Placental Thickness Correlates with Severity-Weighted Fetal Dysfunction in the Third Trimester
Simple Summary
Abstract
1. Introduction
2. Material and Methods
3. Statistical Analysis
4. Results
Weighted Scores Across Placental Thickness Groups
5. Discussion
5.1. Principal Findings
5.2. Results in the Context of What’s Known
5.3. Clinical Implications
5.4. Research Implications
5.5. Strengths and Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Glossary of Terms
| Placental Thickness (PT) | The maximum perpendicular measurement of the placenta from top to bottom edge on ultrasound, excluding cord insertion. Reported in millimeters (mm). |
| Condition Classifications | Groupings of fetal diagnoses into four clinically defined domains: |
| Congenital Heart Defects (CHD) | Structural abnormalities of the fetal heart. |
| Cardiac Dysfunction (CD) | Functional disturbances of the heart (e.g., valve insufficiency, cardiomegaly, abnormal flow patterns). |
| Extracardiac Malformations (ECM) | Structural anomalies outside the heart (e.g., CNS, GI, GU, musculoskeletal). |
| Extracardiac Dysfunction (ED) | Non-structural soft markers of systemic fetal stress (e.g., ventriculomegaly, pyelectasis, abnormal amniotic fluid). |
| Severity Weight | A numerical score assigned to each diagnosis based on its relative fetal or neonatal mortality risk. Used to reflect the clinical impact of each condition beyond simple presence/absence. |
| Weighted Score | The sum of severity weights for all diagnoses present in a fetus, calculated separately for each Condition Classification. |
| Spearman’s ρ (rho) | A non-parametric correlation coefficient used to assess monotonic relationships between variables. Values range from −1 (perfect inverse) to +1 (perfect direct correlation). |
| Kruskal–Wallis Test | A non-parametric method for comparing more than two independent groups on a continuous or ordinal outcome. |
| Mann–Whitney U Test | A non-parametric alternative to the t-test for comparing two independent groups on a continuous or ordinal variable. |
References
- Hu, C.; Yan, Y.; Ji, F.; Zhou, H. Maternal Obesity Increases Oxidative Stress in Placenta and It Is Associated With Intestinal Microbiota. Front. Cell Infect. Microbiol. 2021, 11, 671347. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rosado-Yépez, P.I.; Chávez-Corral, D.V.; Reza-López, S.A.; Leal-Berumen, I.; Fierro-Murga, R.; Caballero-Cummings, S.; Levario-Carrillo, M. Relation between pregestational obesity and characteristics of the placenta. J. Matern. Fetal Neonatal Med. 2020, 33, 3425–3430. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, C.; Taricco, E.; Cardellicchio, M.; Mandò, C.; Massari, M.; Savasi, V.; Cetin, I. The role of obesity and gestational diabetes on placental size and fetal oxygenation. Placenta 2021, 103, 59–63. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Yang, Y.; Li, J.; Wang, H.; Cheng, C.; Yang, L.; Li, Q.; Deng, J.; Liang, Z.; Yin, Y.; et al. Maternal Diet-Induced Obesity Compromises Oxidative Stress Status and Angiogenesis in the Porcine Placenta by Upregulating Nox2 Expression. Oxid. Med. Cell Longev. 2019, 2019, 2481592. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ashfaq, M.; Janjua, M.Z.; Channa, M.A. Effect of gestational diabetes and maternal hypertension on gross morphology of placenta. J. Ayub Med. Coll. Abbottabad. 2005, 17, 44–47. [Google Scholar] [PubMed]
- Berceanu, C.; Tetileanu, A.V.; Ofiţeru, A.M.; Brătilă, E.; Mehedinţu, C.; Voicu, N.L.; Szasz, F.A.; Berceanu, S.; Vlădăreanu, S.; Navolan, D.B. Morphological and ultrasound findings in the placenta of diabetic pregnancy. Rom. J. Morphol. Embryol. 2018, 59, 175–186. [Google Scholar] [PubMed]
- Miwa, I.; Sase, M.; Torii, M.; Sanai, H.; Nakamura, Y.; Ueda, K. A thick placenta: A predictor of adverse pregnancy outcomes. Springerplus 2014, 3, 353. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Harris, R.D.; Cho, C.; Wells, W.A. Sonography of the placenta with emphasis on pathological correlation. Semin. Ultrasound CT MR 1996, 17, 66–89. [Google Scholar] [CrossRef] [PubMed]
