One Enzyme, Many Faces: The Expanding Role of DPP3 in Cardiovascular and Critical Care
Abstract
1. Introduction
2. Physiology and Pathophysiology of DPP3: Linking Intracellular Function to Critical Illness
3. The Expanding Clinical Role of DPP3 in Heart Disease and Critical Care
3.1. Circulating DPP3 as a Marker and Modulator in Heart Failure
3.2. DPP3 in Hypertension
3.3. cDPP3 in Acute Coronary Syndromes: A Novel Biomarker of Injury and Prognosis
3.4. cDPP3 in Cardiogenic Shock: From Experimental Insights to Clinical Prognosis
3.5. DPP3 in Septic Shock and Critical Illness: A Dynamic Biomarker of Organ Failure and Mortality
4. Therapeutic Potential of DPP3 Blockade
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| ACE | Angiotensin-Converting Enzyme |
| ACE-I | Angiotensin-Converting Enzyme Inhibitor |
| ACE2 | Angiotensin-Converting Enzyme 2 |
| ACS | Acute Coronary Syndrome |
| AKI | Acute Kidney Injury |
| APACHE-II | Acute Physiology and Chronic Health Evaluation II |
| ARE | Antioxidant Response Element |
| AT1R | Angiotensin II Receptor Type 1 |
| AUC | Area Under the Curve |
| bio-ADM | Bioactive Adrenomedullin |
| BNP | B-type Natriuretic Peptide |
| CI | Confidence Interval |
| CLP | Cecal Ligation and Puncture |
| CO | Cardiac Output |
| COVID-19 | Coronavirus Disease 2019 |
| CS | Cardiogenic Shock |
| cDPP3 | Circulating Dipeptidyl Peptidase 3 |
| DB/db mice | Diabetic (leptin receptor-deficient) mouse model |
| DHE | Dihydroethidium (marker of oxidative stress) |
| DPP3 | Dipeptidyl Peptidase 3 |
| ED | Emergency Department |
| EF | Ejection Fraction |
| GRACE | Global Registry of Acute Coronary Events |
| HF | Heart Failure |
| HFrEF | Heart Failure with Reduced Ejection Fraction |
| HR | Hazard Ratio |
| hs-TnT | High-Sensitivity Troponin T |
| ICU | Intensive Care Unit |
| IgG1 | Immunoglobulin G1 |
| IL-6 | Interleukin-6 |
| IQR | Interquartile Range |
| IV | Intravenous |
| LRT | Likelihood Ratio Test |
| LVEF | Left Ventricular Ejection Fraction |
| LVSF | Left Ventricular Shortening Fraction |
| MAP | Mean Arterial Pressure |
| MEWS | Modified Early Warning Score |
| mRNA | Messenger RNA |
| NRI | Net Reclassification Index |
| NRS | Normal Renin Sepsis |
| NYHA | New York Heart Association |
| OPN | Osteopontin |
| OR | Odds Ratio |
| PCZ | Procizumab (anti-DPP3 monoclonal antibody) |
| P/Fratio | PaO2/FiO2 ratio |
| PBS | Phosphate-Buffered Saline |
| PK/PD | Pharmacokinetics/Pharmacodynamics |
| RAAS | Renin–Angiotensin–Aldosterone System |
| RRT | Renal Replacement Therapy |
| ROS | Reactive Oxygen Species |
| SAPS II | Simplified Acute Physiology Score II |
| SI | Shock Index |
| SOFA | Sequential Organ Failure Assessment |
| SV | Stroke Volume |
| STEMI | ST-Elevation Myocardial Infarction |
| UI | Units of Intensity (oxidative stress measurement) |
| VO2 | Oxygen Consumption |
Appendix A
References
- Tsao, C.W.; Aday, A.W.; Almarzooq, Z.I.; Alonso, A.; Beaton, A.Z.; Bittencourt, M.S.; Boehme, A.K.; Buxton, A.E.; Carson, A.P.; Commodore-Mensah, Y.; et al. Heart Disease and Stroke Statistics-2022 Update: A Report From the American Heart Association. Circulation 2022, 145, e153–e639. [Google Scholar] [CrossRef]
- Liu, W.; Leong, D.P.; Hu, B.; AhTse, L.; Rangarajan, S.; Wang, Y.; Wang, C.; Lu, F.; Li, Y.; Yusuf, S.; et al. The association of grip strength with cardiovascular diseases and all-cause mortality in people with hypertension: Findings from the Prospective Urban Rural Epidemiology China Study. J. Sport. Health Sci. 2021, 10, 629–636. [Google Scholar] [CrossRef] [PubMed]
- Ye, P.; Duan, W.; Leng, Y.Q.; Wang, Y.K.; Tan, X.; Wang, W.Z. DPP3: From biomarker to therapeutic target of cardiovascular diseases. Front. Cardiovasc. Med. 2022, 9, 974035. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, M.; Xu, C.D.; Ye, P.P.; Liu, Y.N.; Huang, Z.J.; Hu, C.H.; Zhang, X.; Zhao, Z.P.; Li, C.; et al. Hypertension Prevalence, Awareness, Treatment, and Control and Their Associated Socioeconomic Factors in China: A Spatial Analysis of A National Representative Survey. Biomed. Environ. Sci. 2021, 34, 937–951. [Google Scholar] [CrossRef]
- Yuyun, M.F.; Sliwa, K.; Kengne, A.P.; Mocumbi, A.O.; Bukhman, G. Cardiovascular Diseases in Sub-Saharan Africa Compared to High-Income Countries: An Epidemiological Perspective. Glob. Heart 2020, 15, 15. [Google Scholar] [CrossRef]
