Non-Invasive Wearable Technology to Predict Heart Failure Decompensation
Abstract
1. Introduction
2. Physiological Changes Ahead of Readmission, and the Basis for Wearables
2.1. Accelerometry in Predicting Decompensation
2.1.1. Step Count
2.1.2. Beyond Step Count
2.1.3. Accelerometer-Derived Metrics in Clinical Trials
2.1.4. Challenges and Limitations of Accelerometry
3. Electromechanical Changes in Predicting Decompensation
3.1. Photoplethysmography (PPG)
Future Directions of PPG
3.2. Electrocardiogram (ECG)
3.3. Mechanocardiography (MCG)
3.4. Phonocardiogram (PCG)
4. Wearable Sensors for Monitoring Fluid Status
4.1. Transthoracic Bioimpedance
4.2. Remote Dielectric Sensing (ReDS)
5. Multi-Sensor Systems and Algorithmic Prediction
6. Challenges, Limitations, and Future Directions
6.1. Accuracy and Standardisation
6.2. Data Interpretation Methods
6.3. Patient Usability and Adherence
6.4. Data Management and Security/Integration
6.5. Device Readiness and Regulatory Considerations
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- James, S.L.; Abate, D.; Abate, K.H.; Abay, S.M.; Abbafati, C.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; Abdela, J.; Abdelalim, A.; et al. Global, Regional, and National Incidence, Prevalence, and Years Lived with Disability for 354 Diseases and Injuries for 195 Countries and Territories, 1990–2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1789–1858. [Google Scholar] [CrossRef]
- Savarese, G.; Becher, P.; Lund, L.; Seferovic, P.; Rosano, G.; Coats, A. Global Burden of Heart Failure: A Comprehensive and Updated Review of Epidemiology. Cardiovasc. Res. 2023, 118, 3272–3287. [Google Scholar] [CrossRef]
- Chaudhry, S.I.; Mattera, J.A.; Curtis, J.P.; Spertus, J.A.; Herrin, J.; Lin, Z.; Phillips, C.O.; Hodshon, B.V.; Cooper, L.S.; Krumholz, H.M. Telemonitoring in Patients with Heart Failure. N. Engl. J. Med. 2010, 363, 2301–2309. [Google Scholar] [CrossRef]
- Ong, M.K.; Romano, P.S.; Edgington, S.; Aronow, H.U.; Auerbach, A.D.; Black, J.T.; De Marco, T.; Escarce, J.J.; Evangelista, L.S.; Hanna, B.; et al. Effectiveness of Remote Patient Monitoring After Discharge of Hospitalized Patients with Heart Failure: The Better Effectiveness After Transition–Heart Failure (BEAT-HF) Randomized Clinical Trial. JAMA Intern. Med. 2016, 176, 310–318. [Google Scholar] [CrossRef]
- Polcz, M.; Huston, J.; Breed, M.; Case, M.; Leisy, P.; Schmeckpeper, J.; Vaughn, L.; Sobey, J.H.; Brophy, C.; Lindenfeld, J.; et al. Comparison of Clinical Symptoms and Bioimpedance to Pulmonary Capillary Wedge Pressure in Heart Failure. Am. Heart J. Plus Cardiol. Res. Pract. 2022, 15, 100133. [Google Scholar] [CrossRef] [PubMed]
- Klersy, C.; Silvestri, A.; Gabutti, G.; Regoli, F.; Auricchio, A. A Meta-Analysis of Remote Monitoring of Heart Failure Patients. J. Am. Coll. Cardiol. 2009, 54, 1683–1694. [Google Scholar] [CrossRef] [PubMed]
- Inglis, S.; Clark, R.; Dierckx, R.; Prieto-Merino, D.; Cleland, J. Structured Telephone Support or Non-Invasive Telemonitoring for Patients with Heart Failure. Cochrane Database Syst. Rev. 2015, 31, CD007228. [Google Scholar] [CrossRef] [PubMed]
- Scholte, N.T.B.; Gürgöze, M.T.; Aydin, D.; Theuns, D.A.M.J.; Manintveld, O.C.; Ronner, E.; Boersma, E.; de Boer, R.A.; van der Boon, R.M.A.; Brugts, J.J. Telemonitoring for Heart Failure: A Meta-Analysis. Eur. Heart J. 2023, 44, 2911–2926. [Google Scholar] [CrossRef]
- Koehler, F.; Winkler, S.; Schieber, M.; Sechtem, U.; Stangl, K.; Böhm, M.; Boll, H.; Kim, S.S.; Koehler, K.; Lücke, S.; et al. Telemedical Interventional Monitoring in Heart Failure (TIM-HF), a Randomized, Controlled Intervention Trial Investigating the Impact of Telemedicine on Mortality in Ambulatory Patients with Heart Failure: Study Design. Eur. J. Heart Fail. 2010, 12, 1354–1362. [Google Scholar] [CrossRef]
- Koehler, F.; Koehler, K.; Deckwart, O.; Prescher, S.; Wegscheider, K.; Winkler, S.; Vettorazzi, E.; Polze, A.; Stangl, K.; Hartmann, O.; et al. Telemedical Interventional Management in Heart Failure II (TIM-HF2), a Randomised, Controlled Trial Investigating the Impact of Telemedicine on Unplanned Cardiovascular Hospitalisations and Mortality in Heart Failure Patients: Study Design and Description of the Intervention. Eur. J. Heart Fail. 2018, 20, 1485–1493. [Google Scholar] [CrossRef]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef]
- Born, M.C.; de Oliveira Azzolin, K.; de Souza, E.N. How Long before Hospital Admission Do the Symptoms of Heart Failure Decompensation Arise? Rev. Lat. Am. Enfermagem 2020, 27, e3119. [Google Scholar] [CrossRef]
- Beauvais, F.; Tartière, L.; Pezel, T.; Motet, C.; Aumont, M.; Baudry, G.; Eicher, J.; Galinier, M.; Gellen, B.; Guihaire, J.; et al. First Symptoms and Health Care Pathways in Hospitalized Patients with Acute Heart Failure: ICPS2 Survey. A Report from the Heart Failure Working Group (GICC) of the French Society of Cardiology. Clin. Cardiol. 2021, 44, 1144–1150. [Google Scholar] [CrossRef] [PubMed]