- Murlewska, J.; Sylwestrzak, O.; Strzelecka, I.; Respondek-Liberska, M. Maternal urogenital infection and fetal heart functional assessment-what is the missing link? J. Perinat. Med. 2022, 51, 311–316. [Google Scholar] [CrossRef] [PubMed]
- Hohlfeld, P.; MacAleese, J.; Capella-Pavlovski, M.; Giovangrandi, Y.; Thulliez, P.; Forestier, F.; Daffos, F. Fetal toxoplasmosis: Ultrasonographic signs. Ultrasound Obstet. Gynecol. 1991, 1, 241–244. [Google Scholar] [CrossRef] [PubMed]
- Brock, M.F.; Miranda, A.E.; Bôtto-Menezes, C.; Leão, J.R.; Martinez-Espinosa, F.E. Ultrasound findings in pregnant women with uncomplicated vivax malaria in the Brazilian Amazon: A cohort study. Malar. J. 2015, 14, 144. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kittipornpechdee, N.; Hanamornroongruang, S.; Lekmak, D.; Treetipsatit, J. Fetal and Placental Pathology in Congenital Syphilis: A Comprehensive Study in Perinatal Autopsy. Fetal Pediatr. Pathol. 2018, 37, 231–242. [Google Scholar] [CrossRef] [PubMed]
- Krekora, M.; Zych-Krekora, K.; Słodki, M.; Grzesiak, M.; Respondek-Liberska, M. The course of pregnancy and delivery in a patient with malaria. Ginekol. Pol. 2017, 88, 574–575. [Google Scholar] [CrossRef] [PubMed]
- Rawal, S.; Ray, S.; Sharma, N. Correlation Between Ultrasonographic Placental Thickness and Adverse Fetal and Neonatal Outcomes. Cureus 2024, 16, e56410. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Elchalal, U.; Ezra, Y.; Levi, Y.; Bar-Oz, B.; Yanai, N.; Intrator, O.; Nadjari, M. Sonographically thick placenta: A marker for increased perinatal risk--a prospective cross-sectional study. Placenta 2000, 21, 268–272. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Shen, J.; Wang, L. Insights into the role of placenta thickness as a predictive marker of perinatal outcome. J. Int. Med. Res. 2021, 49, 300060521990969. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yasuhara, J.; Garg, V. Genetics of congenital heart disease: A narrative review of recent advances and clinical implications. Transl. Pediatr. 2021, 10, 2366–2386. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kalisch-Smith, J.I.; Ved, N.; Sparrow, D.B. Environmental Risk Factors for Congenital Heart Disease. Cold Spring Harb. Perspect. Biol. 2020, 12, a037234. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, T.N.; Wu, Q.J.; Liu, Y.S.; Lv, J.L.; Sun, H.; Chang, Q.; Liu, C.F.; Zhao, Y.H. Environmental Risk Factors and Congenital Heart Disease: An Umbrella Review of 165 Systematic Reviews and Meta-Analyses With More Than 120 Million Participants. Front. Cardiovasc. Med. 2021, 8, 640729. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hamill, N.; Romero, R.; Hassan, S.; Lee, W.; Myers, S.A.; Mittal, P.; Kusanovic, J.P.; Balasubramaniam, M.; Chaiworapongsa, T.; Vaisbuch, E.; et al. The fetal cardiovascular response to increased placental vascular impedance to flow determined with 4-dimensional ultrasound using spatiotemporal image correlation and virtual organ computer-aided analysis. Am. J. Obstet. Gynecol. 2013, 208, 153.e1–153.e13. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Leon, R.L.; Bitar, L.; Rajagopalan, V.; Spong, C.Y. Interdependence of placenta and fetal cardiac development. Prenat. Diagn. 2024, 44, 846–855. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Umapathy, A.; Clark, A.; Sehgal, A.; Karanam, V.; Rajaraman, G.; Kalionis, B.; Jones, H.N.; James, J.; Murthi, P. Molecular regulators of defective placental and cardiovascular development in fetal growth restriction. Clin. Sci. 2024, 138, 761–775. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Camm, E.J.; Botting, K.J.; Sferruzzi-Perri, A.N. Near to One’s Heart: The Intimate Relationship Between the Placenta and Fetal Heart. Front. Physiol. 2018, 9, 629. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sferruzzi-Perri, A.N.; Camm, E.J. The Programming Power of the Placenta. Front. Physiol. 2016, 7, 33. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Respondek-Liberska, M.; Słodki, M. Klasyfikacja wad serca w kardiologii prenatalnej w III trymestrze i przed porodem. In Wady Serca Płodu; Respondek-Liberska, M., Ed.; PZWL Wydawnictwo Lekarskie: Warszawa, Poland, 2021; pp. 123–134. [Google Scholar]
