoplasm of the Pancreas From a Single Institution Experience. Pancreas 2017, 46, 936–942. [Google Scholar] [CrossRef]
- Machicado, J.D.; Chao, W.L.; Carlyn, D.E.; Pan, T.Y.; Poland, S.; Alexander, V.L.; Maloof, T.G.; Dubay, K.; Ueltschi, O.; Middendorf, D.M.; et al. High performance in risk stratification of intraductal papillary mucinous neoplasms by confocal laser endomicroscopy image analysis with convolutional neural networks (with video). Gastrointest. Endosc. 2021, 94, 78–87.e2. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Tang, D.; Zhou, J.D.; Ni, M.; Yan, P.; Zhang, Z.; Yu, T.; Zhan, Q.; Shen, Y.; Zhou, L.; et al. A real-time interpretable artificial intelligence model for the cholangioscopic diagnosis of malignant biliary stricture (with videos). Gastrointest. Endosc. 2023, 98, 199–210.e10. [Google Scholar] [CrossRef]
- Robles-Medranda, C.; Baquerizo-Burgos, J.; Alcivar-Vasquez, J.; Kahaleh, M.; Raijman, I.; Kunda, R.; Puga-Tejada, M.; Egas-Izquierdo, M.; Arevalo-Mora, M.; Mendez, J.C.; et al. Artificial intelligence for diagnosing neoplasia on digital cholangioscopy: Development and multicenter validation of a convolutional neural network model. Endoscopy 2023, 55, 719–727. [Google Scholar] [CrossRef]
- Saraiva, M.M.; Ribeiro, T.; Ferreira, J.P.S.; Boas, F.V.; Afonso, J.; Santos, A.L.; Parente, M.P.; Jorge, R.N.; Pereira, P.; Macedo, G. Artificial intelligence for automatic diagnosis of biliary stricture malignancy status in single-operator cholangioscopy: A pilot study. Gastrointest. Endosc. 2022, 95, 339–348. [Google Scholar] [CrossRef] [PubMed]
- Pereira, P.; Vilas-Boas, F.; Peixoto, A.; Andrade, P.; Lopes, J.; Macedo, G. How SpyGlass™ May Impact Endoscopic Retrograde Cholangiopancreatography Practice and Patient Management. GE Port. J. Gastroenterol. 2018, 25, 132–137. [Google Scholar] [CrossRef] [PubMed]
- Fugazza, A.; Gabbiadini, R.; Tringali, A.; De Angelis, C.G.; Mosca, P.; Maurano, A.; Di Mitri, R.; Manno, M.; Mariani, A.; Cereatti, F.; et al. Digital single-operator cholangioscopy in diagnostic and therapeutic bilio-pancreatic diseases: A prospective, multicenter study. Dig. Liver Dis. 2022, 54, 1243–1249. [Google Scholar] [CrossRef]
- Gerges, C.; Beyna, T.; Tang, R.S.Y.; Bahin, F.; Lau, J.Y.; van Geenen, E.; Neuhaus, H.; Reddy, D.N.; Ramchandani, M. Digital single-operator peroral cholangioscopy-guided biopsy sampling versus ERCP-guided brushing for indeterminate biliary strictures: A prospective, randomized, multicenter trial (with video). Gastrointest. Endosc. 2020, 91, 1105–1113. [Google Scholar] [CrossRef]
- McCarty, T.R.; Shah, R.; Allencherril, R.P.; Moon, N.; Njei, B. The Role of Artificial Intelligence Combined with Digital Cholangioscopy for Indeterminant and Malignant Biliary Strictures: A Systematic Review and Meta-analysis. J. Clin. Gastroenterol. 2025. [Google Scholar] [CrossRef]