- Ponikowski, P.; Anker, S.D.; AlHabib, K.F.; Cowie, M.R.; Force, T.L.; Hu, S.; Jaarsma, T.; Krum, H.; Rastogi, V.; Rohde, L.E.; et al. World Heart Failure Alliance Global Heart Failure Awareness Programme Heart Failure Preventing Disease and Death Worldwide. ESC Heart Fail. 2014, 1, 4–25. [Google Scholar] [CrossRef] [PubMed]
- Cannata, A.; Mizani, M.A.; Bromage, D.I.; Piper, S.E.; Hardman, S.M.; Sudlow, C.; de Belder, M.; Scott, P.A.; Deanfield, J.; Gardner, R.S.; et al. Heart Failure Specialist Care and Long-Term Outcomes for Patients Admitted with Acute Heart Failure. JACC Heart Fail. 2025, 13, 402–413. [Google Scholar] [CrossRef]
- Dharmarajan, K.; Hsieh, A.F.; Lin, Z.; Bueno, H.; Ross, J.S.; Horwitz, L.I.; Barreto-Filho, J.A.; Kim, N.; Bernheim, S.M.; Suter, L.G.; et al. Diagnoses and Timing of 30-Day Readmissions After Hospitalization for Heart Failure, Acute Myocardial Infarction, or Pneumonia. JAMA 2013, 309, 355. [Google Scholar] [CrossRef]
- Kociol, R.D.; Hammill, B.G.; Fonarow, G.C.; Klaskala, W.; Mills, R.M.; Hernandez, A.F.; Curtis, L.H. Generalizability and Longitudinal Outcomes of a National Heart Failure Clinical Registry: Comparison of Acute Decompensated Heart Failure National Registry (ADHERE) and Non-ADHERE Medicare Beneficiaries. Am. Heart J. 2010, 160, 885–892. [Google Scholar] [CrossRef]
- Izawa, K.P.; Watanabe, S.; Oka, K.; Hiraki, K.; Morio, Y.; Kasahara, Y.; Brubaker, P.H.; Osada, N.; Omiya, K.; Shimizu, H. Usefulness of Step Counts to Predict Mortality in Japanese Patients with Heart Failure. Am. J. Cardiol. 2013, 111, 1767–1771. [Google Scholar] [CrossRef]
- Young, L.; Hertzog, M.; Barnason, S. Feasibility of Using Accelerometer Measurements to Assess Habitual Physical Activity in Rural Heart Failure Patients. Geriatrics 2017, 2, 23. [Google Scholar] [CrossRef]
- Ajufo, E.; Kany, S.; Rämö, J.T.; Churchill, T.W.; Guseh, J.S.; Aragam, K.G.; Ellinor, P.T.; Khurshid, S. Accelerometer-Measured Sedentary Behavior and Risk of Future Cardiovascular Disease. J. Am. Coll. Cardiol. 2024, 85, 473–486. [Google Scholar] [CrossRef]
- Nelson, M.B.; Shiroma, E.J.; Kitzman, D.W.; Duncan, P.W.; Reeves, G.R.; Whellan, D.J.; Mentz, R.J.; Chen, H.; Pastva, A.M. Physical Activity and Relationship to Physical Function, Quality of Life, and Cognitive Function in Older Patients with Acute Decompensated Heart Failure. Am. Heart J. 2023, 256, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.; Isakadze, N.; Levantsevych, O.; Vest, A.; Clifford, G.; Nemati, S. Detecting Heart Failure Using Wearables: A Pilot Study. Physiol. Meas. 2020, 41, 044001. [Google Scholar] [CrossRef]
- Piccirillo, G.; Moscucci, F.; Bertani, G.; Lospinuso, I.; Mastropietri, F.; Fabietti, M.; Sabatino, T.; Zaccagnini, G.; Crapanzano, D.; Di Diego, I.; et al. Short-Period Temporal Dispersion Repolarization Markers Predict 30-Days Mortality in Decompensated Heart Failure. J. Clin. Med. 2020, 9, 1879. [Google Scholar] [CrossRef]
- Hasumi, E.; Fujiu, K.; Chen, Y.; Miyamoto, S.; Oida, M.; Shimizu, Y.; Kani, K.; Goto, K.; Uchida, R.; Liu, Y.; et al. Heart Failure Monitoring with a Single-lead Electrocardiogram at Home. Int. J. Cardiol. 2025, 432, 133203. [Google Scholar] [CrossRef]
- Koivisto, T.; Lahdenoja, O.; Hurnanen, T.; Koskinen, J.; Jafarian, K.; Vasankari, T.; Jaakkola, S.; Kiviniemi, T.O.; Airaksinen, K.E.J. Mechanocardiography-Based Measurement System Indicating Changes in Heart Failure Patients during Hospital Admission and Discharge. Sensors 2022, 22, 9781. [Google Scholar] [CrossRef]
- Peacock, W.; Harrison, A.; Moffa, D. Clinical and Economic Benefits of Using AUDICOR S 3 Detection for Diagnosis and Treatment of Acute Decompensated Heart Failure. Congest. Heart Fail. 2006, 12, 32–36. [Google Scholar] [CrossRef]
- Susič, D.; Gregor, P.; Gradišek, A. Identification of Decompensation Episodes in Chronic Heart Failure Patients Based Solely on Heart Sounds. Front. Cardiovasc. Med. 2022, 9, 1009821. [Google Scholar] [CrossRef] [PubMed]
- Gastelurrutia, P.; Cuba-Gyllensten, I.; Lupon, J.; Zamora, E.; Llibre, C.; Caballero, Á.; Riistama, J.; Aarts, R.; Bayes-Genis, A. Wearable Vest for Pulmonary Congestion Tracking and Prognosis in Heart Failure: A Pilot Study. Int. J. Cardiol. 2016, 1, 77–79. [Google Scholar] [CrossRef] [PubMed]
- Darling, C.E.; Dovancescu, S.; Saczynski, J.S.; Riistama, J.; Kuniyoshi, F.S.; Rock, J.; Meyer, T.E.; McManus, D.D. Bioimpedance-Based Heart Failure Deterioration Prediction Using a Prototype Fluid Accumulation Vest-Mobile Phone Dyad: An Observational Study. JMIR Cardio 2017, 1, e6057. [Google Scholar] [CrossRef]