- Georgoulias, P.; Angelidis, G.; Xanthopoulos, A.; Valotassiou, V. Under pressure: Screening for heart failure in the elderly. Hell. J. Cardiol. 2025; online ahead of print. [Google Scholar] [CrossRef]
- Poss, J.; Buttner, P.; Thiele, H. Circulating dipeptidyl peptidase 3: New hope for a specific treatment to improve prognosis in cardiogenic shock? Eur. Heart J. 2023, 44, 3872–3874. [Google Scholar] [CrossRef]
- Ventoulis, I.; Verras, C.; Matsiras, D.; Bistola, V.; Bezati, S.; Parissis, J.; Polyzogopoulou, E. Bio-Adrenomedullin and Dipeptidyl Peptidase 3 as Novel Sepsis Biomarkers in the Emergency Department and the Intensive Care Unit: A Narrative Review. Medicina 2025, 61, 1059. [Google Scholar] [CrossRef]
- Sato, A.; Ogita, H. Pathophysiological Implications of Dipeptidyl Peptidases. Curr. Protein Pept. Sci. 2017, 18, 843–849. [Google Scholar] [CrossRef]
- Baral, P.K.; Jajcanin-Jozic, N.; Deller, S.; Macheroux, P.; Abramic, M.; Gruber, K. The first structure of dipeptidyl-peptidase III provides insight into the catalytic mechanism and mode of substrate binding. J. Biol. Chem. 2008, 283, 22316–22324. [Google Scholar] [CrossRef] [PubMed]
- Ohkubo, I.; Li, Y.H.; Maeda, T.; Yamamoto, Y.; Yamane, T.; Du, P.G.; Nishi, K. Dipeptidyl peptidase III from rat liver cytosol: Purification, molecular cloning and immunohistochemical localization. Biol. Chem. 1999, 380, 1421–1430. [Google Scholar] [CrossRef] [PubMed]
- Smyth, M.; O’Cuinn, G. Dipeptidyl aminopeptidase III of guinea-pig brain: Specificity for short oligopeptide sequences. J. Neurochem. 1994, 63, 1439–1445. [Google Scholar] [CrossRef]
- Malovan, G.; Hierzberger, B.; Suraci, S.; Schaefer, M.; Santos, K.; Jha, S.; Macheroux, P. The emerging role of dipeptidyl peptidase 3 in pathophysiology. FEBS J. 2023, 290, 2246–2262. [Google Scholar] [CrossRef]
- Jaffe, A.S.; Donato, L.J. DPP3 in Cardiogenic Shock. Clin. Chem. 2024, 70, 1200–1201. [Google Scholar] [CrossRef]
- Picod, A.; Azibani, F.; Harjola, V.P.; Karakas, M.; Kimmoun, A.; Levy, B.; Pickkers, P.; Thiele, H.; Zeymer, U.; Santos, K.; et al. Targeting high circulating dipeptidyl peptidase 3 in circulatory failure. Crit. Care 2025, 29, 340. [Google Scholar] [CrossRef]
- Chioncel, O.; Parissis, J.; Mebazaa, A.; Thiele, H.; Desch, S.; Bauersachs, J.; Harjola, V.; Antohi, E.; Arrigo, M.; Ben Gal, T.; et al. Epidemiology, pathophysiology and contemporary management of cardiogenic shock—A position statement from the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 2020, 22, 1315–1341. [Google Scholar] [CrossRef]
- Naidu, S.S.; Baran, D.A.; Jentzer, J.C.; Hollenberg, S.M.; van Diepen, S.; Basir, M.B.; Grines, C.L.; Diercks, D.B.; Hall, S.; Kapur, N.K.; et al. SCAI SHOCK Stage Classification Expert Consensus Update: A Review and Incorporation of Validation Studies: This statement was endorsed by the American College of Cardiology (ACC), American College of Emergency Physicians (ACEP), American Heart Association (AHA), European Society of Cardiology (ESC) Association for Acute Cardiovascular Care (ACVC), International Society for Heart and Lung Transplantation (ISHLT), Society of Critical Care Medicine (SCCM), and Society of Thoracic Surgeons (STS) in December 2021. J. Am. Coll. Cardiol. 2022, 79, 933–946. [Google Scholar] [PubMed]
- Tehrani, B.N.; Truesdell, A.G.; Psotka, M.A.; Rosner, C.; Singh, R.; Sinha, S.S.; Damluji, A.A.; Batchelor, W.B. A Standardized and Comprehensive Approach to the Management of Cardiogenic Shock. JACC Heart Fail. 2020, 8, 879–891. [Google Scholar]
- Galusko, V.; Wenzl, F.A.; Vandenbriele, C.; Panoulas, V.; Luscher, T.F.; Gorog, D.A. Current and novel biomarkers in cardiogenic shock. Eur. J. Heart Fail. 2025, 27, 1106–1125. [Google Scholar] [CrossRef]
- Hunziker, L.; Radovanovic, D.; Jeger, R.; Pedrazzini, G.; Cuculi, F.; Urban, P.; Erne, P.; Rickli, H.; Pilgrim, T.; the AMIS Plus Registry Investigators. Twenty-Year Trends in the Incidence and Outcome of Cardiogenic Shock in AMIS Plus Registry. Circ. Cardiovasc. Interv. 2019, 12, e007293. [Google Scholar] [CrossRef] [PubMed]
- Karamasis, G.V.; Polyzogopoulou, E.; Varlamos, C.; Frantzeskaki, F.; Dragona, V.M.; Boultadakis, A.; Bistola, V.; Fountoulaki, K.; Pappas, C.; Kolokathis, F.; et al. Implementation of a cardiogenic shock team in a tertiary academic center. Hell. J. Cardiol. 2024, in press. [Google Scholar] [CrossRef] [PubMed]
- van Amsterdam, J.G.; van Buuren, K.J.; Soudijn, W. Purification and characterization of enkephalin-degradating enzymes from calf-brain striatum. Biochem. Biophys. Res. Commun. 1983, 115, 632–641. [Google Scholar] [CrossRef]
