Sleep and Stroke—An Overlooked Bidirectional Influence: Why Should Sleep and Vascular Neurologists Work Closer?
Abstract
1. Introduction
2. Review of Recent Evidence
2.1. Sleep-Related Breathing Disorders
2.1.1. Obstructive Sleep Apnea
2.1.2. Central Sleep Apnea
2.1.3. Obesity Hypoventilation Syndrome
2.2. Insomnia Disorder
Insomnia Treatment and Cardiovascular Risk
2.3. Restless Legs Syndrome and Periodic Limb Movements Disorder
2.3.1. Restless Legs Syndrome
2.3.2. Periodic Limb Movements Disorder
2.4. Parasomnias
2.5. Central Disorders of Hypersomnolence
2.6. Circadian Rhythm Sleep–Wake Disorders and Abnormal Sleep Duration
2.6.1. Circadian Rhythm Sleep–Wake Disorders
2.6.2. Abnormal Sleep Duration
3. Pathophysiological Perspectives
Nocturnal Arousals
4. From Limitations to Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
∆HR | Pulse rate response to respiratory events |
AASM | American Academy of Sleep Medicine |
AHA | American Heart Association |
AHI | Apnea Hypopnea Index |
ASA | American Stroke Association |
BDZ | Benzodiazepine |
BP | Blood Pressure |
CAP | Cyclic Alternating Pattern |
CBT-I | Cognitive Behavioral Therapy for Insomnia |
CHS | Central Hypoventilation Syndrome |
CPAP | Continuous Positive Airway Pressure |
CRSWDs | Circadian Rhythm Sleep–Wake Disorders |
CSA | Central Sleep Apnea |
CSB | Cheyne-Stokes Breathing |
CVD(s) | Cardiovascular Disease(s) |
EAN | European Academy of Neurology |
ERS | European Respiratory Society |
ESO | European Stroke Organization |
ESRS | European Sleep Research Society |
GAD-7 | General Anxiety Disorder-7 |
GLP1 | Glucagon-like Peptide 1 |
HB | Hypoxia Burden |
HPA | Hypothalamic–Pituitary–Adrenal axis |
HR | Hazard Ratio |
ICSD-3rd-TR | International Classification of Sleep Disorders, 3rd version revised |
IH | Idiopathic Hypersomnia |
IMT | Intima-Media Thickness |
IPD | Individual Participant Data |
iRLS | Idiopathic Restless Legs Syndrome |
ISI | Insomnia Severity Index |
MACEs | Major Cardiovascular Events |
NIHSS | National Healthcare Stroke Scale |
NT1/2 | Narcolepsy type 1/2 |
ODI | Oxygen Desaturation Index |
OHS | Obesity Hypoventilation Syndrome |
OR | Odds Ratio |
OSA | Obstructive Sleep Apnea |
PAP | Positive Airway Pressure |
PHQ-9 | Patient Health Questionnaire-9 |
PLM(s) | Periodic Limb Movements |
PLMD | Periodic Limb Movements Disorder |
PSQI | Pittsburgh Sleep Quality Index |
PTA | Peripheral Artery Tonometry |
PTT | Pulse Transit Time |
PWA | Pulse Wave Amplitude |
RBD | REM sleep Behavior Disorder |
RCTs | Randomized Controlled Trials |
RLS | Restless Legs Syndrome |
RR | Risk Ratio |
SA | Sleep Apnea |
SBDs | Sleep-related Breathing Disorders |
SDs | Sleep Disorders |
SHD | Sleep-related Hypoxemia Disorder |
SHE | Sleep Hypermotor Epilepsy |
TE-CSA | Treatment-Emergent Central Sleep Apnea |
References
- Kernan, W.N.; Ovbiagele, B.; Black, H.R.; Bravata, D.M.; Chimowitz, M.I.; Ezekowitz, M.D.; Fang, M.C.; Fisher, M.; Furie, K.L.; Heck, D.V.; et al. Guidelines for the Prevention of Stroke in Patients with Stroke and Transient Ischemic Attack: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke 2014, 45, 2160–2236. [Google Scholar] [CrossRef] [PubMed]
- Kleindorfer, D.O.; Towfighi, A.; Chaturvedi, S.; Cockroft, K.M.; Gutierrez, J.; Lombardi-Hill, D.; Kamel, H.; Kernan, W.N.; Kittner, S.J.; Leira, E.C.; et al. 2021 Guideline for the Prevention of Stroke in Patients with Stroke and Transient Ischemic Attack: A Guideline From the American Heart Association/American Stroke Association. Stroke 2021, 52, E364–E467. [Google Scholar] [CrossRef] [PubMed]
- Ramar, K.; Malhotra, R.K.; Carden, K.A.; Martin, J.L.; Abbasi-Feinberg, F.; Aurora, R.N.; Kapur, V.K.; Olson, E.J.; Rosen, C.L.; Rowley, J.A.; et al. Sleep is essential to health: An American Academy of Sleep Medicine position statement. J. Clin. Sleep Med. 2021, 17, 2115–2119. [Google Scholar] [CrossRef]
- Bassetti, C.L.A.; Randerath, W.; Vignatelli, L.; Ferini-Strambi, L.; Brill, A.-K.; Bonsignore, M.R.; Grote, L.; Leys, D.; Minnerup, J.; Nobili, L.; et al. EAN/ERS/ESO/ESRS statement on the impact of sleep disorders on risk and outcome of stroke. Eur. J. Neurol. 2020, 27, 1117–1136. [Google Scholar] [CrossRef]
- Gottesman, R.F.; Lutsey, P.L.; Benveniste, H.; Brown, D.L.; Full, K.M.; Lee, J.-M.; Osorio, R.S.; Pase, M.P.; Redeker, N.S.; Redline, S.; et al. Impact of Sleep Disorders and Disturbed Sleep on Brain Health: A Scientific Statement From the American Heart Association. Stroke 2024, 55, E61–E76. [Google Scholar] [CrossRef]
- Boon, P.A.J.M.; Berger, T.; Leonardi, M.; Marson, T.; Kallweit, U.; Moro, E.; Toscano, A.; Rektorova, I.; Accorroni, A.; Scheerens, C.; et al. A roadmap toward promoting and improving brain health in Europe and closing the awareness and funding gap. Eur. J. Neurol. 2025, 32, e16589. [Google Scholar] [CrossRef]
- Blissitt, P.A. Sleep-Disordered Breathing After Stroke: Nursing Implications. Stroke 2017, 48, e81–e84. [Google Scholar] [CrossRef]
- Khot, S.P.; Taylor, B.L.; Longstreth, W.T.; Brown, A.F. Sleep Health as a Determinant of Disparities in Stroke Risk and Health Outcome. Stroke 2023, 54, 595–604. [Google Scholar] [CrossRef]
- Webb, A.J.; Klerman, E.B.; Mandeville, E.T. Circadian and Diurnal Regulation of Cerebral Blood Flow. Circ. Res. 2024, 134, 695–710. [Google Scholar] [CrossRef]
- Zielinski, M.R.; Gibbons, A.J. Neuroinflammation, Sleep, and Circadian Rhythms. Front. Cell. Infect. Microbiol. 2022, 12, 853096. [Google Scholar] [CrossRef]
- Ibrahim, A.; Högl, B.; Stefani, A. Sleep as the Foundation of Brain Health. Semin. Neurol. 2025, 45, 305–316. [Google Scholar] [CrossRef]
- Parati, G.; Pengo, M.F.; Avolio, A.; Azizi, M.; Bothe, T.L.; Burnier, M.; Cappuccio, F.P.; De La Sierra, A.; Fava, C.; Gironacci, M.M.; et al. Nocturnal blood pressure: Pathophysiology, measurement and clinical implications. Position paper of the European Society of Hypertension. J. Hypertens. 2025, 43, 1296–1318. [Google Scholar] [CrossRef] [PubMed]
- Benjafield, A.V.; Pepin, J.-L.; Cistulli, P.A.; Wimms, A.; Lavergne, F.; Sert Kuniyoshi, F.H.; Munson, S.H.; Schuler, B.; Reddy Badikol, S.; Wolfe, K.C.; et al. Positive airway pressure therapy and all-cause and cardiovascular mortality in people with obstructive sleep apnoea: A systematic review and meta-analysis of randomised controlled trials and confounder-adjusted, non-randomised controlled studies. Lancet Respir. Med. 2025, 13, 403–413. [Google Scholar] [CrossRef] [PubMed]
