Non-Ischemic Pattern of LGE After COVID-19 Correlates More with Severity of Acute Illness than with Long-Term Myocardial Dysfunction
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Population
2.2. CMR Protocol and Analysis
2.3. Statistical Analysis
3. Results
3.1. Patient Clinical Characteristics
3.2. CMR Variables
4. Discussion
Limitation of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| CMR | cardiac magnetic resonance |
| LGE | late gadolinium enhancement |
| ARDS | acute respiratory distress syndrome |
| LV | left ventricle |
References
- Siripanthong, B.; Nazarian, S.; Muser, D.; Deo, R.; Santangeli, P.; Khanji, M.Y.; Cooper, L.T., Jr.; Chahal, C.A.A. Recognizing COVID-19–related myocarditis: The possible pathophysiology and proposed guideline for diagnosis and management. Heart Rhythm. 2020, 17, 1463–1471. [Google Scholar] [CrossRef]
- Zheng, Y.Y.; Ma, Y.T.; Zhang, J.Y.; Xie, X. COVID-19 and the cardiovascular system. Nat. Rev. Cardiol. 2020, 17, 259–260. [Google Scholar] [CrossRef] [PubMed]
- Clerkin, K.J.; Fried, J.A.; Raikhelkar, J.; Sayer, G.; Griffin, J.M.; Masoumi, A.; Jain, S.S.; Burkhoff, D.; Kumaraiah, D.; Rabbani, L.; et al. COVID-19 and cardiovascular disease. Circulation 2020, 141, 1648–1655. [Google Scholar] [CrossRef]
- Birtolo, L.I.; Di Pietro, G.; D’Ascenzo, F.; Cuccuru, G.; Fabris, E.; Merlo, M.; Andreis, A.; Caforio, A.L.P.; Cameli, M.; Improta, R.; et al. Myocarditis and pericarditis during COVID-19 pandemic: A study of the Italian Society of Cardiology. J. Cardiovasc. Med. 2025, 26, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Ceasovschih, A.; Sorodoc, V.; Shor, A.; Haliga, R.E.; Roth, L.; Lionte, C.; Aursulesei, V.O.; Sirbu, O.; Culis, N.; Shapieva, A.; et al. Distinct features of vascular diseases in COVID-19. J. Inflamm. Res. 2023, 16, 2783–2800. [Google Scholar] [CrossRef]
- Shu, H.; Zhao, C.; Wang, D.W. Understanding COVID-19-related myocarditis: Pathophysiology, diagnosis, and treatment strategies. Cardiol. Plus 2023, 8, 72–81. [Google Scholar] [CrossRef]
- Shiwani, H.; Artico, J.; Moon, J.C.; Gorecka, M.; McCann, G.P.; Roditi, G.; Morrow, A.; Mangion, K.; Lukaschuk, E.; Shanmuganathan, M.; et al. Clinical significance of myocardial injury in patients hospitalized for COVID-19: A prospective, multicenter, Cohort Study. JACC Cardiovasc. Imaging 2024, 17, 1320–1331. [Google Scholar] [CrossRef]
- Woodruff, R.C.; Garg, S.; George, M.G.; Patel, K.; Jackson, S.L.; Loustalot, F.; Wortham, J.M.; Taylor, C.A.; Whiteker, M.; Reingold, A.; et al. Acute cardiac events during COVID-19-associated hospitalizations. J. Am. Coll. Cardiol. 2023, 81, 557–569. [Google Scholar] [CrossRef]
- Sattar, Y.; Sandhyavenu, H.; Patel, N.; Victor, V.; Patel, D.; Hussain, B.; Titus, A.; Thyagaturu, H.; Alraiyes, M.; Atti, L.; et al. In-hospital outcomes of COVID-19 associated myocarditis (from a Nation Wide Inpatient Sample Database Study). Am. J. Cardiol. 2023, 192, 39–44. [Google Scholar] [CrossRef]
- Ammirati, E.; Lupi, L.; Palazzini, M.; Hendren, N.S.; Grodin, J.L.; Cannistraci, C.V.; Schmidt, M.; Hekimian, G.; Peretto, G.; Bochaton, T.; et al. Prevalence, Characteristics, and Outcomes of COVID-19-Associated Acute Myocarditis. Circulation 2022, 145, 1123–1139. [Google Scholar] [CrossRef]