- Macak Safranko, Z.; Sobocanec, S.; Saric, A.; Jajcanin-Jozic, N.; Krsnik, Z.; Aralica, G.; Balog, T.; Abramic, M. The effect of 17beta-estradiol on the expression of dipeptidyl peptidase III and heme oxygenase 1 in liver of CBA/H mice. J. Endocrinol. Investig. 2015, 38, 471–479. [Google Scholar] [CrossRef]
- Sobocanec, S.; Filic, V.; Matovina, M.; Majhen, D.; Safranko, Z.M.; Hadzija, M.P.; Krsnik, Z.; Kurilj, A.G.; Saric, A.; Abramic, M.; et al. Prominent role of exopeptidase DPP III in estrogen-mediated protection against hyperoxia in vivo. Redox Biol. 2016, 8, 149–159. [Google Scholar] [CrossRef]
- Cruz-Diaz, N.; Wilson, B.A.; Pirro, N.T.; Brosnihan, K.B.; Marshall, A.C.; Chappell, M.C. Identification of dipeptidyl peptidase 3 as the Angiotensin-(1-7) degrading peptidase in human HK-2 renal epithelial cells. Peptides 2016, 83, 29–37. [Google Scholar] [CrossRef]
- Mehta, P.K.; Griendling, K.K. Angiotensin II cell signaling: Physiological and pathological effects in the cardiovascular system. Am. J. Physiol. Cell Physiol. 2007, 292, C82–C97. [Google Scholar] [CrossRef]
- Fyhrquist, F.; Saijonmaa, O. Renin-angiotensin system revisited. J. Intern. Med. 2008, 264, 224–236. [Google Scholar] [CrossRef] [PubMed]
- Forrester, S.J.; Booz, G.W.; Sigmund, C.D.; Coffman, T.M.; Kawai, T.; Rizzo, V.; Scalia, R.; Eguchi, S. Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology. Physiol. Rev. 2018, 98, 1627–1738. [Google Scholar] [CrossRef]
- Rehfeld, L.; Funk, E.; Jha, S.; Macheroux, P.; Melander, O.; Bergmann, A. Novel Methods for the Quantification of Dipeptidyl Peptidase 3 (DPP3) Concentration and Activity in Human Blood Samples. J. Appl. Lab. Med. 2019, 3, 943–953. [Google Scholar] [CrossRef]
- Blet, A.; Deniau, B.; Santos, K.; van Lier, D.P.T.; Azibani, F.; Wittebole, X.; Chousterman, B.G.; Gayat, E.; Hartmann, O.; Struck, J.; et al. Monitoring circulating dipeptidyl peptidase 3 (DPP3) predicts improvement of organ failure and survival in sepsis: A prospective observational multinational study. Crit. Care 2021, 25, 61. [Google Scholar] [CrossRef] [PubMed]
- Jha, S.; Taschler, U.; Domenig, O.; Poglitsch, M.; Bourgeois, B.; Pollheimer, M.; Pusch, L.M.; Malovan, G.; Frank, S.; Madl, T.; et al. Dipeptidyl peptidase 3 modulates the renin-angiotensin system in mice. J. Biol. Chem. 2020, 295, 13711–13723. [Google Scholar] [CrossRef] [PubMed]
- Picod, A.; Deniau, B.; Vaittinada Ayar, P.; Genest, M.; Julian, N.; Azibani, F.; Mebazaa, A. Alteration of the Renin-Angiotensin-Aldosterone System in Shock: Role of the Dipeptidyl Peptidase 3. Am. J. Respir. Crit. Care Med. 2021, 203, 526–527. [Google Scholar] [CrossRef]
- Bellomo, R.; Wunderink, R.G.; Szerlip, H.; English, S.W.; Busse, L.W.; Deane, A.M.; Khanna, A.K.; McCurdy, M.T.; Ostermann, M.; Young, P.J.; et al. Angiotensin I and angiotensin II concentrations and their ratio in catecholamine-resistant vasodilatory shock. Crit. Care 2020, 24, 43. [Google Scholar] [CrossRef]
- Wattiaux, R.; Wattiaux-de Coninck, S.; Thirion, J.; Gasingirwa, M.C.; Jadot, M. Lysosomes and Fas-mediated liver cell death. Biochem. J. 2007, 403, 89–95. [Google Scholar] [CrossRef]
- Matsumura, H.; Shimizu, Y.; Ohsawa, Y.; Kawahara, A.; Uchiyama, Y.; Nagata, S. Necrotic death pathway in Fas receptor signaling. J. Cell Biol. 2000, 151, 1247–1256. [Google Scholar] [CrossRef] [PubMed]
- Kawahara, A.; Ohsawa, Y.; Matsumura, H.; Uchiyama, Y.; Nagata, S. Caspase-independent cell killing by Fas-associated protein with death domain. J. Cell Biol. 1998, 143, 1353–1360. [Google Scholar] [CrossRef]
- van Lier, D.; Kox, M.; Pickkers, P. Promotion of vascular integrity in sepsis through modulation of bioactive adrenomedullin and dipeptidyl peptidase 3. J. Intern. Med. 2021, 289, 792–806. [Google Scholar] [CrossRef]
- Menale, C.; Robinson, L.J.; Palagano, E.; Rigoni, R.; Erreni, M.; Almarza, A.J.; Strina, D.; Mantero, S.; Lizier, M.; Forlino, A.; et al. Absence of Dipeptidyl Peptidase 3 Increases Oxidative Stress and Causes Bone Loss. J. Bone Min. Res. 2019, 34, 2133–2148. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Yu, J.; Guo, L.; Ma, H. Dipeptidyl-peptidase 3 protects oxygen-glucose deprivation/reoxygenation-injured hippocampal neurons by suppressing apoptosis, oxidative stress and inflammation via modulation of Keap1/Nrf2 signaling. Int. Immunopharmacol. 2021, 96, 107595. [Google Scholar] [CrossRef]