- Marya, N.B.; Powers, P.D.; Petersen, B.T.; Law, R.; Storm, A.; Abusaleh, R.R.; Rau, P.; Stead, C.; Levy, M.J.; Martin, J.; et al. Identification of patients with malignant biliary strictures using a cholangioscopy-based deep learning artificial intelligence (with video). Gastrointest. Endosc. 2023, 97, 268–278.e1. [Google Scholar] [CrossRef] [PubMed]
- Makar, J.; Abdelmalak, J.; Con, D.; Hafeez, B.; Garg, M. Use of artificial intelligence improves colonoscopy performance in adenoma detection: A systematic review and meta-analysis. Gastrointest. Endosc. 2025, 101, 68–81.e8. [Google Scholar] [CrossRef]
- Lim, J.I.; Regillo, C.D.; Sadda, S.R.; Ipp, E.; Bhaskaranand, M.; Ramachandra, C.; Solanki, K.; Dubiner, H.; Levy-Clarke, G.; Pesavento, R.; et al. Artificial Intelligence Detection of Diabetic Retinopathy: Subgroup Comparison of the EyeArt System with Ophthalmologists’ Dilated Examinations. Ophthalmol. Sci. 2022, 3, 100228. [Google Scholar] [CrossRef]
- ASGE Standards of Practice Committee; Buxbaum, J.L.; Abbas Fehmi, S.M.; Sultan, S.; Fishman, D.S.; Qumseya, B.J.; Cortessis, V.K.; Schilperoort, H.; Kysh, L.; Matsuoka, L. ASGE guideline on the role of endoscopy in the evaluation and management of choledocholithiasis. Gastrointest. Endosc. 2019, 89, 1075–1105.e15. [Google Scholar] [CrossRef]
- Jovanovic, P.; Salkic, N.N.; Zerem, E. Artificial neural network predicts the need for therapeutic ERCP in patients with suspected choledocholithiasis. Gastrointest. Endosc. 2014, 80, 260–268. [Google Scholar] [CrossRef]
- Huang, L.; Lu, X.; Huang, X.; Zou, X.; Wu, L.; Zhou, Z.; Wu, D.; Tang, D.; Chen, D.; Wan, X.; et al. Intelligent difficulty scoring and assistance system for endoscopic extraction of common bile duct stones based on deep learning: Multicenter study. Endoscopy 2021, 53, 491–498. [Google Scholar] [CrossRef] [PubMed]
- Bang, J.Y.; Hough, M.; Hawes, R.H.; Varadarajulu, S. Use of Artificial Intelligence to Reduce Radiation Exposure at Fluoroscopy-Guided Endoscopic Procedures. Am. J. Gastroenterol. 2020, 115, 555–561. [Google Scholar] [CrossRef]
- Takahashi, H.; Ohno, E.; Furukawa, T.; Yamao, K.; Ishikawa, T.; Mizutani, Y.; Iida, T.; Shiratori, Y.; Oyama, S.; Koyama, J.; et al. Artificial intelligence in a prediction model for postendoscopic retrograde cholangiopancreatography pancreatitis. Dig. Endosc. 2024, 36, 463–472. [Google Scholar] [CrossRef]
- Guda, N.M.; Partington, S.; Vakil, N. Inter- and intra-observer variability in the measurement of length at endoscopy: Implications for the measurement of Barrett’s esophagus. Gastrointest. Endosc. 2004, 59, 655–658. [Google Scholar] [CrossRef]
- Osada, T.; Ohkusa, T.; Yokoyama, T.; Shibuya, T.; Sakamoto, N.; Beppu, K.; Nagahara, A.; Otaka, M.; Ogihara, T.; Watanabe, S. Comparison of several activity indices for the evaluation of endoscopic activity in UC: Inter- and intraobserver consistency. Inflamm. Bowel Dis. 2010, 16, 192–197. [Google Scholar] [CrossRef] [PubMed]
- US Food and Drug Administration. Artificial Intelligence Enabled Medical Devices; US Food and Drug Administration: Silver Spring, MD, USA, 2025.