- American Academy of Sleep Medicine (Ed.) ICSD-3-TR: International Classification of Sleep Disorders, 3rd ed.; Text Revision; American Academy of Sleep Medicine: Darien, IL, USA, 2023. [Google Scholar]
- Zinchuk, A.V.; Gentry, M.J.; Concato, J.; Yaggi, H.K. Phenotypes in obstructive sleep apnea: A definition, examples and evolution of approaches. Sleep Med. Rev. 2017, 35, 113–123. [Google Scholar] [CrossRef] [PubMed]
- Johnson, K.G.; Johnson, D.C. Frequency of sleep apnea in stroke and TIA patients: A meta-analysis. J. Clin. Sleep Med. 2010, 6, 131–137. [Google Scholar] [CrossRef]
- Sánchez-de-la-Torre, M.; Sánchez-de-la-Torre, A.; Bertran, S.; Abad, J.; Duran-Cantolla, J.; Cabriada, V.; Mediano, O.; Masdeu, M.J.; Alonso, M.L.; Masa, J.F.; et al. Effect of obstructive sleep apnoea and its treatment with continuous positive airway pressure on the prevalence of cardiovascular events in patients with acute coronary syndrome (ISAACC study): A randomised controlled trial. Lancet Respir. Med. 2020, 8, 359–367. [Google Scholar] [CrossRef]
- Koo, C.-Y.; Chua, A.-P.; Kristanto, W.; Koh, E.H.-T.; Tan, E.S.-J.; Abd Rahman, S.; Abd Gani, M.B.; Chong, J.P.; Aung, A.T.; Han, T.O.; et al. Screening and treatment of obstructive sleep apnea in acute coronary syndrome. A randomized clinical trial. Int. J. Cardiol. 2020, 299, 20–25. [Google Scholar] [CrossRef]
- López-Padilla, D.; Terán-Tinedo, J.; Cerezo-Lajas, A.; García, L.R.; Ojeda-Castillejo, E.; López-Martín, S.; Diaz-Cambriles, T.; Virseda, S.G.; Melgar, B.A.; Pizarro, A.C.; et al. Moderate obstructive sleep apnea and cardiovascular outcomes in older adults: A propensity score–matched multicenter study (CPAGE-MODE study). J. Clin. Sleep Med. 2022, 18, 553–561. [Google Scholar] [CrossRef]
- Eulenburg, C.; Celik, Y.; Redline, S.; Thunström, E.; Glantz, H.; Strollo, P.J.; Peker, Y. Cardiovascular Outcomes in Adults with Coronary Artery Disease and Obstructive Sleep Apnea with versus without Excessive Daytime Sleepiness in the RICCADSA Clinical Trial. Ann. Am. Thorac. Soc. 2023, 20, 1048–1056. [Google Scholar] [CrossRef]
- Suusgaard, J.; West, A.S.; Ponsaing, L.B.; Iversen, H.K.; Rauen, K.; Jennum, P.J. Stroke recurrence and all-cause mortality in CPAP-treated sleep-disordered-breathing patients. J. Stroke Cerebrovasc. Dis. 2025, 34, 108204. [Google Scholar] [CrossRef]
- Condoleo, V.; Severini, G.; Armentaro, G.; Francica, M.; Crudo, G.; De Marco, M.; Maruca, F.; Ciaccio, G.; Fuoco, C.; Pastura, C.A.; et al. Effect of continuous positive airway pressure on non-fatal stroke and paroxysmal atrial fibrillation recurrence in obstructive sleep apnoea elderly patients. Eur. J. Intern. Med. 2025, 133, 78–85. [Google Scholar] [CrossRef]
- O’Donnell, C.; Crilly, S.; O’Mahony, A.; O’Riordan, B.; Traynor, M.; Gitau, R.; McDonald, K.; Ledwidge, M.; O’Shea, D.; Murphy, D.J.; et al. Continuous Positive Airway Pressure but Not GLP1-mediated Weight Loss Improves Early Cardiovascular Disease in Obstructive Sleep Apnea: A Randomized Proof-of-Concept Study. Ann. Am. Thorac. Soc. 2024, 21, 464–473. [Google Scholar] [CrossRef] [PubMed]
- Sabil, A.; Launois, C.; Trzepizur, W.; Goupil, F.; Pigeanne, T.; Launois, S.; Leclair-Visonneau, L.; Masson, P.; Bizieux-Thaminy, A.; Kerbat, S.; et al. Association of positive airway pressure termination with mortality and non-fatal cardiovascular events in patients with obstructive sleep apnoea. Thorax 2024, 79, 1077–1085. [Google Scholar] [CrossRef] [PubMed]
- Cabiddu, R.; Cerutti, S.; Viardot, G.; Werner, S.; Bianchi, A.M. Modulation of the Sympatho-Vagal Balance during Sleep: Frequency Domain Study of Heart Rate Variability and Respiration. Front. Physiol. 2012, 3, 45. [Google Scholar] [CrossRef]
- Reynor, A.; McArdle, N.; Shenoy, B.; Dhaliwal, S.S.; Rea, S.C.; Walsh, J.; Eastwood, P.R.; Maddison, K.; Hillman, D.R.; Ling, I.; et al. Continuous positive airway pressure and adverse cardiovascular events in obstructive sleep apnea: Are participants of randomized trials representative of sleep clinic patients? Sleep 2022, 45, zsab264. [Google Scholar] [CrossRef]
- Tondo, P.; Scioscia, G.; Bailly, S.; Sabato, R.; Campanino, T.; Soccio, P.; Foschino Barbaro, M.P.; Gallo, C.; Pépin, J.L.; Lacedonia, D.; et al. Exploring phenotypes to improve long-term mortality risk stratification in obstructive sleep apnea through a machine learning approach: An observational cohort study. Eur. J. Intern. Med. 2025, 133, 64–70. [Google Scholar] [CrossRef]
- Malhotra, A.; Ayappa, I.; Ayas, N.; Collop, N.; Kirsch, D.; Mcardle, N.; Mehra, R.; Pack, A.I.; Punjabi, N.; White, D.P.; et al. Metrics of sleep apnea severity: Beyond the apnea-hypopnea index. Sleep 2021, 44, zsab030. [Google Scholar] [CrossRef]
- Pinilla, L.; Esmaeili, N.; Labarca, G.; Martinez-Garcia, M.Á.; Torres, G.; Gracia-Lavedan, E.; Mínguez, O.; Martínez, D.; Abad, J.; Masdeu, M.J.; et al. Hypoxic burden to guide CPAP treatment allocation in patients with obstructive sleep apnoea: A post hoc study of the ISAACC trial. Eur. Respir. J. 2023, 62, 2300828. [Google Scholar] [CrossRef]
- Azarbarzin, A.; Zinchuk, A.; Wellman, A.; Labarca, G.; Vena, D.; Gell, L.; Messineo, L.; White, D.P.; Gottlieb, D.J.; Redline, S.; et al. Cardiovascular Benefit of Continuous Positive Airway Pressure in Adults with Coronary Artery Disease and Obstructive Sleep Apnea without Excessive Sleepiness. Am. J. Respir. Crit. Care Med. 2022, 206, 767–774. [Google Scholar] [CrossRef]
- Cohen, O.; Sánchez-de-la-Torre, M.; Al-Taie, Z.; Khan, S.; Kundel, V.; Kovacic, J.C.; Gracia-Lavedan, E.; De Battle, J.; Nadkarni, G.; Barbé, F.; et al. Heterogeneous Effects of Continuous Positive Airway Pressure in Non-Sleepy Obstructive Sleep Apnea on Cardiovascular Disease Outcomes: Post Hoc Machine Learning Analysis of the ISAACC Trial (ECSACT Study). Ann. Am. Thorac. Soc. 2024, 21, 1074–1084. [Google Scholar] [CrossRef]
- Mao, Z.; Zheng, P.; Zhu, X.; Wang, L.; Zhang, F.; Liu, H.; Li, H.; Zhou, L.; Liu, W. Obstructive sleep apnea hypopnea syndrome and vascular lesions: An update on what we currently know. Sleep Med. 2024, 119, 296–311. [Google Scholar] [CrossRef] [PubMed]
- Gregori-Pla, C.; Zirak, P.; Cotta, G.; Bramon, P.; Blanco, I.; Serra, I.; Mola, A.; Fortuna, A.; Solà-Soler, J.; Giraldo Giraldo, B.F.; et al. How does obstructive sleep apnea alter cerebral hemodynamics? Sleep 2023, 46, zsad122. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-de-la-Torre, M.; Gracia-Lavedan, E.; Benitez, I.D.; Sánchez-de-la-Torre, A.; Moncusí-Moix, A.; Torres, G.; Loffler, K.; Woodman, R.; Adams, R.; Labarca, G.; et al. Adherence to CPAP Treatment and the Risk of Recurrent Cardiovascular Events: A Meta-Analysis. JAMA 2023, 330, 1255–1265. [Google Scholar] [CrossRef]