- Prajapati, S.C.; Chauhan, S.S. Dipeptidyl peptidase III: A multifaceted oligopeptide N-end cutter. FEBS J. 2011, 278, 3256–3276. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Kern, J.T.; Walker, J.R.; Johnson, J.A.; Schultz, P.G.; Luesch, H. A genomic screen for activators of the antioxidant response element. Proc. Natl. Acad. Sci. USA 2007, 104, 5205–5210. [Google Scholar] [CrossRef]
- Matic, S.; Tomasic Paic, A.; Sobocanec, S.; Pinteric, M.; Pipalovic, G.; Martincic, M.; Matovina, M.; Tomic, S. Interdisciplinary Study of the Effects of Dipeptidyl-Peptidase III Cancer Mutations on the KEAP1-NRF2 Signaling Pathway. Int. J. Mol. Sci. 2022, 23, 1994. [Google Scholar] [CrossRef] [PubMed]
- Deshmukh, P.; Unni, S.; Krishnappa, G.; Padmanabhan, B. The Keap1-Nrf2 pathway: Promising therapeutic target to counteract ROS-mediated damage in cancers and neurodegenerative diseases. Biophys. Rev. 2017, 9, 41–56. [Google Scholar] [CrossRef]
- Tu, W.; Wang, H.; Li, S.; Liu, Q.; Sha, H. The Anti-Inflammatory and Anti-Oxidant Mechanisms of the Keap1/Nrf2/ARE Signaling Pathway in Chronic Diseases. Aging Dis. 2019, 10, 637–651. [Google Scholar] [CrossRef] [PubMed]
- Kang, C.H.; Choi, Y.H.; Moon, S.K.; Kim, W.J.; Kim, G.Y. Quercetin inhibits lipopolysaccharide-induced nitric oxide production in BV2 microglial cells by suppressing the NF-kappaB pathway and activating the Nrf2-dependent HO-1 pathway. Int. Immunopharmacol. 2013, 17, 808–813. [Google Scholar] [CrossRef] [PubMed]
- Taguchi, K.; Yamamoto, M. The KEAP1-NRF2 System in Cancer. Front. Oncol. 2017, 7, 85. [Google Scholar] [CrossRef]
- Lu, K.; Alcivar, A.L.; Ma, J.; Foo, T.K.; Zywea, S.; Mahdi, A.; Huo, Y.; Kensler, T.W.; Gatza, M.L.; Xia, B. NRF2 Induction Supporting Breast Cancer Cell Survival Is Enabled by Oxidative Stress-Induced DPP3-KEAP1 Interaction. Cancer Res. 2017, 77, 2881–2892. [Google Scholar] [CrossRef]
- Hashimoto, J.; Yamamoto, Y.; Kurosawa, H.; Nishimura, K.; Hazato, T. Identification of dipeptidyl peptidase III in human neutrophils. Biochem. Biophys. Res. Commun. 2000, 273, 393–397. [Google Scholar] [CrossRef]
- Grdisa, M.; Vitale, L. Types and localization of aminopeptidases in different human blood cells. Int. J. Biochem. 1991, 23, 339–345. [Google Scholar] [CrossRef]
- Sabra, A.; Bessoule, J.J.; Atanasova-Penichon, V.; Noel, T.; Dementhon, K. Host-pathogen interaction and signaling molecule secretion are modified in the dpp3 knockout mutant of Candida lusitaniae. Infect. Immun. 2014, 82, 413–422. [Google Scholar] [CrossRef]
- Simaga, S.; Babic, D.; Osmak, M.; Ilic-Forko, J.; Vitale, L.; Milicic, D.; Abramic, M. Dipeptidyl peptidase III in malignant and non-malignant gynaecological tissue. Eur. J. Cancer 1998, 34, 399–405. [Google Scholar] [CrossRef]
- Choy, T.K.; Wang, C.Y.; Phan, N.N.; Khoa Ta, H.D.; Anuraga, G.; Liu, Y.H.; Wu, Y.F.; Lee, K.H.; Chuang, J.Y.; Kao, T.J. Identification of Dipeptidyl Peptidase (DPP) Family Genes in Clinical Breast Cancer Patients via an Integrated Bioinformatics Approach. Diagnostics 2021, 11, 1204. [Google Scholar] [CrossRef]
- Tong, Y.; Huang, Y.; Zhang, Y.; Zeng, X.; Yan, M.; Xia, Z.; Lai, D. DPP3/CDK1 contributes to the progression of colorectal cancer through regulating cell proliferation, cell apoptosis, and cell migration. Cell Death Dis. 2021, 12, 529. [Google Scholar] [CrossRef]
- Hast, B.E.; Goldfarb, D.; Mulvaney, K.M.; Hast, M.A.; Siesser, P.F.; Yan, F.; Hayes, D.N.; Major, M.B. Proteomic analysis of ubiquitin ligase KEAP1 reveals associated proteins that inhibit NRF2 ubiquitination. Cancer Res. 2013, 73, 2199–2210. [Google Scholar] [CrossRef] [PubMed]
- Kaufmann, P.; Muenzner, M.; Kastorf, M.; Santos, K.; Hartmann, T.; Dienelt, A.; Rehfeld, L.; Bergmann, A. A novel and highly efficient purification procedure for native human dipeptidyl peptidase 3 from human blood cell lysate. PLoS ONE 2019, 14, e0220866. [Google Scholar] [CrossRef] [PubMed]
- Deniau, B.; Rehfeld, L.; Santos, K.; Dienelt, A.; Azibani, F.; Sadoune, M.; Kounde, P.R.; Samuel, J.L.; Tolpannen, H.; Lassus, J.; et al. Circulating dipeptidyl peptidase 3 is a myocardial depressant factor: Dipeptidyl peptidase 3 inhibition rapidly and sustainably improves haemodynamics. Eur. J. Heart Fail. 2020, 22, 290–299. [Google Scholar] [CrossRef]