- Daniels, C.J.; Rajpal, S.; Greenshields, J.T.; Rosenthal, G.L.; Chung, E.H.; Terrin, M.; Jeudy, J.; Mattson, S.E.; Law, I.H.; Borchers, J.; et al. Big Ten COVID-19 Cardiac Registry Investigators. Prevalence of clinical and subclinical myocarditis in competitive athletes with recent SARS-CoV-2 infection: Results from the Big Ten COVID-19 Cardiac Registry. JAMA Cardiol. 2021, 6, 1078–1087. [Google Scholar] [CrossRef] [PubMed]
- Moulson, N.; Petek, B.J.; Drezner, J.A.; Harmon, K.G.; Kliethermes, S.A.; Patel, M.R.; Baggish, A.L.; Outcomes Registry for Cardiac Conditions in Athletes Investigators. SARS-CoV-2 cardiac involvement in young competitive athletes. Circulation 2021, 144, 256–266. [Google Scholar] [CrossRef] [PubMed]
- Kotecha, T.; Knight, D.S.; Razvi, Y.; Kumar, K.; Vimalesvaran, K.; Thornton, G.; Patel, R.; Chacko, L.; Brown, J.T.; Coyle, C.; et al. Patterns of myocardial injury in recovered troponin-positive COVID-19 patients assessed by cardiovascular magnetic resonance. Eur. Heart J. 2021, 42, 1866–1878. [Google Scholar] [CrossRef] [PubMed]
- Puntmann, V.O.; Carerj, M.L.; Wieters, I.; Fahim, M.; Arendt, C.; Shchendrygina, A.; Escher, F.; Vasa-Nicotera, M.; Zeiher, A.M.; Vehreschild, M.; et al. Outcomes of cardiovascular magnetic resonance imaging in patients recently recovered from coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020, 5, 1265–1273. [Google Scholar] [CrossRef]
- Huang, L.; Zhao, P.; Tang, D.; Zhu, T.; Han, R.; Zhan, C.; Liu, W.; Zeng, H.; Tao, Q.; Xia, L. Cardiac involvement in patients recovered from COVID-2019 identified using magnetic resonance imaging. JACC Cardiovasc. Imaging 2020, 13, 2330–2339. [Google Scholar] [CrossRef]
- Haussner, W.; DeRosa, A.; Haussner, D.; Tran, J.; Torres-Lavoro, J.; Kamler, J.; Shah, K. COVID-19 associated myocarditis: A systematic review. Am. J. Emerg. Med. 2022, 51, 150–155. [Google Scholar] [CrossRef]
- Zuin, M.; Rigatelli, G.; Bilato, C.; Porcari, A.; Merlo, M.; Roncon, L.; Sinagra, G. One-year risk of myocarditis after COVID-19 infection: A systematic review and meta-analysis. Can. J. Cardiol. 2023, 39, 839–844. [Google Scholar] [CrossRef]
- Zi, Z.; Mei, Q.; Walline, J.H.; Zhang, Z.; Liu, Y.; Zhu, H.; Du, B. Cardiovascular outcomes in long COVID-19: A systematic review and meta-analysis. Front. Cardiovasc. Med. 2025, 12, 1450470. [Google Scholar] [CrossRef]
- Sanghvi, S.K.; Schwarzman, L.S.; Nazir, N.T. Cardiac MRI and myocardial injury in COVID-19: Diagnosis, risk stratification, and prognosis. Diagnostics 2021, 11, 130. [Google Scholar] [CrossRef]
- Abdeldayem, E.H.; Mosaad, B.M.R.; Yassin, A.; Abdelrahman, A.S. Cardiac MRI in patients with COVID-19 infection. Eur. Radiolog. 2023, 33, 3867–3877. [Google Scholar] [CrossRef]
- Di Bella, G.; de Gregorio, C.; Minutoli, F.; Pingitore, A.; Coglitore, S.; Arrigo, F.; Carerj, S. Early diagnosis of focal myocarditis by cardiac magnetic resonance. Int. J. Cardiol. 2007, 117, 280–281. [Google Scholar] [CrossRef]