- Amir, O.; Azzam, Z.S.; Gaspar, T.; Faranesh-Abboud, S.; Andria, N.; Burkhoff, D.; Abbo, A.; Abraham, W.T. VValidation of Remote Dielectric Sensing (ReDSTM) Technology for Quantification of Lung Fluid Status: Comparison to High Resolution Chest Computed Tomography in Patients with and without Acute Heart Failure. Int. J. Cardiol. 2016, 221, 841–846. [Google Scholar] [CrossRef]
- Uriel, N.; Sayer, G.; Imamura, T.; Rodgers, D.; Kim, G.; Raikhelkar, J.; Sarswat, N.; Kalantari, S.; Chung, B.; Nguyen, A.; et al. Relationship Between Noninvasive Assessment of Lung Fluid Volume and Invasively Measured Cardiac Hemodynamics. J. Am. Heart Assoc. 2018, 7, e009175. [Google Scholar] [CrossRef]
- Lala, A.; Barghash, M.H.; Giustino, G.; Alvarez-Garcia, J.; Konje, S.; Parikh, A.; Ullman, J.; Keith, B.; Donehey, J.; Mitter, S.S.; et al. Early Use of Remote Dielectric Sensing after Hospitalization to Reduce Heart Failure Readmissions. ESC Heart Fail. 2020, 8, 1047–1054. [Google Scholar] [CrossRef] [PubMed]
- Amir, O.; Ben-Gal, T.; Weinstein, J.M.; Schliamser, J.; Burkhoff, D.; Abbo, A.; Abraham, W.T. Evaluation of Remote Dielectric Sensing (ReDS) Technology-Guided Therapy for Decreasing Heart Failure Re-Hospitalizations. Int. J. Cardiol. 2017, 240, 279–284. [Google Scholar] [CrossRef] [PubMed]
- King, K.; Goldstein, S. Congestive Heart Failure and Pulmonary Edema. Available online: https://www.ncbi.nlm.nih.gov/books/NBK554557/ (accessed on 1 September 2025).
- Hughes, A.M.; Annis, J.; Master, H.; Perry, A.S.; Stevenson, L.W.; Shah, R.; Brittain, E.L. Physical Activity Trajectories Preceding Incident Heart Failure. JACC Heart Fail. 2023, 12, 232–234. [Google Scholar] [CrossRef] [PubMed]
- Omar, M.; Jensen, J.; Frederiksen, P.H.; Videbæk, L.; Poulsen, M.K.; Brønd, J.C.; Gustafsson, F.; Borlaug, B.A.; Schou, M.; Møller, J.E. Hemodynamic Determinants of Activity Measured by Accelerometer in Patients with Stable Heart Failure. ACC Heart Fail. 2021, 9, 824–835. [Google Scholar] [CrossRef]
- Jeon, S.; Conley, S.; Hollenbeak, C.; O'COnnell, M.; Wang, Z.; Tocchi, C.; Redeker, N.S. Rest-Activity Rhythms Predict Time to Hospitalizations and Emergency Department Visits among Participants in a Randomized Control of Adults with Heart Failure and Insomnia. Sleep Med. 2023, 108, 1–7. [Google Scholar] [CrossRef]
- Melin, M.; Hagerman, I.; Gonon, A.; Gustafsson, T.; Rullman, E. Variability in Physical Activity Assessed with Accelerometer Is an Independent Predictor of Mortality in CHF Patients. PLoS ONE 2016, 11, e0153036. [Google Scholar] [CrossRef] [PubMed]
- Le, F.; Dumuid, D.; Stanford, T.; Wiley, J. Bayesian Multilevel Compositional Data Analysis with the R Package Multilevelcoda. arXiv 2024, arXiv:2411.12407. [Google Scholar] [CrossRef]
- Gertheiss, J.; Rügamer, D.; Liew, B.X.W.; Greven, S. Functional Data Analysis: An Introduction and Recent Developments. Biom. J. 2024, 66, e202300363. [Google Scholar] [CrossRef]
- Braun, T.; Wiegard, A.; Geritz, J.; Hansen, C.; Tan, K.E.; Hildesheim, H.; Kudelka, J.; Maetzler, C.; Welzel, J.; Romijnders, R.; et al. Association between Heart Failure Severity and Mobility in Geriatric Patients: An in-Clinic Study with Wearable Sensors. PubMed 2022, 19, 660–674. [Google Scholar] [CrossRef]
- Docherty, K.F.; Lopez, R.B.; Folkvaljon, F.; de Boer, R.A.; Cowie, M.R.; Hammarstedt, A.; Kitzman, D.W.; Kosiborod, M.N.; Langkilde, A.M.; Reicher, B.; et al. The Effect of Dapagliflozin on Accelerometer-Based Measures of Physical Activity in Patients with Heart Failure: An Analysis of the DETERMINE Trials. Circ. Heart Fail. 2024, 17, e012349. [Google Scholar] [CrossRef]
- Snipelisky, D.; Kelly, J.; Levine, J.A.; Koepp, G.A.; Anstrom, K.J.; McNulty, S.E.; Zakeri, R.; Felker, G.M.; Hernandez, A.F.; Braunwald, E.; et al. Accelerometer-Measured Daily Activity in Heart Failure with Preserved Ejection Fraction. Circ. Heart Fail. 2017, 10, e003878. [Google Scholar] [CrossRef]
- Butler, J.; Khan, M.S.; Gasior, T.; Erickson, T.R.; Vlajnic, V.; Kramer, F.; Blaustein, R.O.; Goldsbury, D.; Roessig, L.; Lam, C.S.; et al. Accelerometer vs. Other Activity Measures in Heart Failure with Preserved Ejection Fraction: The VITALITY-HFpEF Trial. ESC Heart Fail. 2024, 11, 293–298. [Google Scholar] [CrossRef]
- Vetrovsky, T.; Siranec, M.; Frybova, T.; Gant, I.; Svobodova, I.; Linhart, A.; Parenica, J.; Miklikova, M.; Sujakova, L.; Pospisil, D.; et al. Lifestyle Walking Intervention for Patients with Heart Failure with Reduced Ejection Fraction: The WATCHFUL Trial. Circulation 2024, 149, 177–188. [Google Scholar] [CrossRef] [PubMed]
- Fokkema, T.; Kooiman, T.; Krijen, W.; Van Der Schans, C.; De Groot, M. Reliability and Validity of Ten Consumer Activity Trackers Depend on Walking Speed. Med. Sci. Sports Exerc. 2017, 49, 793–800. [Google Scholar] [CrossRef] [PubMed]
- Koffman, L.; Muschelli, J. Evaluating Step Counting Algorithms on Subsecond Wrist-Worn Accelerometry: A Comparison Using Publicly Available Data Sets. J. Meas. Phys. Behav. 2024, 1, 1. [Google Scholar] [CrossRef]