- Garcia, B.; Ter Schiphorst, B.; Santos, K.; Su, F.; Dewachter, L.; Vasques-Novoa, F.; Rocha-Oliveira, E.; Roncon-Albuquerque, R., Jr.; Uba, T.; Hartmann, O.; et al. Inhibition of circulating dipeptidyl-peptidase 3 by procizumab in experimental septic shock reduces catecholamine exposure and myocardial injury. Intensive Care Med. Exp. 2024, 12, 53. [Google Scholar] [CrossRef]
- Pang, X.; Shimizu, A.; Kurita, S.; Zankov, D.P.; Takeuchi, K.; Yasuda-Yamahara, M.; Kume, S.; Ishida, T.; Ogita, H. Novel Therapeutic Role for Dipeptidyl Peptidase III in the Treatment of Hypertension. Hypertension 2016, 68, 630–641. [Google Scholar] [CrossRef]
- Komeno, M.; Pang, X.; Shimizu, A.; Molla, M.R.; Yasuda-Yamahara, M.; Kume, S.; Rahman, N.I.A.; Soh, J.E.C.; Nguyen, L.K.C.; Ahmat Amin, M.K.B.; et al. Cardio- and reno-protective effects of dipeptidyl peptidase III in diabetic mice. J. Biol. Chem. 2021, 296, 100761. [Google Scholar] [CrossRef]
- Boorsma, E.M.; Ter Maaten, J.M.; Damman, K.; van Veldhuisen, D.J.; Dickstein, K.; Anker, S.D.; Filippatos, G.; Lang, C.C.; Metra, M.; Santos, K.; et al. Dipeptidyl peptidase 3, a marker of the antagonist pathway of the renin-angiotensin-aldosterone system in patients with heart failure. Eur. J. Heart Fail. 2021, 23, 947–953. [Google Scholar] [CrossRef]
- Pavo, N.; Prausmuller, S.; Spinka, G.; Goliasch, G.; Bartko, P.E.; Arfsten, H.; Santos, K.; Strunk, G.; Hulsmann, M. Circulating dipeptidyl peptidase (cDPP3)-A marker for end-stage heart failure? J. Intern. Med. 2022, 291, 886–890. [Google Scholar] [CrossRef] [PubMed]
- Picod, A.; Genest, M.; Assad, N.; Polidano, E.; Placier, S.; Gaudry, S.; Mebazaa, A.; Azibani, F. Circulating dipeptidyl peptidase 3 modulates hemodynamics and the renin-angiotensin-aldosterone system in mice. Arch. Cardiovasc. Dis. Suppl. 2022, 14, 185. [Google Scholar] [CrossRef]
- Ocaranza, M.P.; Jalil, J.E. On Endogenous Angiotensin II Antagonism in Hypertension: The Role of Dipeptidyl Peptidase III. Hypertension 2016, 68, 552–554. [Google Scholar] [CrossRef] [PubMed]
- Ozden, O.; Yesildas, C.; Demir, M.; Surmeli, A.O.; Yesil, E.; Orscelik, O.; Celik, A. A Novel Indicator of Myocardial Injury after Acute Myocardial Infarction: ‘DPP-3’. Clin. Appl. Thromb. Hemost. 2022, 28, 10760296221145174. [Google Scholar] [CrossRef] [PubMed]
- Wenzl, F.A.; Bruno, F.; Kraler, S.; Klingenberg, R.; Akhmedov, A.; Ministrini, S.; Santos, K.; Godly, K.; Godly, J.; Niederseer, D.; et al. Dipeptidyl peptidase 3 plasma levels predict cardiogenic shock and mortality in acute coronary syndromes. Eur. Heart J. 2023, 44, 3859–3871. [Google Scholar] [CrossRef]
- Takagi, K.; Blet, A.; Levy, B.; Deniau, B.; Azibani, F.; Feliot, E.; Bergmann, A.; Santos, K.; Hartmann, O.; Gayat, E.; et al. Circulating dipeptidyl peptidase 3 and alteration in haemodynamics in cardiogenic shock: Results from the OptimaCC trial. Eur. J. Heart Fail. 2020, 22, 279–286. [Google Scholar] [CrossRef]
- Innelli, P.; Lopizzo, T.; Paterno, G.; Bruno, N.; Radice, R.P.; Bertini, P.; Marabotti, A.; Luzi, G.; Stabile, E.; Di Fazio, A.; et al. Dipeptidyl Amino-Peptidase 3 (DPP3) as an Early Marker of Severity in a Patient Population with Cardiogenic Shock. Diagnostics 2023, 13, 1350. [Google Scholar] [CrossRef]
- Picod, A.; Nordin, H.; Jarczak, D.; Zeller, T.; Oddos, C.; Santos, K.; Hartmann, O.; Herpain, A.; Mebazaa, A.; Kluge, S.; et al. High Circulating Dipeptidyl Peptidase 3 Predicts Mortality and Need for Organ Support in Cardiogenic Shock: An Ancillary Analysis of the ACCOST-HH Trial. J. Card. Fail. 2025, 31, 29–36. [Google Scholar] [CrossRef] [PubMed]
- van Lier, D.; Beunders, R.; Kox, M.; Pickkers, P. Associations of dipeptidyl-peptidase 3 with short-term outcome in a mixed admission ICU-cohort. J. Crit. Care 2023, 78, 154383. [Google Scholar] [CrossRef]
- Fidelio, G.; Ruggieri, M.P.; Crisanti, L.; Valli, G.; De Marco, F.; Bergman, A.; Santos, K.; Hartman, O.; Di Somma, S.; Italy, G. Value of cDPP3 as a short-term prognostic biomarker in all-comers critically ill patients in the emergency department. Crit. Care 2025, 29, 325. [Google Scholar] [CrossRef]
- Deniau, B.; Picod, A.; Van Lier, D.; Vaittinada Ayar, P.; Santos, K.; Hartmann, O.; Gayat, E.; Mebazaa, A.; Blet, A.; Azibani, F. High plasma dipeptidyl peptidase 3 levels are associated with mortality and organ failure in shock: Results from the international, prospective and observational FROG-ICU cohort. Br. J. Anaesth. 2022, 128, e54–e57. [Google Scholar] [CrossRef]