- Respondek-Liberska, M. Diagnostyka prenatalna USG/ECHO: Zmiany czynnościowe w układzie krążenia płodu. In Część Szczegółowa [Prenatal Ultrasound/ECHO Diagnostics: Functional Changes in the Fetal Circulatory System. Detailed Part]; PZWL Wydawnictwo Lekarskie: Warszawa, Poland, 2019; ISBN 978-83-200-5757-7. [Google Scholar]
- Respondek-Liberska, M. Diagnostyka Prenatalna USG/ECHO cz. 1: Wady Wymagające Interwencji Chirurgicznej [Prenatal Ultrasound/ECHO Diagnostics Part 1: Defects Requiring Surgical Intervention]; PZWL: Warszawa, Poland, 2016; ISBN 978-83-200-5031-8. [Google Scholar]
- Chang, C.S.; Hong, S.Y.; Kim, S.Y.; Kim, Y.M.; Sung, J.H.; Choi, S.J.; Oh, S.Y.; Roh, C.R.; Song, J.; Huh, J.; et al. Prevalence of associated extracardiac anomalies in prenatally diagnosed congenital heart diseases. PLoS ONE 2021, 16, e0248894. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hoddick, W.K.; Mahony, B.S.; Callen, P.W.; Filly, R.A. Placental thickness. J. Ultrasound Med. 1985, 4, 479–482. [Google Scholar] [CrossRef] [PubMed]
- Strebeck, R.; Jensen, B.; Magann, E.F. Thick Placenta in Pregnancy: A Review. Obstet. Gynecol. Surv. 2022, 77, 547–557. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.J.; Bethune, M.; Hiscock, R.J. Placental thickness in the second trimester: A pilot study to determine the normal range. J. Ultrasound Med. 2012, 31, 213–218. [Google Scholar] [CrossRef] [PubMed]
- Strzelecka, I.; Karuga, F.F.; Szmyd, B.; Walter, A.; Daszkiewicz, G.; Respondek-Liberska, M. Placental thickness in 2D prenatal ultrasonographic examination. Arch. Med. Sci. 2021, 19, 1768–1773. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Josowitz, R.; Ho, D.Y.; Shankar, S.; Mondal, A.; Zavez, A.; Linn, R.L.; Tian, Z.; Gaynor, J.W.; Rychik, J. Congenital Heart Disease Fetuses Have Decreased Mid-Gestational Placental Flow, Placental Malperfusion Defects, and Impaired Growth. JACC Adv. 2025, 4, 101559. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rychik, J.; Goff, D.; McKay, E.; Mott, A.; Tian, Z.; Licht, D.J.; Gaynor, J.W. Characterization of the Placenta in the Newborn with Congenital Heart Disease: Distinctions Based on Type of Cardiac Malformation. Pediatr. Cardiol. 2018, 39, 1165–1171. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Respondek-Liberska, M.; Murlewska, J.; Wielgoś, M.; Wiecheć, M.; Czajkowski, K.; Preis, K.; Świątkowska-Freund, M.; Mazela, J.; Oszukowski, P.; Krekora, M.; et al. Recommendation of the Polish Prenatal Cardiology Society on the Regulation of the Polish Ministry of Health concerning competencies in fetal echocardiography (code 013) and fetal cardiology (code 021). Prenat. Cardiol. 2023, 13, 5–13. [Google Scholar] [CrossRef]
- Carvalho, J.S.; Axt-Fliedner, R.; Chaoui, R.; Copel, J.A.; Cuneo, B.F.; Goff, D.; Gordin Kopylov, L.; Hecher, K.; Lee, W.; Moon-Grady, A.J.; et al. ISUOG Practice Guidelines (updated): Fetal cardiac screening. Ultrasound Obstet. Gynecol. 2023, 61, 788–803. [Google Scholar] [CrossRef] [PubMed]
- Khalil, A.; Sotiriadis, A.; D’Antonio, F.; Da Silva Costa, F.; Odibo, A.; Prefumo, F.; Papageorghiou, A.T.; Salomon, L.J. ISUOG Practice Guidelines: Performance of third-trimester obstetric ultrasound scan. Ultrasound Obstet. Gynecol. 2024, 63, 131–147. [Google Scholar] [CrossRef] [PubMed]
- Moon-Grady, A.J.; Donofrio, M.T.; Gelehrter, S.; Hornberger, L.; Kreeger, J.; Lee, W.; Michelfelder, E.; Morris, S.A.; Peyvandi, S.; Pinto, N.M.; et al. Guidelines and Recommendations for Performance of the Fetal Echocardiogram: An Update from the American Society of Echocardiography. J. Am. Soc. Echocardiogr. 2023, 36, 679–723. [Google Scholar] [CrossRef] [PubMed]







| ECM Severity Class | Medical Staff for Newborn | Expected Life Span of Fetus/Neonate | Place of Birth | Treatment Urgency/Type | Rationale (For) | Example ECMs | Suggested Mortality Weight |
|---|---|---|---|---|---|---|---|