- Kirk, C.; Küderle, A.; Micó-Amigo, M.E.; Bonci, T.; Paraschiv-Ionescu, A.; Ullrich, M.; Soltani, A.; Gazit, E.; Salis, F.; Alcock, L.; et al. Mobilise-D Insights to Estimate Real-World Walking Speed in Multiple Conditions with a Wearable Device. Sci. Rep. 2024, 14, 1754. [Google Scholar] [CrossRef]
- Kim, J.; Kenyon, J.; Billingsley, H.; Bohmke, N.; Ahmed, S.I.; Salmons, H.; Lee, J.-M.; Kirkman, D.; Carbone, S.; Kim, Y. Validity of the Actigraph-GT9X Accelerometer for Measuring Steps and Energy Expenditures in Heart Failure Patients. PLoS ONE 2024, 19, e0315575. [Google Scholar] [CrossRef] [PubMed]
- Arvidsson, D.; Fridolfsson, J.; Börjesson, M. Measurement of Physical Activity in Clinical Practice Using Accelerometers. J. Intern. Med. 2019, 286, 137–153. [Google Scholar] [CrossRef]
- Rosenberger, M.; Haskell, W.; Albinali, F.; Mota, S.; Nawyn, J.; Intille, S. Estimating Activity and Sedentary Behavior from an Accelerometer on the Hip or Wrist. Med. Sci. Sports Exerc. 2013, 45, 964–975. [Google Scholar] [CrossRef]
- Baig, M.; Moafi-Madani, M.; Qureshi, R.; Roberts, M.B.; Allison, M.; Manson, J.E.; LaMonte, M.J.; Liu, S.; Eaton, C.B. Heart Rate Variability and the Risk of Heart Failure and Its Subtypes in Post-Menopausal Women: The Women’s Health Initiative Study. PLoS ONE 2022, 17, e0276585. [Google Scholar] [CrossRef]
- Jus, K.; Rupert, L.; Djordjevic, A.; Miha, A.; Viktor, A.; Borut, J. Altered Heart Rate Turbulence and Variability Parameters Predict 1-Year Mortality in Heart Failure with Preserved Ejection Fraction. J. Cardiovasc. Dev. Dis. 2022, 9, 213. [Google Scholar] [CrossRef]
- Murad, K.; Brubaker, P.H.; Fitzgerald, D.M.; Morgan, T.M.; Goff, D.C.; Soliman, E.Z.; Eggebeen, J.D.; Kitzman, D.W. Exercise Training Improves Heart Rate Variability in Older Patients with Heart Failure: A Randomized, Controlled, Single-Blinded Trial. Congest. Heart Fail. 2012, 18, 192–197. [Google Scholar] [CrossRef]
- Castaneda, D.; Esparza, A.; Ghamari, M.; Soltanpur, C.; Nazeran, H. A Review on Wearable Photoplethysmography Sensors and Their Potential Future Applications in Health Care. Int. J. Biosens. Bioelectron. 2018, 4, 195. [Google Scholar] [CrossRef]
- Rozi, R.M.; Usman, S.; Ali, M.M.; Reaz, M.B.I. Second Derivatives of Photoplethysmography (PPG) for Estimating Vascular Aging of Atherosclerotic Patients. In Proceedings of the 2012 IEEE-EMBS Conference on Biomedical Engineering and Sciences, Langkawi, Malaysia, 17–19 December 2012. [Google Scholar] [CrossRef]
- Chon, K.; Dash, S.; Kihwan, J. Estimation of Respiratory Rate from Photoplethysmogram Data Using Time–Frequency Spectral Estimation. IEEE Trans. Biomed. Eng. 2009, 56, 2054–2063. [Google Scholar] [CrossRef]
- Kim, K.; Baek, H. Photoplethysmography in Wearable Devices: A Comprehensive Review of Technological Advances, Current Challenges, and Future Directions. Electronics 2023, 12, 2923. [Google Scholar] [CrossRef]
- Lai, P.; Kim, I. Lightweight Wrist Photoplethysmography for Heavy Exercise: Motion Robust Heart Rate Monitoring Algorithm. Healthc. Technol. Lett. 2015, 2, 6–11. [Google Scholar] [CrossRef] [PubMed]
- Rehman, R.Z.U.; Chatterjee, M.; Manyakov, N.V.; Daans, M.; Jackson, A.; O’brisky, A.; Telesky, T.; Smets, S.; Berghmans, P.-J.; Yang, D.; et al. Assessment of Physiological Signals from Photoplethysmography Sensors Compared to an Electrocardiogram Sensor: A Validation Study in Daily Life. Sensors 2024, 24, 6826. [Google Scholar] [CrossRef] [PubMed]
- Kurylyak, Y.; Lamonaca, F.; Grimaldi, D. A Neural Network-Based Method for Continuous Blood Pressure Estimation from a PPG Signal. In Proceedings of the 2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Minneapolis, MN, USA, 6–9 May 2013. [Google Scholar] [CrossRef]
- van Es, V.A.A.; van Leunen, M.M.C.J.; de Lathauwer, I.L.J.; Verstappen, C.C.A.G.; Tio, R.A.; Spee, R.F.; Yuan, L.; Betta, M.; Handjaras, G.; Kemps, H.M.C. Predicting Acute Decompensated Heart Failure Using Circadian Markers from Heart Rate Time Series. ESC Heart Fail. 2025. [Google Scholar] [CrossRef] [PubMed]
- Nikolaidou, T.; Samuel, N.; Marincowitz, C.; Fox, D.; Cleland, J.; Clark, A. Electrocardiographic Characteristics in Patients with Heart Failure and Normal Ejection Fraction: A Systematic Review and Meta-analysis. Ann. Noninvasive Electrocardiol. 2019, 25, e12710. [Google Scholar] [CrossRef] [PubMed]
- Kataoka, H.; Madias, J. Changes in the Amplitude of Electrocardiogram QRS Complexes during Follow-up of Heart Failure Patients. J. Electrocardiol. 2011, 4, 394. [Google Scholar] [CrossRef]
- Gouda, P.; Brown, P.; Rowe, B.; McAlister, F.; Ezekowitz, J. Insights into the Importance of the Electrocardiogram in Patients with Acute Heart Failure. Eur. J. Heart Fail. 2016, 18, 1032–1040. [Google Scholar] [CrossRef]