- Chappell, M.C.; Schaich, C.L.; Busse, L.W.; Clark Files, D.; Martin, G.S.; Sevransky, J.E.; Hinson, J.S.; Rothman, R.E.; Khanna, A.K.; Vitamin C, Thiamine and Steroids in Sepsis (VICTAS) Investigators. Higher circulating ACE2 and DPP3 but reduced ACE and angiotensinogen in hyperreninemic sepsis patients. Clin. Sci. 2025, 139, 43–53. [Google Scholar] [CrossRef]
- Teixeira, J.P.; Perez Ingles, D.; Barton, J.B.; Dean, J.T.; Garcia, P.; Kunkel, S.J.; Sarangarm, P.; Weiss, N.K.; Schaich, C.L.; Busse, L.W.; et al. The scientific rationale and study protocol for the DPP3, Angiotensin II, and Renin Kinetics in Sepsis (DARK-Sepsis) randomized controlled trial: Serum biomarkers to predict response to angiotensin II versus standard-of-care vasopressor therapy in the treatment of septic shock. Trials 2024, 25, 182. [Google Scholar] [CrossRef]
- Busse, L.W.; Teixeira, J.P.; Schaich, C.L.; Ten Lohuis, C.C.; Nielsen, N.D.; Sturek, J.M.; Merck, L.H.; Self, W.H.; Puskarich, M.A.; Khan, A.; et al. Shock prediction with dipeptidyl peptidase-3 and renin (SPiDeR) in hypoxemic patients with COVID-19. J. Crit. Care 2025, 85, 154950. [Google Scholar] [CrossRef] [PubMed]
- van Lier, D.; Deniau, B.; Santos, K.; Hartmann, O.; Dudoignon, E.; Depret, F.; Plaud, B.; Laterre, P.F.; Mebazaa, A.; Pickkers, P. Circulating dipeptidyl peptidase 3 and bio-adrenomedullin levels are associated with impaired outcomes in critically ill COVID-19 patients: A prospective international multicentre study. ERJ Open Res. 2023, 9, 00342-2022. [Google Scholar] [CrossRef] [PubMed]
- Chaibi, K.; Picod, A.; Boubaya, M.; Tubiana, S.; Jullien, V.; Magreault, S.; Placier, S.; Mallet, J.; Louis, G.; Martin-Lefevre, L.; et al. Biomarkers in acute kidney injury settings to predict interventions and outcomes: The MARKISIO study. Crit. Care 2025, 29, 204. [Google Scholar] [CrossRef]
- Deniau, B.; Blet, A.; Santos, K.; Vaittinada Ayar, P.; Genest, M.; Kastorf, M.; Sadoune, M.; de Sousa Jorge, A.; Samuel, J.L.; Vodovar, N.; et al. Inhibition of circulating dipeptidyl-peptidase 3 restores cardiac function in a sepsis-induced model in rats: A proof of concept study. PLoS ONE 2020, 15, e0238039. [Google Scholar] [CrossRef]
- Magliocca, A.; Omland, T.; Latini, R. Dipeptidyl peptidase 3, a biomarker in cardiogenic shock and hopefully much more. Eur. J. Heart Fail. 2020, 22, 300–302. [Google Scholar] [CrossRef] [PubMed]
- Jarczak, D.; Nierhaus, A.; Mebazaa, A.; Herpain, A.; Pickkers, P.; Anar, S.; Kluge, S. Targeting dipeptidyl peptidase 3 (DPP3) in extreme-critically ill patients with refractory shock: First-in-human report on the safety and efficacy of an anti-DPP3 antibody. Eur. J. Heart Fail. 2025, 27, 1483. [Google Scholar] [CrossRef]

| Feature | DPP3 (Dipeptidyl Peptidase 3) | BNP/NT-proBNP | Cardiac Troponins (cTnI/cTnT) | Lactate |
|---|---|---|---|---|
| Origin/release trigger | Cytosolic metallopeptidase released after cell injury or necrosis, especially in cardiogenic and septic shock | Secreted by ventricular myocytes in response to increased wall stress | Released from cardiomyocytes after irreversible injury (necrosis or membrane rupture) | Produced by peripheral tissues under anaerobic metabolism and impaired perfusion |
| Primary pathophysiological link | Directly modulates RAAS by degrading Ang II → reduces vasoconstriction and cardiac contractility | Reflects hemodynamic overload and ventricular wall stress | Reflects myocardial ischemia/necrosis | Reflects tissue hypoxia and global perfusion deficit |
| Kinetics/dynamics | Rises rapidly (within hours) in acute shock; declines if tissue injury or hemodynamics improve | Rises within hours of wall stress; declines slowly (½-life ~20 h) | Rises within 2–3 h, peaks at 12–24 h; prolonged if renal failure | Rises within minutes; normalizes rapidly with resuscitation |
| Prognostic value | High levels correlate with mortality, vasopressor need, and organ failure in cardiogenic, septic, and vasodilatory shock | Strong predictor of heart failure severity and outcome | Predictor of infarct size, mortality, and outcomes in ACS or shock | Marker of tissue hypoperfusion and mortality across shock types |
| Analytical method | Luminometric immunoassay (DPP3-LIA, 4TEEN4 Pharmaceuticals)—specific for protein concentration | Electrochemiluminescence or immunofluorescence assays | High-sensitivity immunoassays | Enzymatic or blood-gas analyzers |