- Javaid, S.S.; Obaid, M.A.; Noor, T.; Kaleem, M.; Shakil, A.; Ul Haque, S.; Abbasi, N.; Saeed, E.; Manan, S.; Alam, K.; et al. Impact of Continuous Positive Airway Pressure on Cardiovascular Health in Patients with Obstructive Sleep Apnea: A Systematic Review and Meta-Analysis. Cardiol. Rev. 2025; Epub ahead of print. [Google Scholar] [CrossRef]
- Ullah, M.I.; Tamanna, S. Obesity: Clinical Impact, Pathophysiology, Complications, and Modern Innovations in Therapeutic Strategies. Medicines 2025, 12, 19. [Google Scholar] [CrossRef]
- Le, K.D.R.; Le, K.; Foo, F. The Impact of Glucagon-like Peptide 1 Receptor Agonists on Obstructive Sleep Apnoea: A Scoping Review. Pharmacy 2024, 12, 11. [Google Scholar] [CrossRef]
- El-Solh, A.A.; Gould, E.; Aibangbee, K.; Jimerson, T.; Hartling, R. Current perspectives on the use of GLP-1 receptor agonists in obesity-related obstructive sleep apnea: A narrative review. Expert Opin. Pharmacother. 2025, 26, 51–62. [Google Scholar] [CrossRef]
- Ellberg, C.C.; Schwartz, H.; Witt, A.; McCowen, K.C.; Fuentes, A.L.; Malhotra, A. The Potential Role of Glucagon-Like Peptide-1 (GLP-1) Receptor Agonists and Glucose-Dependent Insulinotropic Polypeptide (GIP) Receptor Agonists in Obstructive Sleep Apnea and Obesity. Curr. Pulmonol. Rep. 2025, 14, 19. [Google Scholar] [CrossRef]
- Henney, A.E.; Riley, D.R.; Anson, M.; Heague, M.; Hernadez, G.; Alam, U.; Craig, S.; Cuthbertson, D.J. Comparative Efficacy of Tirzepatide, Liraglutide, and Semaglutide in Reduction of Risk of Major Adverse Cardiovascular Events in Patients with Obstructive Sleep Apnea and Type 2 Diabetes: Real-World Evidence. Ann. Am. Thorac. Soc. 2025, 22, 1042–1052. [Google Scholar] [CrossRef]
- Aishah, A.; Loffler, K.A.; Toson, B.; Mukherjee, S.; Adams, R.J.; Altree, T.J.; Ainge-Allen, H.W.; Yee, B.J.; Grunstein, R.R.; Carberry, J.C.; et al. One Month Dosing of Atomoxetine plus Oxybutynin in Obstructive Sleep Apnea: A Randomized, Placebo-controlled Trial. Ann. Am. Thorac. Soc. 2023, 20, 584–595. [Google Scholar] [CrossRef]
- Fodor, D.M.; Marta, M.M.; Perju-Dumbravă, L. Implications of Circadian Rhythm in Stroke Occurrence: Certainties and Possibilities. Brain Sci. 2021, 11, 865. [Google Scholar] [CrossRef]
- Troester, M.M.; Quan, S.F.; Berry, R.B.; Plante, D.T.; Abreu, A.R.; Alzoubaidi, M.; Bandyopadhyay, A.; Del Rosso, L.; Ebben, M.; Kwoon, Y.; et al. The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications; Version 3; American Academy of Sleep Medicine: Darien, IL, USA, 2023. [Google Scholar]
- Randerath, W.; Baillieul, S.; Tamisier, R. Central sleep apnoea: Not just one phenotype. Eur. Respir. Rev. 2024, 33, 230141. [Google Scholar] [CrossRef]
- Zheng, Y.; Tai, J.E.; Yee, B.J. Management of central sleep apnoea: A review of non-hypercapnic causes. Breathe 2024, 20, 230235. [Google Scholar] [CrossRef] [PubMed]
- Badr, M.S.; Khayat, R.N.; Allam, J.S.; Hyer, S.; Naughton, M.T.; Patil, S.; Pien, G.; Randerath, W.; Won, C. Treatment of central sleep apnea in adults: An American Academy of Sleep Medicine systematic review, meta-analysis, and GRADE assessment. J. Clin. Sleep Med. 2025; Epub ahead of print. [Google Scholar] [CrossRef]
- Vazir, A.; Kapelios, C.J. Sleep-disordered breathing and cardiovascular disease: Who and why to test and how to intervene? Heart 2023, 109, 1864–1870. [Google Scholar] [CrossRef] [PubMed]
- Parra, O.; Arboix, A.; Bechich, S.; García-Eroles, L.; Montserrat, J.M.; López, J.A.; Ballester, E.; Guerra, J.M.; Sopeña, J.J. Time Course of Sleep-related Breathing Disorders in First-Ever Stroke or Transient Ischemic Attack. Am. J. Respir. Crit. Care Med. 2000, 161, 375–380. [Google Scholar] [CrossRef] [PubMed]
- Seiler, A.; Camilo, M.; Korostovtseva, L.; Haynes, A.G.; Brill, A.-K.; Horvath, T.; Egger, M.; Bassetti, C.L. Prevalence of sleep-disordered breathing after stroke and TIA: A meta-analysis. Neurology 2019, 92, e648–e654. [Google Scholar] [CrossRef]
- Schütz, S.G.; Lisabeth, L.D.; Hsu, C.-W.; Kim, S.; Chervin, R.D.; Brown, D.L. Central sleep apnea is uncommon after stroke. Sleep Med. 2021, 77, 304–306. [Google Scholar] [CrossRef]
- Estai, M.; Walsh, J.; Maddison, K.; Shepherd, K.; Hillman, D.; McArdle, N.; Baker, V.; King, S.; Al-Obaidi, Z.; Bamagoos, A.; et al. Sleep-disordered breathing in patients with stroke-induced dysphagia. J. Sleep Res. 2021, 30, e13179. [Google Scholar] [CrossRef]
- Riglietti, A.; Fanfulla, F.; Pagani, M.; Lucini, D.; Malacarne, M.; Manconi, M.; Ferretti, G.; Esposito, F.; Cereda, C.W.; Pons, M. Obstructive and Central Sleep Apnea in First Ever Ischemic Stroke are Associated with Different Time Course and Autonomic Activation. Nat. Sci. Sleep 2021, 13, 1167–1178. [Google Scholar] [CrossRef]
- Culebras, A. Central sleep apnea may be central to acute stroke. Sleep Med. 2021, 77, 302–303. [Google Scholar] [CrossRef]
- Pépin, J.-L.; Baillieul, S.; Tamisier, R. Obesity hypoventilation syndrome: Current status and future directions for optimizing care of a complex and diverse condition (a narrative review). Sleep Med. 2025, 131, 106491. [Google Scholar] [CrossRef]
- Masa-Jiménez, J.F.; Ramírez-Molina, V.R.; De Dios-Calama, C. Phenotypes of Obesity Hypoventilation Syndrome: Characteristics and Outcomes. Semin. Respir. Crit. Care Med. 2025, 46, 202–212. [Google Scholar] [CrossRef] [PubMed]
- Orozco González, B.N.; Rodriguez Plascencia, N.; Palma Zapata, J.A.; Llamas Domínguez, A.E.; Rodríguez González, J.S.; Diaz, J.M.; Ponce Muñoz, M.; Ponce-Campos, S.D. Obesity hypoventilation syndrome, literature review. Sleep Adv. 2024, 5, zpae033. [Google Scholar] [CrossRef] [PubMed]
- Watson, J.P.; Nolan, J.; Elliott, M. Autonomic dysfunction in patients with nocturnal hypoventilation in extrapulmonary restrictive disease. Eur. Respir. J. 1999, 13, 1097–1102. [Google Scholar] [CrossRef]
- Shiner, R.J.; Carroll, N.; Sawicka, E.H.; Simonds, A.K.; Branthwaite, M.A. Role of Nocturnal Hypoxaemia in the Genesis of Systemic Hypertension. Cardiology 1990, 77, 25–29. [Google Scholar] [CrossRef]
- Gilmartin, G.S.; Tamisier, R.; Curley, M.; Weiss, J.W. Ventilatory, hemodynamic, sympathetic nervous system, and vascular reactivity changes after recurrent nocturnal sustained hypoxia in humans. Am. J. Physiol. Heart Circ. Physiol. 2008, 295, H778–H785. [Google Scholar] [CrossRef]