- Salerno-Uriarte, J.; De Ferrari, G.; Klersy, C.; Pedretti, R.; Tritto, M.; Sallusti, L. Prognostic Value of T-Wave Alternans in Patients with Heart Failure Due to Nonischemic Cardiomyopathy: Results of the ALPHA Study. J. Am. Coll. Cardiol. 2007, 50, 1896–1904. [Google Scholar] [CrossRef] [PubMed]
- Garcia, R.; Warming, P.E.; Narayanan, K.; Defaye, P.; Guedon-Moreau, L.; Blangy, H.; Piot, O.; Leclercq, C.; Marijon, E.; Moreau, L.G. Dynamic Changes in Nocturnal Heart Rate Predict Short-Term Cardiovascular Events in Patients Using the Wearable Cardioverter-Defibrillator: From the WEARIT-France Cohort Study. EP Eur. 2023, 25, euad062. [Google Scholar] [CrossRef] [PubMed]
- Lazaro, J.; Reljin, N.; Hossain, M.; Noh, Y.; Laguna, P.; Chon, K. Wearable Armband Device for Daily Life Electrocardiogram Monitoring. IEEE Trans. Biomed. Eng. 2020, 67, 3464–3473. [Google Scholar] [CrossRef] [PubMed]
- Fuller, D.; Colwell, E.; Low, J.; Orychock, K.; Tobin, M.A.; Simango, B.; Buote, R.; Van Heerden, D.; Luan, H.; Cullen, K.; et al. Reliability and Validity of Commercially Available Wearable Devices for Measuring Steps, Energy Expenditure, and Heart Rate: Systematic Review. JMIR MHealth UHealth 2020, 8, e18694. [Google Scholar] [CrossRef]
- Pan, X.; Wang, C.; Yu, Y.; Reljin, N.; McManus, D.D.; Darling, C.E.; Chon, K.H.; Mendelson, Y.; Lee, K. Deep Cross-Modal Feature Learning Applied to Predict Acutely Decompensated Heart Failure Using in-Home Collected Electrocardiography and Transthoracic Bioimpedance. Artif. Intell. Med. 2023, 140, 102548. [Google Scholar] [CrossRef]
- Zanetti, J.; Tavakolian, K. Seismocardiography: Past, Present and Future. In Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013. [Google Scholar] [CrossRef]
- Inan, O.T.; Pouyan, M.B.; Javaid, A.Q.; Dowling, S.; Etemadi, M.; Dorier, A.; Heller, J.A.; Bicen, A.O.; Roy, S.; De Marco, T.; et al. Novel Wearable Seismocardiography and Machine Learning Algorithms Can Assess Clinical Status of Heart Failure Patients. Circ. Heart Fail. 2018, 11, e004313. [Google Scholar] [CrossRef]
- Shandhi, M.; Fan, J.; Alex, H.J.; Etemadi, M.; Klein, L.; Inan, O. Estimation of Changes in Intracardiac Hemodynamics Using Wearable Seismocardiography and Machine Learning in Patients with Heart Failure: A Feasibility Study. IEEE Trans. Biomed. Eng. 2022, 69, 2443–2455. [Google Scholar] [CrossRef]
- Wen, Y.; Lee, A.; Fang, F.; Jin, C.; Yu, C. Beyond Auscultation: Acoustic Cardiography in Clinical Practice. Int. J. Cardiol. 2014, 172, 548–560. [Google Scholar] [CrossRef]
- Silverman, M. The Third Heart Sound; Butterworths: Carlisle, UK, 2015; Volume 3. [Google Scholar]
- Collins, S.P.; Peacock, W.F.; Lindsell, C.J.; Clopton, P.; Diercks, D.B.; Hiestand, B.; Hogan, C.; Kontos, M.C.; Mueller, C.; Nowak, R.; et al. S3 Detection as a Diagnostic and Prognostic Aid in Emergency Department Patients with Acute Dyspnea. Ann. Emerg. Med. 2009, 53, 748–757. [Google Scholar] [CrossRef]
- Lazović, A.; Atanasoski, V.; Tadić, P.; Djordjević, N.; Tiosavljević, M.; Ivanović, M.D.; Hadžievski, L.; Ristić, A.; Vukčević, V.; Petrović, J. Synchronous Post-Exercise Electrocardiogram, Phonocardiogram, Photoplethysmograms and Seismocardiogram. Sci. Data 2025, 12, 1452. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, S.; Ishii, M.; Saito, S.; Seki, H.; Ikeda, K.; Yasui, Y.; Komatsu, T.; Sato, G.; Tabata, N.; Ohishi, M.; et al. Deep Learning for Cardiac Overload Estimation—Predicting B-Type Natriuretic Peptide (BNP) Levels from Heart Sounds and Electrocardiogram. Circ. J. Off. J. Jpn. Circ. Soc. 2025, 10, CJ-25. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Pressman, G.S.; Kieu, S.N.; Marrus, S.B.; Mathew, G.; Prince, J.; Lastowski, E.; McDonough, R.V.; Currie, C.; Maidens, J.N.; et al. Automated Detection of Reduced Ejection Fraction Using an ECG-Enabled Digital Stethoscope. JACC Adv. 2025, 4, 101619. [Google Scholar] [CrossRef]
- Miller, W. Fluid Volume Overload and Congestion in Heart Failure: Time to Reconsider Pathophysiology and How Volume Is Assessed. Circ. Heart Fail. 2016, 9, e002922. [Google Scholar] [CrossRef]
- Chaudhry, S.; Wang, Y.; Concato, J.; Gill, T.; Krumholz, H. Patterns of Weight Change Preceding Hospitalization for Heart Failure. Circulation 2007, 116, 1549–1554. [Google Scholar] [CrossRef]
- Cotter, G.; Felker, G.; Adams, K.; Milo-Cotter, O.; O’Connor, C. The Pathophysiology of Acute Heart Failure—Is It All about Fluid Accumulation? Am. Heart J. 2008, 155, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Cotter, G.; Metra, M.; Milo-Cotter, O.; Dittrich, H.; Gheorghiade, M. Fluid Overload in Acute Heart Failure—Re-Distribution and Other Mechanisms beyond Fluid Accumulation. Eur. J. Heart Fail. 2008, 10, 165–169. [Google Scholar] [CrossRef] [PubMed]
- Nair, R.; Lamaa, N. Pulmonary Capillary Wedge Pressure. Available online: https://www.ncbi.nlm.nih.gov/books/NBK557748/ (accessed on 1 September 2025).