| Clinical advantages | Provides mechanistic insight into loss of Ang II-mediated vasoconstriction and myocardial depression; potentially actionable via Procizumab inhibition | Well-validated for chronic HF; limited mechanistic specificity | Gold standard for MI diagnosis; less informative in non-ischemic shock | Rapid bedside use; poor specificity for cause |
| Limitations | Novel biomarker, limited assay availability and reference ranges; uncertain clearance kinetics | Affected by age, renal function, obesity | Elevated in non-ischemic injury, CKD | Easily affected by sampling errors and metabolic conditions |
| Study (Ref) | Population/Setting | Sample Size | Key Findings on cDPP3 | Outcomes Associated |
|---|---|---|---|---|
| Heart Failure | ||||
| Komeno M et al. [59] | Mice—Heart Failure | Recombinant DPP3 infusion reduced angiotensin II–driven cardiac fibrosis, inflammation, and diastolic dysfunction without affecting glycemia. | Demonstrated protective effects against myocardial remodeling and fibrosis. | |
| Boorsma EM et al. [60] | Human—Heart Failure (BIOSTAT-CHF cohort) | 2156 | Median cDPP3 11.45 ng/mL. Higher quartiles showed increased renin, aldosterone, liver enzymes, and neurohormonal activation. | Mortality rose from 20.4% (lowest quartile) to 36.0% (highest). Elevated cDPP3 predicted adverse outcomes but lost significance after multivariable adjustment. |
| Pavo N et al. [61] | Human—Heart Failure | 365 | Median cDPP3 11.36 ng/mL. Higher levels (>15 ng/mL) predicted worse prognosis. | Elevated cDPP3 associated with mortality in end-stage HFrEF, supporting its role as a marker of advanced disease. |
| Hypertension | ||||
| Pang X et al. [58] | Mice—Hypertension | DPP III remarkably reduced blood pressure in Ang II–infused hypertensive mice without alteration of heart rate. DPP III did not affect hemodynamics in noradrenalin-induced hypertensive mice or normotensive mice, suggesting specificity for Ang II. | Demonstrated antihypertensive role and also protective effects against myocardial remodeling and fibrosis. | |
| Acute Coronary Syndromes | ||||
| Ozden O et al. [64] | Human—Acute Coronary Syndromes | 70 ACS, 48 controls | cDPP3 elevated in ACS vs. controls; correlated with troponin I and LVEF. | Identified as an independent predictor of left ventricular dysfunction. |
| Wenzl FA et al. [65] | Human—Acute Coronary Syndromes (SPUM-ACS) | 4787 | Admission cDPP3 elevated [median 19.0 ng/mL], declined over hospitalization. | High cDPP3 predicted 30-day and 1-year mortality. Persistent elevation identified highest-risk patients. |
| Cardiogenic Shock | ||||
| Deniau B et al. [56] | Human and Mice—Cardiogenic Shock (CardShock study) | 174 (Human) | cDPP3 levels were associated with an increased short-term mortality risk. DPP3 induced myocardial depression and impaired kidney hemodynamics in healthy mice. | Decrease in cDPP3 in cardiogenic shock patients within 24h of admission was associated with a favorable outcome |
| Takagi K et al. [66] | Human—Cardiogenic Shock (OptimaCC trial) | 57 | Median cDPP3 higher in refractory CS [76.1 vs. 32.8 ng/mL, p = 0.014]. | Predicted refractory shock; decreasing levels correlated with survival. |
| Innelli P et al. [67] | Human—Cardiogenic Shock (Italian ICU) | 15 | Higher cDPP3 in mechanically ventilated and non-survivor patients. | Persistently elevated levels linked to multiorgan failure and death. |
| Picod A et al. [68] | Human—Cardiogenic Shock (ACCOST-HH trial) | 150 | Median baseline cDPP3 43.2 ng/mL; >40 ng/mL threshold indicated high risk. | Persistently high cDPP3 → 74% 30-day mortality; rapid decline → improved survival. |
| Study (Ref) | Population/Setting | Sample Size | Key Findings on cDPP3 | Outcomes Associated |
|---|---|---|---|---|
| ICU prospective cohort [69] | General ICU patients, prospective | 650 | Admission median 56.2 ng/mL, declined over time. Day 1–2 levels associated with mortality (HR 1.36–1.49) and AKI (OR 1.31–1.87). Day 2 remained independent predictor after adjustment. | 28-day mortality; AKI (all stages) |
| ED cohort, Rome [70] | ED triage code 1 (critical) patients | 336 | Non-survivors had higher levels (43.9 vs. 35.2 ng/mL). cDPP3 > 40 ng/mL doubled 28-day mortality risk (HR 2.06). Strong predictive power for 24 h mortality (AUC 0.83). | 24 h and 28-day mortality; interaction with ACE-I use |