- Uscamaita, K.; Parra Ordaz, O.; Yazbeck Morell, I.; Pla, M.G.; Sánchez-López, M.-J.; Arboix, A. From Molecular to Clinical Implications of Sleep-Related Breathing Disorders on the Treatment and Recovery of Acute Stroke: A Scoping Review. Curr. Issues Mol. Biol. 2025, 47, 138. [Google Scholar] [CrossRef]
- Riba-Llena, I.; Álvarez-Sabin, J.; Romero, O.; Santamarina, E.; Sampol, G.; Maisterra, O.; Ferré, Á.; Montaner, J.; Quintana, M.; Delgado, P. Nighttime hypoxia affects global cognition, memory, and executive function in community-dwelling individuals with hypertension. J. Clin. Sleep Med. 2020, 16, 243–250. [Google Scholar] [CrossRef]
- Al-Khadra, Y.; Darmoch, F.; Alkhatib, M.; Baibars, M.; Alraies, M.C. Risk of Left Atrial Enlargement in Obese Patients With Obesity-Induced Hypoventilation Syndrome vs Obstructive Sleep Apnea. Ochsner J. 2018, 18, 136–140. [Google Scholar] [CrossRef]
- Kreivi, H.-R.; Itäluoma, T.; Bachour, A. Effect of ventilation therapy on mortality rate among obesity hypoventilation syndrome and obstructive sleep apnoea patients. ERJ Open Res. 2020, 6, 00101–02019. [Google Scholar] [CrossRef]
- Kanji, S.; Mera, A.; Hutton, B.; Burry, L.; Rosenberg, E.; MacDonald, E.; Lucks, V. Pharmacological interventions to improve sleep in hospitalised adults: A systematic review. BMJ Open 2016, 6, e012108. [Google Scholar] [CrossRef]
- Riemann, D.; Benz, F.; Dressle, R.J.; Espie, C.A.; Johann, A.F.; Blanken, T.F.; Leerssen, J.; Wassing, R.; Henry, A.L.; Kyle, S.D.; et al. Insomnia disorder: State of the science and challenges for the future. J. Sleep Res. 2022, 31, e13604. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Lan, T.; Wang, Y.; Ren, L. Individual Insomnia Symptom and Increased Hazard Risk of Cardiocerebral Vascular Diseases: A Meta-Analysis. Front. Psychiatry 2021, 12, 654719. [Google Scholar] [CrossRef] [PubMed]
- Tsai, H.-J.; Wong, Y.-S.; Ong, C.-T. Clinical course and risk factors for sleep disturbance in patients with ischemic stroke. PLoS ONE 2022, 17, e0277309. [Google Scholar] [CrossRef] [PubMed]
- Mohandas, P.; Alomari, Z.; Arti, F.; Alhneif, M.; Alejandra Ruiz, P.; Ahmed, A.K.; Wei, C.R.; Amin, A. A Systematic Review and Meta-Analysis on the Identification of Predictors Associated With Insomnia or Sleep Disturbance in Post-stroke Patients. Cureus 2024, 16, e56578. [Google Scholar] [CrossRef]
- Hale, E.; Gottlieb, E.; Usseglio, J.; Shechter, A. Post-stroke sleep disturbance and recurrent cardiovascular and cerebrovascular events: A systematic review and meta-analysis. Sleep Med. 2023, 104, 29–41. [Google Scholar] [CrossRef]
- Xu, H.; Li, W.; Chen, J.; Zhang, P.; Rong, S.; Tian, J.; Zhang, Y.; Li, Y.; Cui, Z.; Zhang, Y. Associations between insomnia and large vessel occlusion acute ischemic stroke: An observational study. Clinics 2023, 78, 100297. [Google Scholar] [CrossRef]
- Mc Carthy, C.E.; Yusuf, S.; Judge, C.; Ferguson, J.; Hankey, G.J.; Gharan, S.O.; Damasceno, A.; Iversen, H.K.; Rosengren, A.; Ogah, O.; et al. Pre-morbid sleep disturbance and its association with stroke severity: Results from the international INTERSTROKE study. Eur. J. Neurol. 2024, 31, e16193. [Google Scholar] [CrossRef]
- Matas, A.; Amaral, L.; Patto, A.V. Is post-ischemic stroke insomnia related to a negative functional and cognitive outcome? Sleep Med. 2022, 94, 1–7. [Google Scholar] [CrossRef]
- Geusgens, C.A.V.; Van Tilburg, D.C.H.; Fleischeuer, B.; Bruijel, J. The relation between insomnia and depression in the subacute phase after stroke. Neuropsychol. Rehabil. 2025, 35, 757–773. [Google Scholar] [CrossRef]
- Wu, T.T.; Zou, Y.L.; Xu, K.D.; Jiang, X.R.; Zhou, M.M.; Zhang, S.B.; Song, C.H. Insomnia and multiple health outcomes: Umbrella review of meta-analyses of prospective cohort studies. Public Health 2023, 215, 66–74. [Google Scholar] [CrossRef]
- Denis, C.; Jaussent, I.; Guiraud, L.; Mestejanot, C.; Arquizan, C.; Mourand, I.; Chenini, S.; Abril, B.; Wacongne, A.; Tamisier, R.; et al. Functional recovery after ischemic stroke: Impact of different sleep health parameters. J. Sleep Res. 2024, 33, e13964. [Google Scholar] [CrossRef]
- Liu, L.; Marshall, I.J.; Li, X.; Bhalla, A.; Liu, L.; Pei, R.; Wolfe, C.D.A.; O’Connell, M.D.L.; Wang, Y. Long-term outcomes of depression up to 10-years after stroke in the South London Stroke Register: A population-based study. Lancet Reg. Health Eur. 2025, 54, 101324. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, Y.; Ye, S.; Huang, Q.; Zheng, R.; Li, Z.; Yu, F.; Zhao, C.; Zhang, M.; Zhao, G.; et al. Associations between insomnia and cardiovascular diseases: A meta-review and meta-analysis of observational and Mendelian randomization studies. J. Clin. Sleep Med. 2024, 20, 1975–1984. [Google Scholar] [CrossRef] [PubMed]
- Mc Carthy, C.E.; Yusuf, S.; Judge, C.; Alvarez-Iglesias, A.; Hankey, G.J.; Oveisgharan, S.; Damasceno, A.; Iversen, H.K.; Rosengren, A.; Avezum, A.; et al. Sleep Patterns and the Risk of Acute Stroke: Results From the Interstroke International Case-Control Study. Neurology 2023, 100, e2191–e2203. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Pan, L.; Guan, R. Mechanism of Insomnia After Stroke Based on Intestinal Flora. Int. J. Gen. Med. 2024, 17, 5493–5502. [Google Scholar] [CrossRef] [PubMed]
- Riemann, D.; Espie, C.A.; Altena, E.; Arnardottir, E.S.; Baglioni, C.; Bassetti, C.L.A.; Bastien, C.; Berzina, N.; Bjorvatn, B.; Dikeos, D.; et al. The European Insomnia Guideline: An update on the diagnosis and treatment of insomnia 2023. J. Sleep Res. 2023, 32, e14035. [Google Scholar] [CrossRef]
- Matsumoto, A.; Yoshimura, Y.; Nagano, F.; Bise, T.; Kido, Y.; Shimazu, S.; Shiraishi, A. Polypharmacy and potentially inappropriate medications in stroke rehabilitation: Prevalence and association with outcomes. Int. J. Clin. Pharm. 2022, 44, 749–761. [Google Scholar] [CrossRef]
- Lomachinsky Torres, V.; Brooks, J.D.; Donahue, M.A.; Sun, S.; Hsu, J.; Price, M.; Blacker, D.; Schwamm, L.H.; Newhouse, J.P.; Haneuse, S.; et al. Benzodiazepine Utilization in Ischemic Stroke Survivors: Analyzing Initial Excess Supply and Longitudinal Trends. Stroke 2024, 55, 2694–2702. [Google Scholar] [CrossRef]
- Matsumoto, A.; Yoshimura, Y.; Nagano, F.; Shimazu, S.; Bise, T.; Kido, Y.; Shiraishi, A.; Kuzuhara, A.; Hamada, T.; Yoneda, K. Psychotropic polypharmacy impairs walking independence in post-stroke patients. Eur. J. Clin. Pharmacol. 2025, 81, 831–838. [Google Scholar] [CrossRef]