| Heaviest ECMs | Neonatologist, pediatric surgeon, palliative care team, genetics consult | Extremely limited (hours to days), often prenatal demise | Major tertiary center with maximal support | Palliative care or experimental only | Defect is incompatible with life or repair is high-risk | Bilateral renal agenesis, severe lung agenesis, anencephaly, extreme skeletal dysplasias | 1.0 (e.g., bilateral renal agenesis, anencephaly, lethal skeletal dysplasia) |
| Critical ECMs | Neonatal intensivists, pediatric surgeons, subspecialists (urology, GI, neurosurgery) | Survival possible with prompt intervention (days to weeks) | Tertiary care hospital/children’s hospital | Emergency or urgent postnatal surgery/intervention | Defect threatens survival, repair possible | Congenital diaphragmatic hernia, large omphalocele, tracheoesophageal fistula, giant SCT | 0.7–0.8 (e.g., CDH, large omphalocele, TE fistula, giant SCT) |
| Heavy planned ECMs | Neonatologist, pediatric surgical team, relevant subspecialists | Good survival with management (weeks to years) | Major children’s hospital/referral center | Planned surgery early in neonatal period | Repair improves outcome but not immediately required | Moderate omphalocele, bladder exstrophy, renal dysplasia, Hirschsprung’s disease | 0.3–0.4 (e.g., moderate omphalocele, bladder exstrophy, Hirschsprung’s) |
| Not urgently ECMs | General neonatology, pediatric follow-up, subspecialist consultation | Near-normal life expectancy (if isolated) | Local hospital with ability to refer | Elective surgery, possibly delayed | Defect does not threaten life; correction can be delayed | Mild hydronephrosis, cleft lip, small hernias, minor limb anomalies | 0.0–0.1 (e.g., mild hydronephrosis, cleft lip, small hernia, limb anomalies) |
| CHD Severity Class | Medical Staff for Newborn | Expected Life Span of Fetus/Neonate | Place of Birth | Treatment Urgency/Type | Rationale (For) | Example CHDs | Suggested Mortality Weight |
|---|---|---|---|---|---|---|---|
| Most Severe CHDs | Prepared neonatal team | Prenatal death likely; high mortality | Specialist hospital (tertiary) | No surgical option; palliative care only | Anomalies incompatible with life or untreatable | HLHS with closed FO, TAPVR with obstruction, Ebstein’s anomaly with cardiomegaly, fetal heart failure- FHF | 1.0 |
| Critical CHDs | Obstetrician, neonatologist, pediatric cardiologist, echocardiographer, surgical team | Prenatal period; possible death shortly after birth unless treated immediately | Special delivery room, referral center (e.g., ICZMP Łódź, UMed Warsaw) | Immediate postnatal intervention or surgery | Threatens life shortly after birth without urgent care | HLHS with FO restriction, D-TGA with FO restriction, critical PS or AS, ectopia cordis | 0.8–0.9 |
| Severe CHDs | Obstetrician, neonatologist, pediatric cardiologist, planned diagnostics, NICU | Prenatal or early neonatal period; possible survival after intervention | Cardio-obstetric reference center (e.g., ICZMP Łódź, UMed Warsaw, Kraków-Prokocim, Gdańsk-GUM) | Planned early surgery, postnatal stabilization | Treatable with early planning; requires specialized center | D-TGA without FO restriction, HLHS without FO restriction, complex CHDs | 0.4–0.6 |
| Planned- Non-Urgent CHDs | Obstetrician, neonatologist, pediatric cardiologist (outpatient follow-up) | Prenatal and neonatal periods; good long-term prognosis with planned treatment | Any maternity hospital | Elective surgery during infancy | Stable CHDs manageable with long-term planning | VSD, AVSD, mild valve abnormalities | 0.1–0.2 |
| Non-urgent | Pediatrician/Neonatologist | Usually survives infancy | Any general pediatric center | Observation or delayed surgery | Mild form; rarely needs early intervention | TOF with mild narrowing | 0.05 |
| Cardiac Dysfunction Severity Class | Medical Staff for Newborn | Expected Life Span | Place of Birth | Treatment Urgency/Type | Rationale (For) | Example Cardiac Dysfunctions | Suggested Mortality Weight |
|---|---|---|---|---|---|---|---|