| FROG-ICU substudy [71] | Shocked ICU patients (64% septic, 20% cardiogenic, 16% hemorrhagic) | 665 (of 2087) | Baseline cDPP3 higher in non-survivors (27.0 vs. 18.5 ng/mL, p < 0.001). Highest quintile > 38.9 ng/mL linked to higher mortality in all shock types. | 28-day and 1-year mortality; AKI; RRT need |
| AdrenOSS-1 [30] | Severe sepsis/septic shock, multinational ICU | 585 | Admission cDPP3 associated with mortality (adj. HR 1.5). Persistently high or rising levels → organ failure; falling levels > 40 → improved outcomes. | 28-day mortality; organ failure; need for support |
| VICTAS substudy [72] | Sepsis patients (renin stratified) | Subset | High renin sepsis: DPP3 elevated, ACE:DPP3 ratio reversed (<0.1 vs. 29 in controls). Suggests DPP3 contributes to impaired Ang II responses. | Mortality risk linked to renin–DPP3 imbalance |
| DARK-Sepsis trial [73] | Vasodilatory shock, AT2 vs. SOC therapy | Planned 40 | Biomarkers: renin and DPP3 measured. Aim to predict vasopressor response. Results pending. | Primary: vasopressor response; secondary: AKI, ventilation, mortality |
| ACTIV-4 Host Tissue (COVID-19) [74] | COVID-19, hypoxemic, no vasopressors at baseline | 184 | High cDPP3 (>median) → more vasopressor use (28.4% vs. 16.7%, p = 0.031) and higher 28-day mortality (25% vs. 6.7%). Renin not predictive. | Vasopressor initiation; 28-day mortality |
| COVID-19 ICU cohort [75] | ICU COVID-19 patients (NL/France) | 80 | Admission median 35.7 ng/mL. Non-survivors had higher values across days 1–7. Day 7 AUROC 0.81. Combination with bio-ADM (>70 pg/mL) strongly predictive (HR 11.8). | 28-day mortality; improved prediction with bio-ADM |
| AKIKI-2 ancillary [76] | Severe AKI (stage 3), ventilated/vasopressor | Subset | cDPP3 did not reliably predict need for RRT within 72 h. | RRT initiation (no added value) |
| Model/Study (Ref) | Population/Setting | Intervention | Key Findings |
|---|---|---|---|
| Mouse model [56] | Acute heart failure mice | PCZ administration | Normalized cardiac contractility, improved renal hemodynamics, reduced oxidative stress and inflammation. |
| Rat CLP sepsis model [77] | 36 rats (sepsis via cecal ligation and puncture) | PCZ vs. PBS | Restored LV shortening fraction (39→51%, p = 0.004); higher CO and SV; reduced plasma DPP3 activity (138 vs. 735 U/L); improved survival (83% vs. 63%). |
| Porcine peritonitis model [57] | 16 anesthetized pigs with septic shock | PCZ vs. standard therapy | Lower norepinephrine and fluid needs; reduced myocardial injury and IL-6 expression; higher PaO2/FiO2; restored angiotensin II signaling; lower lactate. |
| First-in-human case series [79] | 3 critically ill patients with refractory septic cardiomyopathy | Single PCZ dose (10 mg/kg IV) | Safe and well tolerated; shock reversal, reduced norepinephrine, normalized lactate, improved renal/respiratory function, IL-6 fell from 893.5→27.2 ng/L. |
| PRO-CARD 1b Trial (NCT06832722) | Planned 130 patients with CS (ACS or sepsis) | PCZ (Phase 1/2 study) | Evaluating safety, tolerability, PK/PD, and optimal Phase 2 dose. Results expected 2026. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zakynthinos, G.E.; Kokkinos, N.K.; Tzima, I.G.; Dimeas, I.E.; Gialamas, I.; Gerostathis, A.; Katsarou, O.; Tsatsaragkou, A.; Kalogeras, K.; Oikonomou, E.; et al. One Enzyme, Many Faces: The Expanding Role of DPP3 in Cardiovascular and Critical Care. J. Clin. Med. 2025, 14, 7459. https://doi.org/10.3390/jcm14217459
Zakynthinos GE, Kokkinos NK, Tzima IG, Dimeas IE, Gialamas I, Gerostathis A, Katsarou O, Tsatsaragkou A, Kalogeras K, Oikonomou E, et al. One Enzyme, Many Faces: The Expanding Role of DPP3 in Cardiovascular and Critical Care. Journal of Clinical Medicine. 2025; 14(21):7459. https://doi.org/10.3390/jcm14217459
Chicago/Turabian StyleZakynthinos, Georgios E., Nikolaos K. Kokkinos, Ioanna G. Tzima, Ilias E. Dimeas, Ioannis Gialamas, Andreas Gerostathis, Ourania Katsarou, Aikaterini Tsatsaragkou, Konstantinos Kalogeras, Evangelos Oikonomou, and et al. 2025. "One Enzyme, Many Faces: The Expanding Role of DPP3 in Cardiovascular and Critical Care" Journal of Clinical Medicine 14, no. 21: 7459. https://doi.org/10.3390/jcm14217459
APA StyleZakynthinos, G. E., Kokkinos, N. K., Tzima, I. G., Dimeas, I. E., Gialamas, I., Gerostathis, A., Katsarou, O., Tsatsaragkou, A., Kalogeras, K., Oikonomou, E., & Siasos, G. (2025). One Enzyme, Many Faces: The Expanding Role of DPP3 in Cardiovascular and Critical Care. Journal of Clinical Medicine, 14(21), 7459. https://doi.org/10.3390/jcm14217459