- van Veldhuisen, D.J.; Braunschweig, F.; Conraads, V.; Ford, I.; Cowie, M.R.; Jondeau, G.; Kautzner, J.; Aguilera, R.M.; Lunati, M.; Yu, C.M.; et al. Intrathoracic Impedance Monitoring, Audible Patient Alerts, and Outcome in Patients with Heart Failure. Circulation 2011, 124, 1719–1726. [Google Scholar] [CrossRef]
- Cuba Gyllensten, I.; Bonomi, A.G.; Goode, K.M.; Reiter, H.; Habetha, J.; Amft, O.; Cleland, J.G. Early Indication of Decompensated Heart Failure in Patients on Home-Telemonitoring: A Comparison of Prediction Algorithms Based on Daily Weight and Noninvasive Transthoracic Bio-Impedance. JMIR Med. Inform. 2016, 4, e3. [Google Scholar] [CrossRef]
- Cuba-Gyllensten, I.; Gastelurrutia, P.; Riistama, J.; Aarts, R.; Nuñez, J.; Lupon, J.; Bayes-Genis, A. A Novel Wearable Vest for Tracking Pulmonary Congestion in Acutely Decompensated Heart Failure. Int. J. Cardiol. 2014, 177, 199–201. [Google Scholar] [CrossRef]
- Smeets, C.J.P.; Lee, S.; Groenendaal, W.; Squillace, G.; Vranken, J.; De Cannière, H.; Van Hoof, C.; Grieten, L.; Mullens, W.; Nijst, P.; et al. The Added Value of In-Hospital Tracking of the Efficacy of Decongestion Therapy and Prognostic Value of a Wearable Thoracic Impedance Sensor in Acutely Decompensated Heart Failure with Volume Overload: Prospective Cohort Study. JMIR Cardio 2020, 4, e12141. [Google Scholar] [CrossRef] [PubMed]
- Imamura, T.; Narang, N.; Kinugawa, K. Clinical Implications of Remote Dielectric Sensing System to Estimate Lung Fluid Levels. J. Cardiol. 2022, 81, 276–282. [Google Scholar] [CrossRef]
- Bensimhon, D.; Alali, S.A.; Curran, L.; Gelbart, E.; Garman, D.W.V.; Taylor, R.; Chase, P.; Peacock, W. The Use of the Reds Noninvasive Lung Fluid Monitoring System to Assess Readiness for Discharge in Patients Hospitalized with Acute Heart Failure: A Pilot Study. Heart Lung 2021, 50, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Garcia, J.; Lala, A.; Rivas-Lasarte, M.; De Rueda, C.; Brunjes, D.; Lozano-Jimenez, S.; Garcia-Sebastian, C.; Mitter, S.; Remior, P.; Bravo, M.J.-B.; et al. Remote Dielectric Sensing Before and After Discharge in Patients with ADHF. JACC Heart Fail. 2024, 12, 695–706. [Google Scholar] [CrossRef] [PubMed]
- Sattar, Y.; Zghouzi, M.; Suleiman, A.-R.M.; Sheikh, A.; Kupferman, J.; Sarfraz, A.; Arshad, J.; Mir, T.; Ullah, W.; Pacha, H.M.; et al. Efficacy of Remote Dielectric Sensing (ReDS) in the Prevention of Heart Failure Rehospitalizations: A Meta-Analysis. J. Community Hosp. Intern. Med. Perspect. 2021, 11, 646–652. [Google Scholar] [CrossRef]
- Imamura, T.; Hori, M.; Koi, T.; Fukui, T.; Oshima, A.; Fujioka, H.; Ueno, Y.; Onoda, H.; Tanaka, S.; Fukuda, N.; et al. Relationship Between Body Posture and Lung Fluid Volume Assessed Using a Novel Noninvasive Remote Dielectric Sensing System. Circulation 2021, 4, 25–28. [Google Scholar] [CrossRef]
- Ueno, Y.; Imamura, T.; Narang, N.; Kinugawa, K. Chronotype of Lung Fluid Levels in Patients with Chronic Heart Failure. J. Clin. Med. 2022, 11, 2714. [Google Scholar] [CrossRef]
- Anand, I.; Tang, W.; Greenberg, B.; Chakravarthy, N.; Libbus, I.; Katra, R. Design and Performance of a Multisensor Heart Failure Monitoring Algorithm: Results from the Multisensor Monitoring in Congestive Heart Failure (MUSIC) Study. J. Card. Fail. 2012, 18, 289–295. [Google Scholar] [CrossRef]
- Stehlik, J.; Schmalfuss, C.; Bozkurt, B.; Nativi-Nicolau, J.; Wohlfahrt, P.; Wegerich, S.; Rose, K.; Ray, R.; Schofield, R.; Deswal, A.; et al. Continuous Wearable Monitoring Analytics Predict Heart Failure Hospitalization: The LINK-HF Multicenter Study. Circ. Heart Fail. 2020, 13, e006513. [Google Scholar] [CrossRef]
- Erath, J.; Wanczura, P.; Linke, A.; Rohrer, U.; Scherr, D. Influence of Decompensated Heart Failure on Cardiac Acoustic Biomarkers: Impact on Early Readmissions. ESC Heart Fail. 2020, 7, 4198–4205. [Google Scholar] [CrossRef]
- Boehmer, J.P.; Cremer, S.; Abo-Auda, W.S.; Stokes, D.R.; Hadi, A.; McCann, P.J.; Burch, A.E.; Bonderman, D. IImpact of a Novel Wearable Sensor on Heart Failure Rehospitalization. JACC Heart Fail. 2024, 12, 2011–2022. [Google Scholar] [CrossRef]
- Boehmer, J.P.; Hariharan, R.; Devecchi, F.G.; Smith, A.L.; Molon, G.; Capucci, A.; An, Q.; Averina, V.; Stolen, C.M.; Thakur, P.H.; et al. A Multisensor Algorithm Predicts Heart Failure Events in Patients with Implanted Devices. JACC Heart Fail. 2017, 5, 216–225. [Google Scholar] [CrossRef]
- Kachuee, M.; Kiani, M.; Mohammadzade, H.; Shabany, M. Cuffless Blood Pressure Estimation Algorithms for Continuous Health-Care Monitoring. IEEE Trans. Biomed. Eng. 2017, 64, 859–869. [Google Scholar] [CrossRef]