- Ma, G.; Sun, L.; Qie, Z.; He, J.; Cui, F. Factors Associated with Benzodiazepines Prolonged-Term Use in Post-Stroke Subjective Sleep Disturbance: A Single-Centre Retrospective Study from China. Drug Des. Dev. Ther. 2021, 15, 2469–2481. [Google Scholar] [CrossRef]
- Xie, Y.; Zhu, S.; Wu, S.; Liu, C.; Shen, J.; Jin, C.; Ma, H.; Xiang, M. Hypnotic use and the risk of cardiovascular diseases in insomnia patients. Eur. J. Prev. Cardiol. 2025, 32, 466–474. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Z.; Tao, G.; Hao, S.; Ben, H.; Qu, W.; Sun, F.; Huang, Z.L.; Qiu, M.H. Alleviating sleep disturbances and modulating neuronal activity after ischemia: Evidence for the benefits of zolpidem in stroke recovery. CNS Neurosci. Ther. 2024, 30, e14637. [Google Scholar] [CrossRef] [PubMed]
- Pomierny, B.; Kucharczyk, M.W.; Krzyżanowska, W.; Skórkowska, A.; Jurczyk, J.; Niedzielska-Andres, E.; Szafrańska, K.; Wolak, M.; Walczak, M.; Gawlik, M.; et al. Zolpidem suppresses cortical spreading depolarization and protects against ischemia/reperfusion injury and resulting neurological dysfunctions. Biomed. Pharmacother. 2025, 189, 118320. [Google Scholar] [CrossRef]
- Li, R.-Y.; Zhu, D.-L.; Chen, K.-Y. Efficacy and safety of eszopiclone combined with drug therapy in the treatment of insomnia after stroke: A network meta-analysis and systematic review. PLoS ONE 2024, 19, e0297064. [Google Scholar] [CrossRef]
- Blanco, S.; Muñoz-Gallardo, M.D.M.; Hernández, R.; Peinado, M.Á. The Interplay Between Melatonin and Nitric Oxide: Mechanisms and Implications in Stroke Pathophysiology. Antioxidants 2025, 14, 724. [Google Scholar] [CrossRef]
- Liu, C.; Guo, J.; Guan, L.; Li, J.; Xu, B.; Zhao, H. Protective effects of melatonin on stroke in diabetic mice: Central and peripheral inflammation modulation. Stroke Vasc. Neurol. 2025; Epub ahead of print. [Google Scholar] [CrossRef]
- Kołodziejska, R.; Woźniak, A.; Bilski, R.; Wesołowski, R.; Kupczyk, D.; Porzych, M.; Wróblewska, W.; Pawluk, H. Melatonin—A Powerful Antioxidant in Neurodegenerative Diseases. Antioxidants 2025, 14, 819. [Google Scholar] [CrossRef]
- Azedi, F.; Tavakol, S.; Ketabforoush, A.H.M.E.; Khazaei, G.; Bakhtazad, A.; Mousavizadeh, K.; Joghataei, M.T. Modulation of autophagy by melatonin via sirtuins in stroke: From mechanisms to therapies. Life Sci. 2022, 307, 120870. [Google Scholar] [CrossRef]
- Ford, M.E.; Geurtsen, G.J.; Groet, E.; Rambaran Mishre, R.D.; Van Bennekom, C.A.M.; Van Someren, E.J.W. A blended eHealth intervention for insomnia following acquired brain injury: A randomised controlled trial. J. Sleep Res. 2023, 32, e13629. [Google Scholar] [CrossRef]
- Fleming, M.K.; Smejka, T.; Macey, E.; Luengo-Fernandez, R.; Henry, A.L.; Robinson, B.; Kyle, S.D.; Espie, C.A.; Johansen-Berg, H. Improving sleep after stroke: A randomised controlled trial of digital cognitive behavioural therapy for insomnia. J. Sleep Res. 2024, 33, e13971. [Google Scholar] [CrossRef]
- Khachatryan, S.G.; Ferri, R.; Fulda, S.; Garcia-Borreguero, D.; Manconi, M.; Muntean, M.; Stefani, A. Restless legs syndrome: Over 50 years of E uropean contribution. J. Sleep Res. 2022, 31, e13632. [Google Scholar] [CrossRef]
- Ferri, R. The time structure of leg movement activity during sleep: The theory behind the practice. Sleep Med. 2012, 13, 433–441. [Google Scholar] [CrossRef]
- Ferri, R.; DelRosso, L.M.; Silvani, A.; Cosentino, F.I.I.; Picchietti, D.L.; Mogavero, P.; Manconi, M.; Bruni, O. Peculiar lifespan changes of periodic leg movements during sleep in restless legs syndrome. J. Sleep Res. 2020, 29, e12896. [Google Scholar] [CrossRef]
- Mayer-Suess, L.; Ibrahim, A.; Moelgg, K.; Cesari, M.; Knoflach, M.; Högl, B.; Stefani, A.; Kiechl, S.; Hedbreder, A. Sleep disorders as both risk factors for, and a consequence of, stroke: A narrative review. Int. J. Stroke 2023, 19, 490–498. [Google Scholar] [CrossRef]
- Wang, X.-X.; Feng, Y.; Tan, E.-K.; Ondo, W.G.; Wu, Y.-C. Stroke-related restless legs syndrome: Epidemiology, clinical characteristics, and pathophysiology. Sleep Med. 2022, 90, 238–248. [Google Scholar] [CrossRef] [PubMed]
- Tinh, D.X.; Hung, D.V.; Thuan, D.D.; Duc, D.P.; Duc, D.M.; Cuong, N.D.; Ha, P.T.; Hai, N.D.; Thuan, N.D.; Tuan, T.M.; et al. Stroke-related restless leg syndrome in hemorrhagic and ischemic stroke patients. SAGE Open Med. 2025, 13, 20503121251336900. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.-X.; Liu, Y.; Song, J.-M.; Zhang, Y.-L.; Wang, Y.; William, O.G.; Feng, Y.; Wu, Y.C. Risk factors and prognosis of acute ischemic stroke related restless legs syndrome. Sleep Med. 2025, 129, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Zorgor, G.; Kabeloglu, V.; Soysal, A. Restless legs syndrome after acute ıschemic stroke and ıts relation to lesion location. Sleep Biol. Rhythm. 2022, 20, 551–560. [Google Scholar] [CrossRef]
- Kalampokini, S.; Poyiadjis, S.; Vavougios, G.D.; Artemiadis, A.; Zis, P.; Hadjigeorgiou, G.M.; Bargiotas, O. Restless legs syndrome due to brainstem stroke: A systematic review. Acta Neurol. Scand. 2022, 146, 440–447. [Google Scholar] [CrossRef]
- An, T.; Yuan, L.; Wu, X.; Ma, Y.; Sun, H.; Lu, B. The association between vitamin D and restless legs syndrome following acute ischemic stroke. Sci. Rep. 2025, 15, 14867. [Google Scholar] [CrossRef]
- Jiménez-Jiménez, F.J.; Alonso-Navarro, H.; García-Martín, E.; Agúndez, J.A.G. Inflammatory factors and restless legs syndrome: A systematic review and meta-analysis. Sleep Med. Rev. 2023, 68, 101744. [Google Scholar] [CrossRef]
- Gupta, A.; Shukla, G.; Sharma, G.; Roy, A.; Afsar, M.; Bhargava, B. Restless legs syndrome/Willis–Ekbom disease among patients with resistant hypertension versus stroke patients—A prospective study. Sleep Breath. 2022, 26, 1245–1251. [Google Scholar] [CrossRef]
- Vafaei, A.; Khorashadizadeh, F.; Saberi-Karimian, M.; Soflaei, S.S.; Amini, M.; Rashid, A.; Yousefian, S.; Ferns, G.A.; Esmaily, H.; Ghayour-Mobarhan, M.; et al. Association of restless legs syndrome and obesity: A sub-population of the MASHAD cohort study. Neurobiol. Sleep Circadian Rhythm. 2025, 18, 100113. [Google Scholar] [CrossRef] [PubMed]
- Janes, F.; Lorenzut, S.; Bevilacqua, F.; De Biase, S.; Zilli, M.; Gigli, G.L.; Valente, M. Cerebrovascular Risk in Restless Legs Syndrome: Intima-Media Thickness and Cerebral Vasomotor Reactivity: A Case–Control Study. Nat. Sci. Sleep 2021, 13, 967–975. [Google Scholar] [CrossRef] [PubMed]
- Say, A.; İşcan, D. An evaluation of carotid Doppler indices in patients with restless legs syndrome. Medicine 2025, 104, e43302. [Google Scholar] [CrossRef] [PubMed]