- Dahiya, D.S.; Al-Haddad, M.; Chandan, S.; Gangwani, M.K.; Aziz, M.; Mohan, B.P.; Ramai, D.; Canakis, A.; Bapaye, J.; Sharma, N. Artificial intelligence in endoscopic ultrasound for pancreatic cancer: Where are we now and what does the future entail? J. Clin. Med. 2022, 11, 7476. [Google Scholar] [CrossRef]
- Ali, H.; Muzammil, M.; Dahiya, D.S.; Ali, F.; Yasin, S.; Hanif, W.; Gangwani, M.K.; Aziz, M.; Khalaf, M.; Basuli, D.; et al. Artificial intelligence in gastrointestinal endoscopy: A comprehensive review. Ann. Gastroenterol. 2024, 37, 199–214. [Google Scholar] [CrossRef]
- Uche-Anya, E.N.; Gerke, S.; Berzin, T.M. Video endoscopy as big data: Balancing privacy and progress in gastroenterology. Am. J. Gastroenterol. 2024, 119, 600–605. [Google Scholar] [CrossRef]
- Liu, X.; Rivera, S.C.; Moher, D.; Calvert, M.J.; Denniston, A.K.; CONSORT-AI Working Group. Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: The CONSORT-AI extension. BMJ 2020, 370, m3164. [Google Scholar] [CrossRef]
- Rivera, S.C.; Liu, X.; Chan, A.W.; Denniston, A.K.; Calvert, M.J.; SPIRIT-AI Working Group. Guidelines for clinical trial protocols for interventions involving artificial intelligence (SPIRIT-AI extension). Nat. Med. 2020, 2, E549–E560. [Google Scholar] [CrossRef] [PubMed]
- US Food and Drug Administration. Marketing Submission Recommendations for a Predetermined Change Control Plan for Artificial Intelligence Enabled Device Software Functions, Final Guidance; US Food and Drug Administration: Silver Spring, MD, USA, 2024.
- Saraiva, M.M.; Ribeiro, T.; González-Haba Ruiz, M.; Agudo Castillo, B.; Ferreira, J.P.; Vilas Boas, F.; Afonso, J.; Mendes, F.; Martins, M.; Cardoso, P.; et al. Deep learning for automatic diagnosis and morphologic characterization of malignant biliary strictures using digital cholangioscopy: A multicentric study. Cancers 2023, 15, 4827. [Google Scholar] [CrossRef] [PubMed]
- Robles-Medranda, C.; Verpalen, I.; Schulz, D.; Spadaccini, M. Artificial intelligence in biliopancreatic disorders: Applications in cross-sectional imaging and endoscopy. Gastroenterology 2025, 169, 471–486. [Google Scholar] [CrossRef] [PubMed]
- Akshintala, V.S.; Khashab, M.A. Artificial intelligence in pancreaticobiliary endoscopy. J. Gastroenterol. Hepatol. 2021, 36, 25–30. [Google Scholar] [CrossRef]
- Parasa, S.; Berzin, T.; Leggett, C.; Gross, S.; Repici, A.; Ahmad, O.F.; Chiang, A.; Coelho-Prabhu, N.; Cohen, J.; Dekker, E. Consensus statements on the current landscape of artificial intelligence applications in endoscopy, addressing roadblocks, and advancing artificial intelligence in gastroenterology. Gastrointest. Endosc. 2025, 101, 2–9.e1. [Google Scholar] [CrossRef]
- Aggarwal, N.; Drew, D.A.; Parikh, R.B.; Guha, S. Ethical implications of artificial intelligence in gastroenterology: The co-pilot or the captain? Dig. Dis. Sci. 2024, 69, 2727–2733. [Google Scholar] [CrossRef]
- Stewart, C.; Wong, S.K.Y.; Sung, J.J.Y. Mapping ethico-legal principles for the use of artificial intelligence in gastroenterology. J. Gastroenterol. Hepatol. 2021, 36, 1143–1148. [Google Scholar] [CrossRef] [PubMed]