- Aquaro, G.D.; Habtemicael, Y.G.; Camastra, G.; Moti, L.; Dellegrottaglie, S.; Moro, C.; Lanzillo, C.; Scatteia, A.; Di Roma, M.; Pontone, G.; et al. Prognostic value of repeating cardiac magnetic resonance in patients with acute myocarditis. J. Am. Coll. Cardiol. 2019, 74, 2439–2448. [Google Scholar] [CrossRef]
- Friedrich, M.G.; Sechtem, U.; Schulz-Menger, J.; Holmvang, G.; Alakija, P.; Cooper, L.T.; White, J.A.; Abdel-Ati, H.; Gutberlet, M.; Prasad, S.; et al. Cardiovascular magnetic resonance in myocarditis: A JACC white paper. J. Am. Coll. Cardiol. 2009, 53, 1475–1487. [Google Scholar] [CrossRef] [PubMed]
- Kellman, P.; Hansen, M.S. T1-mapping in the heart: Accuracy and precision. J. Cardiovasc. Magn. Reson. 2014, 16, 2. [Google Scholar] [CrossRef] [PubMed]
- Giri, S.; Chung, Y.C.; Merchant, A.; Mihai, G.; Rajagopalan, S.; Raman, S.V.; Simonetti, O.P. T2 quantification for improved detection of myocardial edema. J. Cardiovasc. Magn. Reson. 2009, 11, 56. [Google Scholar] [CrossRef] [PubMed]
- Di Bella, G.; Pizzino, F.; Aquaro, G.D.; Bracco, A.; Manganaro, R.; Pasanisi, E.; Petersen, C.; Zto, C.; Chubuchny, V.; Emdin, M.; et al. CMR predictors of secondary moderate to severe mitral regurgitation and its additive prognostic role in previous myocardial infarction. J. Cardiol. 2022, 79, 90–97. [Google Scholar] [CrossRef]
- Aquaro, G.D.; Corsi, E.; Todiere, G.; Grigoratos, C.; Barison, A.; Barra, V.; Di Bella, G.; Emdin, M.; Ricci, F.; Pingitore, A.; et al. Magnetic resonance for differential diagnosis of left ventricular hypertrophy: Diagnostic and prognostic implications. J. Clin. Med. 2022, 11, 651. [Google Scholar] [CrossRef]
- Aquaro, G.D.; Perfetti, M.; Camastra, G.; Monti, L.; Dellegrottaglie, S.; Moro, C.; Pepe, A.; Todiere, G.; Lanzillo, C.; Scatteia, A.; et al. Cardiac MR with late gadolinium enhancement in acute myocarditis with preserved systolic function: ITAMY Study. Cardiac Magnetic Resonance Working Group of the Italian Society of Cardiology. J. Am. Coll. Cardiol. 2017, 70, 1977–1987. [Google Scholar] [CrossRef]
- Grani, C.; Eichhorn, C.; Biére, L.; Murthy, V.; Agarwal, V.; Kaneko, K.; Cuddy, S.; Aghayev, A.; Steigner, M.; Blankstein, R.; et al. Prognostic Value of cardiac magnetic resonance tissue characterization in risk stratifying patients with suspected myocarditis. J. Am. Coll. Cardiol. 2017, 70, 1964–1976. [Google Scholar] [CrossRef]
- Georgiopoulos, G.; Figliozzi, S.; Sanguineti, F.; Aquaro, G.D.; Stamatelopoulos, K.; Chiribiri, A.; Garot, J.; Masci, P.G.; Ismail, T.F. Prognostic impact of late gadolinium enhancement by cardiovascular magnetic resonance in myocarditis: A systematic review and meta-analysis. Circ. Cardiovasc. Imaging 2021, 14, e011492. [Google Scholar] [CrossRef]
- Mahrholdt, H.; Wagner, A.; Deluigi, C.C.; Kispert, E.; Hager, S.; Meinhardt, G.; Vogelsberg, H.; Fritz, P.; Dippon, J.; Bock, C.T.; et al. Presentation, patterns of myocardial damage, and clinical course of viral myocarditis. Circulation 2006, 114, 1581–1590. [Google Scholar] [CrossRef]
- Filippetti, L.; Mandry, D.; Venner, C.; Juilliere, Y.; Sadoul, N.; Girerd, N.; Lamiral, Z.; Selton-Suty, C.; Marie, P.Y.; Huttin, O. Long-term outcome of patients with low/intermediate risk myocarditis is related to the presence of left ventricular remodeling in addition to the MRI pattern of delayed gadolinium enhancement. JACC Cardiovasc. Imaging 2018, 11, 1367–1369. [Google Scholar] [CrossRef] [PubMed]