- Walters, A.S.; Paueksakon, P.; Adler, C.H.; Moussouttas, M.; Weinstock, L.B.; Spruyt, K.; Bagai, K. Restless Legs Syndrome Shows Increased Silent Postmortem Cerebral Microvascular Disease With Gliosis. J. Am. Heart Assoc. 2021, 10, e019627. [Google Scholar] [CrossRef]
- Gao, X.; Ba, D.M.; Bagai, K.; Liu, G.; Ma, C.; Walters, A.S. Treating Restless Legs Syndrome Was Associated With Low Risk of Cardiovascular Disease: A Cohort Study With 3.4 Years of Follow-Up. J. Am. Heart Assoc. 2021, 10, e018674. [Google Scholar] [CrossRef]
- Allen, R.P.; Picchietti, D.L.; Garcia-Borreguero, D.; Ondo, W.G.; Walters, A.S.; Winkelman, J.W.; Zucconi, M.; Ferri, R.; Trenkwalder, C.; Lee, H.B.; et al. Restless legs syndrome/Willis–Ekbom disease diagnostic criteria: Updated International Restless Legs Syndrome Study Group (IRLSSG) consensus criteria—History, rationale, description, and significance. Sleep Med. 2014, 15, 860–873. [Google Scholar] [CrossRef]
- Ruppert, E.; Hacquard, A.; Tatu, L.; Namer, I.J.; Wolff, V.; Kremer, S.; Lagha-Boukbiza, O.; Bataillard, M.; Bourgin, P. Stroke-related restless legs syndrome: Clinical and anatomo-functional characterization of an emerging entity. Eur. J. Neurol. 2022, 29, 1011–1016. [Google Scholar] [CrossRef]
- Plomaritis, P.; Theodorou, A.; Michalaki, V.; Stefanou, M.-I.; Palaiodimou, L.; Papagiannopoulou, G.; Kotsali-Peteinelli, V.; Bregianni, M.; Andreadou, E.; Paraskevas, G.P.; et al. Periodic Limb Movements during Sleep in Acute Stroke: Prevalence, Severity and Impact on Post-Stroke Recovery. J. Clin. Med. 2023, 12, 5881. [Google Scholar] [CrossRef]
- Veitch, M.R.; AlHamid, M.A.; Muir, R.T.; Dharmakulaseelan, L.; Ramirez, J.R.; Gao, F.; Swartz, R.H.; Murray, B.J.; Black, S.E.; Boulos, M.I. Association between cerebral small vessel disease and periodic limb movements of sleep in patients with stroke/TIA. Sleep 2025, 48, zsaf027. [Google Scholar] [CrossRef]
- Arnaldi, D.; Mattioli, P.; Orso, B.; Massa, F.; Pardini, M.; Morbelli, S.; Nobili, F.; Figorilli, M.; Casaglia, E.; Mulas, M.; et al. The Many Faces of REM Sleep Behavior Disorder. Providing Evidence for a New Lexicon. Eur. J. Neurol. 2025, 32, e70169. [Google Scholar] [CrossRef] [PubMed]
- Terzaghi, M.; Pilati, L.; Ghiotto, N.; Arnaldi, D.; Versino, M.; Rustioni, V.; Rustioni, G.; Sartori, I.; Manni, R. Twenty-four-hour blood pressure profile in idiopathic REM sleep behavior disorder. Sleep 2022, 45, zsab239. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Pavlova, M.; Liu, Y.; Liu, Y.; Huangfu, C.; Wu, S.; Gao, X. Probable REM sleep behavior disorder and risk of stroke: A prospective study. Neurology 2017, 88, 1849–1855. [Google Scholar] [CrossRef]
- Xu, P.; Wei, Y.; Wu, H.; Zhang, L. Genetic associations between Rapid Eye Movement (REM) sleep behavior disorder and cardiovascular diseases. PLoS ONE 2024, 19, e0301112. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, T.Q.; Roy, A. Isolated cataplexy and REM sleep behavior disorder after pontine stroke. J. Clin. Sleep Med. 2011, 7, 211–213. [Google Scholar] [CrossRef]
- Xi, Z.; Luning, W. REM sleep behavior disorder in a patient with pontine stroke. Sleep Med. 2009, 10, 143–146. [Google Scholar] [CrossRef]
- Biscarini, F.; Barateau, L.; Pizza, F.; Plazzi, G.; Dauvilliers, Y. Present and Future of Central Disorders of Hypersomnolence. J. Sleep Res. 2025, 34, e70118. [Google Scholar] [CrossRef]
- Mahoney, C.E.; Cogswell, A.; Koralnik, I.J.; Scammell, T.E. The neurobiological basis of narcolepsy. Nat. Rev. Neurosci. 2019, 20, 83–93. [Google Scholar] [CrossRef]
- Jennum, P.J.; Plazzi, G.; Silvani, A.; Surkin, L.A.; Dauvilliers, Y. Cardiovascular disorders in narcolepsy: Review of associations and determinants. Sleep Med. Rev. 2021, 58, 101440. [Google Scholar] [CrossRef]
- Vandi, S.; Rodolfi, S.; Pizza, F.; Moresco, M.; Antelmi, E.; Ferri, R.; Mignot, E.; Plazzi, G.; Silvani, A. Cardiovascular autonomic dysfunction, altered sleep architecture, and muscle overactivity during nocturnal sleep in pediatric patients with narcolepsy type 1. Sleep 2019, 42, zsz169. [Google Scholar] [CrossRef]
- Ben-Joseph, R.H.; Saad, R.; Black, J.; Dabrowski, E.C.; Taylor, B.; Gallucci, S.; Somers, V.K. Cardiovascular Burden of Narcolepsy Disease (CV-BOND): A real-world evidence study. Sleep 2023, 46, zsad161. [Google Scholar] [CrossRef]
- Riaz, M.; Bhattacharjee, R.; Lo-Ciganic, W.; Wilson, D.; Wickwire, E.M.; Malhotra, A.; Kaufmann, C.N.; Park, H. Narcolepsy and Risk of Cardiovascular Outcomes Beyond Stimulant Use. Sleep 2025, zsaf197. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Luo, J.; Xu, Y.; Wang, H.; Tian, J.; Yang, S.; Yu, K.; Peng, S.; Zhang, X. Narcolepsy and cardiovascular disease: A two-sample Mendelian randomization study. Sleep Med. 2024, 113, 6–12. [Google Scholar] [CrossRef] [PubMed]
- Futenma, K.; Takaesu, Y.; Nakamura, M.; Hayashida, K.; Takeuchi, N.; Inoue, Y. Metabolic-Syndrome-Related Comorbidities in Narcolepsy Spectrum Disorders: A Preliminary Cross-Sectional Study in Japan. Int. J. Environ. Res. Public Health 2022, 19, 6285. [Google Scholar] [CrossRef]
- Fuller, M.C.; Carlson, S.; Pysick, H.; Berry, V.; Tondryk, A.; Swartz, H.; Cornett, E.M.; Kaye, A.M.; Viswanath, O.; Urits, I.; et al. A Comprehensive Review of Solriamfetol to Treat Excessive Daytime Sleepiness. Psychopharmacol. Bull. 2024, 54, 65–86. [Google Scholar]
- Ferreira, M.; Carneiro, P.; Costa, V.M.; Carvalho, F.; Meisel, A.; Capela, J.P. Amphetamine and methylphenidate potential on the recovery from stroke and traumatic brain injury: A review. Rev. Neurosci. 2024, 35, 709–746. [Google Scholar] [CrossRef]
- Kaplan, S.; Goehring, E.L.; Melamed-Gal, S.; Nguyen-Khoa, B.; Knebel, H.; Jones, J.K. Modafinil and the risk of cardiovascular events: Findings from three US claims databases. Pharmacoepidemiol. Drug Saf. 2018, 27, 1182–1190. [Google Scholar] [CrossRef]
- Steele, T.A.; St Louis, E.K.; Videnovic, A.; Auger, R.R. Circadian Rhythm Sleep–Wake Disorders: A Contemporary Review of Neurobiology, Treatment, and Dysregulation in Neurodegenerative Disease. Neurotherapeutics 2021, 18, 53–74. [Google Scholar] [CrossRef]
- Chauhan, S.; Norbury, R.; Faßbender, K.C.; Ettinger, U.; Kumari, V. Beyond sleep: A multidimensional model of chronotype. Neurosci. Biobehav. Rev. 2023, 148, 105114. [Google Scholar] [CrossRef]
- Schmidt, M.H.; Dekkers, M.P.J.; Baillieul, S.; Jendoubi, J.; Wulf, M.-A.; Wenz, E.; Fregolente, L.; Vorster, A.; Gnarra, O.; Bassetti, C.L.A. Measuring Sleep, Wakefulness, and Circadian Functions in Neurologic Disorders. Sleep Med. Clin. 2021, 16, 661–671. [Google Scholar] [CrossRef]