- Iqbal, S.; Mahgoub, I.; Du, E.; Leavitt, M.; Asghar, W. Development of a Wearable Belt with Integrated Sensors for Measuring Multiple Physiological Parameters Related to Heart Failure. Sci. Rep. 2022, 12, 20264. [Google Scholar] [CrossRef]
- Sanchez-Perez, J.A.; Berkebile, J.A.; Nevius, B.N.; Ozmen, G.C.; Nichols, C.J.; Ganti, V.G.; Mabrouk, S.A.; Clifford, G.D.; Kamaleswaran, R.; Wright, D.W.; et al. A Wearable Multimodal Sensing System for Tracking Changes in Pulmonary Fluid Status, Lung Sounds, and Respiratory Markers. Sensors 2022, 22, 1130. [Google Scholar] [CrossRef]
- Figo, D.; Diniz, P.; Ferreira, D.; Cardoso, J. Preprocessing Techniques for Context Recognition from Accelerometer Data. Pers. Ubiquitous Comput. 2010, 14, 645–662. [Google Scholar] [CrossRef]
- Koehler, F.; Winkler, S.; Schieber, M.; Sechtem, U.; Stangl, K.; Böhm, M.; Boll, H.; Baumann, G.; Honold, M.; Koehler, K.; et al. Impact of Remote Telemedical Management on Mortality and Hospitalizations in Ambulatory Patients with Chronic Heart Failure. Circulation 2011, 123, 1873–1880. [Google Scholar] [CrossRef] [PubMed]
- Koehler, F.; Koehler, K.; Deckwart, O.; Prescher, S.; Wegscheider, K.; Kirwan, B.-A.; Winkler, S.; Vettorazzi, E.; Bruch, L.; Oeff, M.; et al. Efficacy of Telemedical Interventional Management in Patients with Heart Failure (TIM-HF2): A Randomised, Controlled, Parallel-Group, Unmasked Trial. Lancet 2018, 392, 1047–1057. [Google Scholar] [CrossRef] [PubMed]
- Keogh, A.; Brennan, C.; Johnston, W.; Dickson, J.; Leslie, S.J.; Burke, D.; Megyesi, P.; Caulfield, B. Six-Month Pilot Testing of a Digital Health Tool to Support Effective Self-Care in People with Heart Failure: A Mixed Methods Study. JMIR Form. Res. 2024, 8, e52442. [Google Scholar] [CrossRef] [PubMed]
- Serrano, L.P.; Maita, K.C.; Avila, F.R.; Torres-Guzman, R.A.; Garcia, J.P.; Eldaly, A.S.; Haider, C.R.; Felton, C.L.; Paulson, M.R.; Maniaci, M.J.; et al. Benefits and Challenges of Remote Patient Monitoring as Perceived by Health Care Practitioners: A Systematic Review. Perm. J. 2023, 27, 100. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.; Mishra, K.; Agarwal, U. Security and Privacy Issues of Remote Patient Monitoring System. Int. J. Res. Publ. Rev. 2024, 5, 2528–2531. [Google Scholar]
- Engler, R.; Routh, T.; Lucisano, J. Adoption Barriers for Continuous Glucose Monitoring and Their Potential Reduction with a Fully Implanted System: Results from Patient Preference Surveys. Clinical Diabetes. Am. Diabetes Assoc. 2018, 36, 50–58. [Google Scholar] [CrossRef]
- Zhang, Y.; Peña, M.; Fletcher, L.; Lal, L.; Swint, J.M.; Reneker, J. Economic Evaluation and Costs of Remote Patient Monitoring for Cardiovascular Disease in the United States: A Systematic Review. Int. J. Technol. Assess. Health Care 2023, 39, e25. [Google Scholar] [CrossRef] [PubMed]
- Scholte, N.T.B.; van Ravensberg, A.E.; Shakoor, A.; Boersma, E.; Ronner, E.; de Boer, R.A.; Brugts, J.J.; Bruining, N.; van der Boon, R.M.A. A Scoping Review on Advancements in Noninvasive Wearable Technology for Heart Failure Management. npj Digit. Med. 2024, 7, 279. [Google Scholar] [CrossRef] [PubMed]
Physiological Parameter | Wearable Modality | Physiological Rationale |
---|---|---|
Physical activity and exercise tolerance | Accelerometer, actigraphy, IMU | Reduced activity, increased sedentary time, disrupted circadian rhythm often precede HF decompensation |
Heart rate/HRV | PPG, ECG | Circadian rhythm disruption, reduced HRV and rising resting HR indicate autonomic imbalance and impending deterioration |
Cardiac electrical activity | ECG (patches, watches, vests) | Abnormal QRS, PR intervals, arrhythmia burden, and reduced QRS amplitude correlate with worsening HF |
Cardiac mechanics | Mechanocardiography (MCG), phonocardiography (PCG) | Altered vibrations (S3, reduced stability of S1), reduced reserve detectable via seismocardiography |
Pulmonary congestion | Thoracic bioimpedance, remote dielectric sensing | Falling impedance or rising dielectric coefficient reflects lung fluid accumulation |
Modality | Patient Cohort | Key Findings | Limitations |
---|---|---|---|
Accelerometry (step count) | Patients with HF in Japan [18]; rural US cohort [19] | Decreased step counts can predict HF diagnosis and cardiac mortality; feasibility established but adherence variable | Adherence issues, device variability |