- Niebauer, J.H.; Binder-Rodriguez, C.; Iscel, A.; Schedl, S.; Capelle, C.; Kahr, M.; Cadjo, S.; Schamilow, S.; Badr-Eslam, R.; Lichtenauer, M.; et al. Cardiopulmonary Long-Term Sequelae in Patients after Severe COVID-19 Disease. J. Clin. Med. 2023, 12, 1536. [Google Scholar] [CrossRef] [PubMed]
- Palmisano, A.; Vignale, D.; Bruno, E.; Peretto, G.; De Luca, G.; Campochiaro, C.; Tomerelli, A.; Agricola, E.; Montorfano, M.; Esposito, A. Cardiac magnetic resonance findings in acute and post-acute COVID-19 patients with suspected myocarditis. J. Clin. Ultrasound 2023, 51, 613–621. [Google Scholar] [CrossRef] [PubMed]
- Vidula, M.K.; Rajewska-Tabor, J.; Cao, J.; Kang, Y.; Craft, J.; Mei, W.; Chandrasekaran, P.S.; Clark, D.E.; Poenar, A.M.; Goreka, M.; et al. Myocardial injury on CMR in patients with COVID-19 and suspected cardiac involvement. JACC Cardiovasc. Imaging 2023, 16, 609–624. [Google Scholar] [CrossRef]
- Artico, J.; Shiwani, H.; Moon, J.C.; Gorecka, M.; McCann, G.P.; Roditi, G.; Morrow, A.; Mangion, K.; Lukasghuk, E.; Shanmuganathan, M.; et al. Myocardial involvement after hospitalization for COVID-19 complicated by troponin elevation: A prospective, multicenter, observational study. Circulation 2023, 147, 364–374. [Google Scholar] [CrossRef]
- Yar, A.; Uusitalo, V.; Vaara, S.M.; Holmstrom, M.; Vuorinen, A.M.; Helio, T.; Paakkanen, R.; Kivisto, S.; Syvaranta, S.; Hastbacka, J. Cardiac magnetic resonance -detected myocardial injury is not associated with long-term symptoms in patients hospitalized due to COVID-19. PLoS ONE 2023, 18, e0282394. [Google Scholar] [CrossRef]
- Ismayl, M.; Ahmed, H.; Hamadi, D.; Goldsweig, A.M.; Aronow, H.D.; Aboeata, A. Outcomes of viral myocarditis in patients with and without COVID-19: A nationwide analysis from the United States. Ann. Med. Surg. 2023, 85, 3308–3317. [Google Scholar] [CrossRef]
- Metkus, T.S.; Sokoll, L.J.; Barth, A.S.; Czarny, M.J.; Hays, A.G.; Lowenstein, C.J.; Michos, E.D.; Nolley, E.P.; Post, W.S.; Resar, R.; et al. Myocardial Injury in severe COVID-19 compared with non-COVID-19 acute respiratory distress syndrome. Circulation 2021, 143, 553–565. [Google Scholar] [CrossRef]
- Bastiani, L.; Fortunato, L.; Pieroni, S.; Bianchi, F.; Adorni, F.; Prinelli, F.; Giacomelli, A.; Pagani, G.; Maggi, S.; Trevisan, C.; et al. Rapid COVID-19 screening based on self-reported symptoms: Psychometric assessment and validation of the EPICOVID19 short diagnostic scale. J. Med. Internet Res. 2021, 23, e23897. [Google Scholar] [CrossRef]
- Metkus, T.S.; Guallar, E.; Sokoll, L.; Morrow, D.; Tomaselli, G.; Brower, R.; Schulman, S.; Korley, F.K. Prevalence and Prognostic Association of Circulating Troponin in the acute respiratory distress syndrome. Crit. Care Med. 2017, 45, 1709–1717. [Google Scholar] [CrossRef]
- Lazzeri, C.; Bonizzoli, M.; Cozzolino, M.; Verdi, C.; Cianchi, G.; Batacchi, S.; Franci, A.; Gensini, G.F.; Peris, A. Serial measurements of troponin and echocardiography in patients with moderate-to-severe acute respiratory distress syndrome. J. Crit. Care 2016, 33, 132–136. [Google Scholar] [CrossRef]