- Lo, E.H.; Albers, G.W.; Dichgans, M.; Donnan, G.; Esposito, E.; Foster, R.; Howells, D.W.; Huang, Y.G.; Ji, X.; Klerman, E.B.; et al. Circadian Biology and Stroke. Stroke 2021, 52, 2180–2190. [Google Scholar] [CrossRef]
- Schindler, K.A.; Torices, S.; Schurhoff, N.; Gallo, D.I.; Toborek, M. The intersection of circadian rhythms and the blood-brain barrier with drug efficacy and delivery in neurological disorders. Adv. Drug Deliv. Rev. 2025, 224, 115645. [Google Scholar] [CrossRef]
- Liu, J.A.; Walton, J.C.; DeVries, A.C.; Nelson, R.J. Disruptions of Circadian Rhythms and Thrombolytic Therapy During Ischemic Stroke Intervention. Front. Neurosci. 2021, 15, 675732. [Google Scholar] [CrossRef]
- Earnest, D.J.; Burns, S.; Pandey, S.; Mani, K.K.; Sohrabji, F. Sex differences in the diathetic effects of shift work schedules on circulating cytokine levels and pathological outcomes of ischemic stroke during middle age. Neurobiol. Sleep Circadian Rhythm. 2022, 13, 100079. [Google Scholar] [CrossRef]
- Pajediene, E.; Paulekas, E.; Salteniene, V.; Skieceviciene, J.; Arstikyte, J.; Petrikonis, K.; Kupcinskas, J.; Bassetti, C.L.; Daiva, R. Diurnal variation of clock genes expression and other sleep-wake rhythm biomarkers among acute ischemic stroke patients. Sleep Med. 2022, 99, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.-Y.; Sun, Q.; Chen, S.; Wang, F.; Chen, R.; Chen, J.; Liu, C.F.; Li, J. Circadian Rhythm Disturbance in Acute Ischemic Stroke Patients and Its Effect on Prognosis. Cerebrovasc. Dis. 2024, 53, 14–27. [Google Scholar] [CrossRef] [PubMed]
- Faraci, F.M.; Scheer, F.A. Hypertension: Causes and Consequences of Circadian Rhythms in Blood Pressure. Circ. Res. 2024, 134, 810–832. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Ding, L.; Zhang, X.; Wang, H.; Chen, N. Association between physical frailty, circadian syndrome and cardiovascular disease among middle-aged and older adults: A longitudinal study. BMC Geriatr. 2024, 24, 199. [Google Scholar] [CrossRef] [PubMed]
- Pallesen, S.; Bjorvatn, B.; Waage, S.; Harris, A.; Sagoe, D. Prevalence of Shift Work Disorder: A Systematic Review and Meta-Analysis. Front. Psychol. 2021, 12, 638252. [Google Scholar] [CrossRef]
- Hanif, A.; Okafor, D.K.; Katyal, G.; Kaur, G.; Ashraf, H.; Bodapati, A.; Nath, T.S. Shifting Rhythms: A Systematic Review Exploring the Multifaceted Effects of Shift Work and Circadian Disruption on Employee Cardiovascular Health. Cureus 2024, 16, e71003. [Google Scholar] [CrossRef]
- Cao, Y.; Feng, Y.; Xia, N.; Zhang, J.-C. Evaluating the impact of shift work on the risk of cardiometabolic disease: A Mendelian randomization study. Nutr. Metab. Cardiovasc. Dis. 2024, 34, 2720–2728. [Google Scholar] [CrossRef]
- Yu, W.; Ma, J.; Guo, W.; Xu, J.; Xu, J.; Li, S.; Ren, C.; Wu, L.; Wu, C.; Li, C.; et al. Night shift work was associated with functional outcomes in acute ischemic stroke patients treated with endovascular thrombectomy. Heliyon 2024, 10, e25916. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Sun, Y.; Zhang, H.; Wang, B.; Chen, C.; Wang, Y.; Chen, J.; Tan, X.; Zhang, J.; Xia, F.; et al. Long-term night shift work is associated with the risk of atrial fibrillation and coronary heart disease. Eur. Heart J. 2021, 42, 4180–4188. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Luo, Y.; He, L.; Yin, J.; Li, T.; Liu, S.; Li, D.; Cheng, X.; Bai, Y. Shift Work and the Risk of Cardiometabolic Multimorbidity Among Patients With Hypertension: A Prospective Cohort Study of UK Biobank. J. Am. Heart Assoc. 2022, 11, e025936. [Google Scholar] [CrossRef] [PubMed]
- Watson, N.F.; Badr, M.S.; Belenky, G.; Bliwise, D.L.; Buxton, O.M.; Buysse, D.; Dinges, D.F.; Gangwisch, J.; Grandner, M.A.; Kushida, C.; et al. Recommended Amount of Sleep for a Healthy Adult: A Joint Consensus Statement of the American Academy of Sleep Medicine and Sleep Research Society. Sleep 2015, 38, 843–844. [Google Scholar] [CrossRef]
- Chaput, J.-P.; Dutil, C.; Featherstone, R.; Ross, R.; Giangregorio, L.; Saunders, T.J.; Janssen, I.; Poitras, V.J.; Kho, M.E.; Ross-White, A.; et al. Sleep timing, sleep consistency, and health in adults: A systematic review. Appl. Physiol. Nutr. Metab. 2020, 45, S232–S247. [Google Scholar] [CrossRef]
- Scott, H.; Lechat, B.; Sansom, K.; Pinilla, L.; Manners, J.; Phillips, A.J.K.; Nguyen, D.P.; Bailly, S.; Pepin, J.L.; Escourrou, P.; et al. Variations in sleep duration and timing: Weekday and seasonal variations in sleep are common in an analysis of 73 million nights from an objective sleep tracker. Sleep 2025, 48, zsaf099. [Google Scholar] [CrossRef]
- Sletten, T.L.; Weaver, M.D.; Foster, R.G.; Gozal, D.; Klerman, E.B.; Rajaratnam, S.M.W.; Roenneberg, T.; Takahashi, J.S.; Turek, F.W.; Vitiello, M.V.; et al. The importance of sleep regularity: A consensus statement of the National Sleep Foundation sleep timing and variability panel. Sleep Health 2023, 9, 801–820. [Google Scholar] [CrossRef]
- Joundi, R.A.; Patten, S.B.; Williams, J.V.A.; Smith, E.E. Association Between Excess Sleep Duration and Risk of Stroke: A Population-Based Study. Can. J. Neurol. Sci. 2023, 50, 17–22. [Google Scholar] [CrossRef]
- Titova, O.E.; Michaëlsson, K.; Larsson, S.C. Sleep Duration and Stroke: Prospective Cohort Study and Mendelian Randomization Analysis. Stroke 2020, 51, 3279–3285. [Google Scholar] [CrossRef]
- Kwon, H.S.; Kim, C.; Kim, Y.S.; Koh, S.-H.; Kim, H.Y.; Lee, S.-H.; Jung, K.H.; Kim, J.M.; Kim, Y.D.; Kwon, H.M.; et al. Long Sleep Duration and Dissatisfaction with Sleep Quality Are Associated with Ischemic Stroke in Young Patients. Cerebrovasc. Dis. 2023, 52, 671–678. [Google Scholar] [CrossRef]
- Hassani, S.; Ovbiagele, B.; Markovic, D.; Towfighi, A. Sleep duration and long-term mortality after stroke: A nationwide analysis. J. Stroke Cerebrovasc. Dis. 2025, 34, 108399. [Google Scholar] [CrossRef]
- Hassani, S.; Ovbiagele, B.; Markovic, D.; Towfighi, A. Association Between Abnormal Sleep Duration and Stroke in the United States. Neurology 2024, 103, e209807. [Google Scholar] [CrossRef]
- Li, W.; Taskin, T.; Gautam, P.; Gamber, M.; Sun, W. Is there an association among sleep duration, nap, and stroke? Findings from the China Health and Retirement Longitudinal Study. Sleep Breath. 2021, 25, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Kondracki, A.; Gautam, P.; Rahman, A.; Kiplagat, S.; Liu, H.; Sun, W. The association between sleep duration, napping, and stroke stratified by self-health status among Chinese people over 65 years old from the China health and retirement longitudinal study. Sleep Breath. 2021, 25, 1239–1246. [Google Scholar] [CrossRef] [PubMed]