| Severe (Life-threatening dysfunctions) | Neonatologist, pediatric cardiologist, NICU team | Shortened without intervention; may lead to fetal or neonatal death | Tertiary care center with cardiology and intensive care | Immediate or early intervention postnatally; prenatal monitoring critical | Cardiac dysfunction may severely compromise circulation or heart function | Fetal heart failure, fetal circulatory failure, hypertrophic cardiomyopathy | 0.8–1.0 |
| Moderate (Requires monitoring and possible intervention) | Pediatric cardiologist, neonatologist | Normal if managed appropriately | Specialized center or hospital with cardiology consultation available | Postnatal cardiologic follow-up and intervention if indicated | May affect function or progress if left unmonitored | Valve regurgitations (mitral, tricuspid, pulmonary, aortic) in structurally normal hearts, increased pulmonary resistance | 0.3–0.6 |
| Mild or Functional (Benign or transient findings) | General pediatrician, cardiologist if needed | Normal; usually self-resolving or non-progressive | Any hospital with routine pediatric care | No intervention needed, monitor during routine care | Typically benign and not associated with structural heart disease | Echogenic focus (bright spot), chordae tendineae, extrasystoles, false-positive coarctation of aorta, foramen ovale anomalies | 0.0–0.2 |
| Extracardiac Dysfunction Severity Class | Medical Staff for Newborn | Expected Life Span | PLACE OF BIRTH | Treatment Urgency/Type | Rationale (For) | Example Extracardiac Dysfunctions | Suggested Mortality Weight |
|---|---|---|---|---|---|---|---|
| Severe (Life-threatening or major complications) | Neonatologist, multidisciplinary team (surgeon, geneticist, intensivist) | Shortened without intervention or associated with high morbidity | Tertiary perinatal center with surgical and NICU capabilities | Immediate intervention or intensive postnatal monitoring required | These conditions can severely compromise fetal well-being or signal systemic disease | Hydrops, ascites, pericardial/pleural effusion, meconium peritonitis, IUGR, severe Doppler flow reversal | 0.7–1.0 |
| Moderate (Requires monitoring and may need intervention) | Neonatologist, pediatric subspecialist as needed | Likely normal if monitored and treated properly | Hospital with neonatal support and access to pediatric care | Postnatal evaluation and planned treatment if necessary | May indicate underlying issues or cause complications if missed | Polyhydramnios, oligohydramnios, ventriculomegaly, pyelectasis, hepatomegaly, gallbladder enlargement, abnormal MCA flow | 0.3–0.6 |
| Mild or Transient (Benign or usually self-limited) | General pediatrician, outpatient follow-up if needed | Normal; often no intervention needed | Any standard maternity hospital | Observation or reassurance, outpatient follow-up if persistent | Typically minor findings that resolve or have limited clinical relevance | Chorionic plexus cysts (CPC), hiccups, nuchal cord, pseudoknot, femur shortening, single umbilical artery | 0.0–0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murlewska, J.; Sylwestrzak, O.; Strzelecka, I.; Sokołowski, Ł.; Kordjalik, P.; Słodki, M.; Respondek-Liberska, M. Placental Thickness Correlates with Severity-Weighted Fetal Dysfunction in the Third Trimester. J. Clin. Med. 2025, 14, 7461. https://doi.org/10.3390/jcm14217461
Murlewska J, Sylwestrzak O, Strzelecka I, Sokołowski Ł, Kordjalik P, Słodki M, Respondek-Liberska M. Placental Thickness Correlates with Severity-Weighted Fetal Dysfunction in the Third Trimester. Journal of Clinical Medicine. 2025; 14(21):7461. https://doi.org/10.3390/jcm14217461
Chicago/Turabian StyleMurlewska, Julia, Oskar Sylwestrzak, Iwona Strzelecka, Łukasz Sokołowski, Paulina Kordjalik, Maciej Słodki, and Maria Respondek-Liberska. 2025. "Placental Thickness Correlates with Severity-Weighted Fetal Dysfunction in the Third Trimester" Journal of Clinical Medicine 14, no. 21: 7461. https://doi.org/10.3390/jcm14217461
APA StyleMurlewska, J., Sylwestrzak, O., Strzelecka, I., Sokołowski, Ł., Kordjalik, P., Słodki, M., & Respondek-Liberska, M. (2025). Placental Thickness Correlates with Severity-Weighted Fetal Dysfunction in the Third Trimester. Journal of Clinical Medicine, 14(21), 7461. https://doi.org/10.3390/jcm14217461