| Variables | Positive LGE (n = 17) | Negative LGE (n = 34) | p Value |
|---|---|---|---|
| Age | 57.8 ± 13.3 | 52.27 ± 16.3 | 0.124 |
| Sex (%) | 68% (M) 32% (F) | 57.8% (M) 42.2% (F) | 0.356 |
| Hospital Stay | 11.21 ± 7.5 | 3.61 ± 4.7 | <0.001 |
| Duration of Symptoms | 8.45 ± 4.9 | 4.69 ± 4.2 | <0.001 |
| Hypertension (%) | 44.4% | 35.9% | 0.500 |
| Diabetes (%) | 27.8% | 9.0% | 0.03 * |
| Dyslipidemia (%) | 55.6% | 33.8% | 0.086 |
| Smoker or ex smoker | 28.6% | 27.8% | 0.899 |
| Cough (%) | 80.0% | 43.3% | 0.001 * |
| Syncope (%) | 12.0% | 2.2% | 0.034 |
| Fever (%) | 96.0% | 61.1% | <0.001 |
| Nausea (%) | 12.0% | 16.7% | 0.570 |
| Ageusia/Anosmia (%) | 8.0% | 18.9% | 0.195 |
| Diarrhea (%) | 8.0% | 5.6% | 0.651 |
| Asthenia | 40.0% | 33.3% | 0.536 |
| Myalgia (%) | 48.0% | 43.3% | 0.678 |
| LV EDV (mL/m2) | 72.52 ± 13.2 | 72.18 ± 15.9 | 0.922 |
| LV ESV (mL/m2) | 29.28 ± 9.1 | 26.49 ± 8.5 | 0.155 |
| LV Mass (gr/m2) | 72.0 ± 10.3 | 68.8 ± 11.9 | 0.230 |
| LV SV (mL/m2) | 44.5 ± 6.2 | 46.6 ± 9.0 | 0.271 |
| LV CO (L/min) | 5.5 ± 1.2 | 6.12 ± 6.54 | 0.348 |
| LV EF (%) | 62.28 ± 7 | 65.27 ± 5 | <0.024 |
| WMSI | 1.02 ± 0.13 | 1 ± 0 | <0.041 |
| RV EDV (mL/m2) | 69.8 ± 13.2 | 70.7 ± 17.2 | 0.820 |
| RV ESV (mL/m2) | 25.8 ± 8.7 | 25.7 ± 10.9 | 0.971 |
| RV SV (mL/m2) | 47.4 ± 13.9 | 46.2 ± 12.1 | 0.682 |
| RV CO (L/min) | 5.46 ± 1.43 | 5.89 ± 1.38 | 0.177 |
| RV EF (%) | 63.5 ± 7 | 65.9 ± 6 | 0.05 |
| R/L EVD relationship | 0.97 ± 0.13 | 0.97 ± 0.15 | 0.988 |
| Native T1 (msec) | 992 ± 54.4 | 1006 ± 37.6 | 0.140 |
| ECV (%) | 25.5 ± 2.58 | 25.9 ± 2.43 | 0.480 |
| Native T2 (msec) | 49.6 ± 2.7 | 50.4 ± 3.4 | 0.965 |
| Pericardial effusion | 12 (48%) | 22 (24.4%) | 0.022 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pingitore, A.; Figini, F.; Pederzoli, L.; Landi, P.; Bastiani, L.; Marabotti, C.; Leonardo, F. Non-Ischemic Pattern of LGE After COVID-19 Correlates More with Severity of Acute Illness than with Long-Term Myocardial Dysfunction. J. Clin. Med. 2025, 14, 7477. https://doi.org/10.3390/jcm14217477
Pingitore A, Figini F, Pederzoli L, Landi P, Bastiani L, Marabotti C, Leonardo F. Non-Ischemic Pattern of LGE After COVID-19 Correlates More with Severity of Acute Illness than with Long-Term Myocardial Dysfunction. Journal of Clinical Medicine. 2025; 14(21):7477. https://doi.org/10.3390/jcm14217477
Chicago/Turabian StylePingitore, Alessandro, Filippo Figini, Laura Pederzoli, Patrizia Landi, Luca Bastiani, Claudio Marabotti, and Filippo Leonardo. 2025. "Non-Ischemic Pattern of LGE After COVID-19 Correlates More with Severity of Acute Illness than with Long-Term Myocardial Dysfunction" Journal of Clinical Medicine 14, no. 21: 7477. https://doi.org/10.3390/jcm14217477
APA StylePingitore, A., Figini, F., Pederzoli, L., Landi, P., Bastiani, L., Marabotti, C., & Leonardo, F. (2025). Non-Ischemic Pattern of LGE After COVID-19 Correlates More with Severity of Acute Illness than with Long-Term Myocardial Dysfunction. Journal of Clinical Medicine, 14(21), 7477. https://doi.org/10.3390/jcm14217477