Accelerometry (sedentary time, activity intensity) | UK Biobank (89,000) [20]; post-discharge HF [21] | >10.6 h sedentary time ↑ HF risk; decompensated HF patients spent only 9% awake time non-sedentary | Non-specific (affected by comorbidities) |
Photoplethysmography (PPG) | Patients with HF vs. non-HF [22] | HRV and pulse interval analysis feasible; pilot AUC = 0.85–0.92 for distinguishing HF vs. controls | Motion artefact, daytime data gaps |
ECG (single lead, mobile) | Acute HF [23]; wrist-worn and vest wearable studies [24] | ECG features predicted NT-proBNP and 30-day mortality; CNN model 91.6% accurate for NYHA classification | Limited validation; device variability |
Mechanocardiography (MCG) | Acute HF (admission vs. discharge) [25] | Root-mean-square SCG/GCG signal strength tracked congestion and haemodynamic | Limited to research; not continuous yet |
Phonocardiogram (PCG) | ED patients with dyspnoea [26]; chronic HF [27] | S3 detection specificity 94% for acute HF; ML models have 72% accuracy for decompensated vs. stable HF | Motion artefacts, low sensitivity of S3 |
Thoracic bioimpedance | Patients recently discharged with HF [28,29] | Persistently low impedance predicted readmission | High false positives when used alone |
Remote dielectric sensing (ReDS) | Acute HF and follow-up cohorts [30,31,32,33] | ReDS-guided therapy reduced readmissions in some trials; strong correlation with PCWP and CT | Posture-dependent, cost, clinic-based in most studies |
Trial | Sensors Integrated | Predictive Performance | Median Lead Time | Strengths | Weaknesses |
---|---|---|---|---|---|
MUSIC study [95] | Bioimpedance + ECG + accelerometry | Sensitivity 63%, specificity 92% | Not specified | Reduced false positives vs. single sensor | Limited by dataset size |
LINK-HF vital patch [96] | ECG + bioimpedance + accelerometry + posture + temperature | Sensitivity 76–88%, specificity 85% | 6.5 days before admission | Continuous monitoring; personalised ML | Battery life |
ZOLL LifeVest [97] | ECG + accelerometry + acoustic biomarkers (S3, S4, EMAT) | Sensitivity 69%, specificity 60%, NPV 94% | 32 days | Comfortable, commercial device | High false positives |
BMAD trial—HFMS [98] | Radiofrequency thoracic fluid + ECG + accelerometry | 38% reduction in 90-day readmission | Days–weeks | RCT evidence, improved QoL | Expensive, new tech |
Domain | Key Challenges | Future Directions |
---|---|---|
Accuracy and standardisation | Variability between devices, lack of consensus thresholds, motion artefacts (e.g., PPG) | Standardisation protocols, larger RCT validation, AI-driven calibration |
Data interpretation methods | High false positives, complex raw data, clinician burden | Multi-parameter ML, personalised baselines, adaptive alerts |
Patient usability and adherence | Poor compliance with vests/waist-worn devices, skin irritation, charging requirements | Smaller devices, wrist-based systems, improved battery life, dry electrodes |
Data management and security/integration | High data volume, clinician workload, EHR interoperability issues | Streamlined dashboards, automated triage, secure cloud storage |
Equity and access | High cost, limited reimbursement, digital literacy barriers | Subsidies, payer engagement, simplified interfaces |
Device readiness and regulatory considerations | Few FDA/MDR-approved devices specifically for HF monitoring | Larger RCTs, MDRL/FDA pathways tailored to wearables |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Devin, J.; Powell, E.; McGagh, D.; Jones, T.; Wang, B.; Le Page, P.; Lewis, A.J.M.; Rider, O.J.; Mitchell, A.R.J.; Henry, J.A. Non-Invasive Wearable Technology to Predict Heart Failure Decompensation. J. Clin. Med. 2025, 14, 7423. https://doi.org/10.3390/jcm14207423
Devin J, Powell E, McGagh D, Jones T, Wang B, Le Page P, Lewis AJM, Rider OJ, Mitchell ARJ, Henry JA. Non-Invasive Wearable Technology to Predict Heart Failure Decompensation. Journal of Clinical Medicine. 2025; 14(20):7423. https://doi.org/10.3390/jcm14207423
Chicago/Turabian StyleDevin, Jack, Eden Powell, Dylan McGagh, Tyler Jones, Brian Wang, Pierre Le Page, Andrew J. M. Lewis, Oliver J. Rider, Andrew R. J. Mitchell, and John A. Henry. 2025. "Non-Invasive Wearable Technology to Predict Heart Failure Decompensation" Journal of Clinical Medicine 14, no. 20: 7423. https://doi.org/10.3390/jcm14207423
APA StyleDevin, J., Powell, E., McGagh, D., Jones, T., Wang, B., Le Page, P., Lewis, A. J. M., Rider, O. J., Mitchell, A. R. J., & Henry, J. A. (2025). Non-Invasive Wearable Technology to Predict Heart Failure Decompensation. Journal of Clinical Medicine, 14(20), 7423. https://doi.org/10.3390/jcm14207423