- Sung, J.J.Y.; Savulescu, J.; Ngiam, K.Y.; An, B.; Ang, T.L.; Yeoh, K.G.; Cham, T.J.; Tsao, S.; Chua, T.S. Artificial intelligence for gastroenterology: Singapore Artificial Intelligence for Gastroenterology Working Group position statement. J. Gastroenterol. Hepatol. 2023, 38, 1669–1676. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Jesry, F.; Maliekkal, J.J.; Goulder, L.; Huntly, B.; Smith, A.M.; Khaled, Y.S. Application of artificial intelligence in pancreatic cyst management: A systematic review. Cancers 2025, 17, 2558. [Google Scholar] [CrossRef]
- Jong, M.R.; Boers, T.G.W.; Fockens, K.N.; Jukema, J.B.; Kusters, C.H.; Jaspers, T.J.; van Heslinga, R.V.; Slooter, F.C.; Struyvenberg, M.R.; Bisschops, R.; et al. GastroNet-5M: A multicenter dataset for developing foundation models in gastrointestinal endoscopy. Gastroenterology 2025. [Google Scholar] [CrossRef]
- Borgli, H.; Thambawita, V.; Smedsrud, P.H.; Hicks, S.; Jha, D.; Eskeland, S.L.; Randel, K.R.; Pogorelov, K.; Lux, M.; Nguyen, D.T.; et al. HyperKvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy. Sci. Data 2020, 7, 283. [Google Scholar] [CrossRef]
- Kafetzis, I.; Sodmann, P.; Hüneburg, R.; Nattermann, J.; Martens, N.; Englmann, D.R.; Zoller, W.G.; Meining, A.; Hann, A. Advancing artificial intelligence applicability in endoscopy through source-agnostic camera signal extraction from endoscopic images. PLoS ONE 2025, 20, e0325987. [Google Scholar] [CrossRef]
- Zhu, S.; Gao, J.; Liu, L.; Yin, M.; Lin, J.; Xu, C.; Xu, C.; Zhu, J. Public imaging datasets of gastrointestinal endoscopy for artificial intelligence: A review. J. Digit. Imaging 2023, 36, 2578–2601. [Google Scholar] [CrossRef]
- Houwen, B.B.S.L.; Nass, K.J.; Vleugels, J.L.A.; Fockens, P.; Hazewinkel, Y.; Dekker, E. Comprehensive review of publicly available colonoscopic imaging databases for artificial intelligence research: Availability, accessibility, and usability. Gastrointest. Endosc. 2023, 97, 184–199.e16. [Google Scholar] [CrossRef] [PubMed]
- Ali, S. Where do we stand in AI for endoscopic image analysis? Deciphering gaps and future directions. NPJ Digit. Med. 2022, 5, 184. [Google Scholar] [CrossRef]




Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bharwad, A.V.; Ahuja, R.; Jain, P.; Wadhwa, V. Artificial Intelligence in Pancreatobiliary Endoscopy: Current Advances, Opportunities, and Challenges. J. Clin. Med. 2025, 14, 7519. https://doi.org/10.3390/jcm14217519
Bharwad AV, Ahuja R, Jain P, Wadhwa V. Artificial Intelligence in Pancreatobiliary Endoscopy: Current Advances, Opportunities, and Challenges. Journal of Clinical Medicine. 2025; 14(21):7519. https://doi.org/10.3390/jcm14217519
Chicago/Turabian StyleBharwad, Aastha V., Rohan Ahuja, Pragya Jain, and Vaibhav Wadhwa. 2025. "Artificial Intelligence in Pancreatobiliary Endoscopy: Current Advances, Opportunities, and Challenges" Journal of Clinical Medicine 14, no. 21: 7519. https://doi.org/10.3390/jcm14217519
APA StyleBharwad, A. V., Ahuja, R., Jain, P., & Wadhwa, V. (2025). Artificial Intelligence in Pancreatobiliary Endoscopy: Current Advances, Opportunities, and Challenges. Journal of Clinical Medicine, 14(21), 7519. https://doi.org/10.3390/jcm14217519