- Ungvari, Z.; Fekete, M.; Lehoczki, A.; Munkácsy, G.; Fekete, J.T.; Zábó, V.; Purebl, G.; Varga, P.; Ungvari, A.; Győrffy, B. Inadequate sleep increases stroke risk: Evidence from a comprehensive meta-analysis of incidence and mortality. GeroScience 2025, 47, 4679–4695. [Google Scholar] [CrossRef]
- Wang, J.; Ren, X. Association Between Sleep Duration and Sleep Disorder Data from the National Health and Nutrition Examination Survey and Stroke Among Adults in the United States. Med. Sci. Monit. 2022, 28, e936384. [Google Scholar] [CrossRef]
- Pejovic, S.; Vgontzas, A.N.; Fernandez-Mendoza, J.; He, F.; Li, Y.; Karataraki, M.; Bixler, E.O. Insomnia with objective but not subjective short sleep duration is associated with incident cardiovascular and/or cerebrovascular disease. J. Clin. Sleep Med. 2024, 20, 1049–1057. [Google Scholar] [CrossRef]
- Fang, Y.; He, Y.; Huang, Y.; Ran, L.; Song, W.; Hao, J.; Yao, D.; Li, R.; Pan, D.; Qin, T.; et al. Sleep duration, daytime napping, and risk of incident stroke: Nuances by metabolic syndrome from the China health and retirement longitudinal study. Front. Cardiovasc. Med. 2022, 9, 976537. [Google Scholar] [CrossRef]
- Wang, S.; Li, Z.; Wang, X.; Guo, S.; Sun, Y.; Li, G.; Zhao, C.; Yuan, W.; Li, M.; Li, X.; et al. Associations between sleep duration and cardiovascular diseases: A meta-review and meta-analysis of observational and Mendelian randomization studies. Front. Cardiovasc. Med. 2022, 9, 930000. [Google Scholar] [CrossRef]
- Wang, H.; Sun, J.; Sun, M.; Liu, N.; Wang, M. Relationship of sleep duration with the risk of stroke incidence and stroke mortality: An updated systematic review and dose–response meta-analysis of prospective cohort studies. Sleep Med. 2022, 90, 267–278. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Kartsonaki, C.; Clarke, R.; Guo, Y.; Du, H.; Yu, C.; Yang, L.; Pei, P.; Stevens, R.; Burgess, S.; et al. Sleep duration and risk of stroke and coronary heart disease: A 9-year community-based prospective study of 0.5 million Chinese adults. BMC Neurol. 2023, 23, 327. [Google Scholar] [CrossRef] [PubMed]
- Ke, J.; Liu, X.; Ruan, X.; Wu, K.; Qiu, H.; Wang, X.; Li, Z.; Lin, T. Short sleep duration associated with the incidence of cardio-cerebral vascular disease: A prospective cohort study in Shanghai, China. BMC Cardiovasc. Disord. 2023, 23, 177. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Zuo, L.; Pan, Y.; Yan, H.; Wang, Y.; Zhao, X. Persisting Short or Long Sleep Duration Predicts Post-Stroke Depression One year After Stroke and Transient Ischemic Attack. Nat. Sci. Sleep 2025, 17, 1507–1519. [Google Scholar] [CrossRef]
- Dong, L.; Brown, D.L.; Chervin, R.D.; Case, E.; Morgenstern, L.B.; Lisabeth, L.D. Pre-stroke sleep duration and post-stroke depression. Sleep Med. 2021, 77, 325–329. [Google Scholar] [CrossRef]
- Zhou, B.; Jiang, C.; Zhang, W.; Jin, Y.; Zhu, T.; Zhu, F.; Xu, L. Association of sleep duration and napping with stroke mortality in older Chinese: A 14-year prospective cohort study of the Guangzhou Biobank Cohort study. Sleep Med. 2023, 101, 384–391. [Google Scholar] [CrossRef]
- Sanchez Corredera, C.; Tadepalli, P.S.; Scaccia, J.; Sibia, A.S.; Mayrovitz, H.N. Implications of Long Sleep Duration on Cardiovascular Health: A Systematic Review. Cureus 2025, 17, e77738. [Google Scholar] [CrossRef]
- Yuan, X.; Fu, Y.; Ou, Y.; Wang, J.; Yan, C.; Li, B.; Wu, Q.; Zhang, P. Prestroke sleep and stroke: A narrative review. Sleep Breath. 2025, 29, 221. [Google Scholar] [CrossRef]
- Cai, C.; Atanasov, S. Long Sleep Duration and Stroke—Highly Linked, Poorly Understood. Neurol. Int. 2023, 15, 764–777. [Google Scholar] [CrossRef]
- Baillieul, S.; Denis, C.; Barateau, L.; Arquizan, C.; Detante, O.; Pépin, J.-L.; Dauvilliers, Y.; Tamisier, R. The multifaceted aspects of sleep and sleep-wake disorders following stroke. Rev. Neurol. 2023, 179, 782–792. [Google Scholar] [CrossRef]
- Su, X.; Liu, S.; Wang, C.; Cai, Y.; Li, Y.; Wang, D.; Fan, Z.; Jiang, Y. Prevalence, incidence, and the time trends of sleep-disordered breathing among patients with stroke: A systematic review and meta-analysis. Front. Neurol. 2024, 15, 1432085. [Google Scholar] [CrossRef]
- Tanayapong, P.; Kuna, S.T. Sleep disordered breathing as a cause and consequence of stroke: A review of pathophysiological and clinical relationships. Sleep Med. Rev. 2021, 59, 101499. [Google Scholar] [CrossRef]
- Javaheri, S.; Javaheri, S.; Somers, V.K.; Gozal, D.; Mokhlesi, B.; Mehra, R.; McNicholas, W.T.; Zee, P.C.; Campos-Rodriguez, F. Interactions of Obstructive Sleep Apnea With the Pathophysiology of Cardiovascular Disease, Part 1. J. Am. Coll. Cardiol. 2024, 84, 1208–1223. [Google Scholar] [CrossRef] [PubMed]
- Dharmakulaseelan, L.; Boulos, M.I. Sleep Apnea and Stroke. Chest 2024, 166, 857–866. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, P.; Patel, V.; Motwani, J.; Choubey, U.; Mahmood, R.; Gupta, V.; Jain, R. Insomnia and Cardiovascular Health: Exploring the Link Between Sleep Disorders and Cardiac Arrhythmias. Curr. Cardiol. Rep. 2023, 25, 1211–1221. [Google Scholar] [CrossRef]
- Lüthi, A.; Nedergaard, M. Anything but small: Microarousals stand at the crossroad between noradrenaline signaling and key sleep functions. Neuron 2025, 113, 509–523. [Google Scholar] [CrossRef]
- Parrino, L.; Ferri, R.; Bruni, O.; Terzano, M.G. Cyclic alternating pattern (CAP): The marker of sleep instability. Sleep Med. Rev. 2012, 16, 27–45. [Google Scholar] [CrossRef]
- Attoh-Mensah, E.; Igor-Gaez, I.; Vincent, L.; Bessot, N.; Nathou, C.; Etard, O. Cardiorespiratory changes associated with micro-arousals during naps. Neurobiol. Sleep Circadian Rhythm. 2023, 14, 100093. [Google Scholar] [CrossRef]
- Satpute, A.B.; Kragel, P.A.; Barrett, L.F.; Wager, T.D.; Bianciardi, M. Deconstructing arousal into wakeful, autonomic and affective varieties. Neurosci. Lett. 2019, 693, 19–28. [Google Scholar] [CrossRef]
- Parrino, L. Nocturnal Arousal Phenomenon and the Autonomic Nervous System. In Autonomic Nervous System and Sleep; Chokroverty, S., Cortelli, P., Eds.; Springer International Publishing: Cham, Germany, 2021; pp. 71–76. [Google Scholar] [CrossRef]
- Terzano, M.G.; Parrino, L.; Sherieri, A.; Chervin, R.; Chokroverty, S.; Guilleminault, C.; Hirshkowitz, M.; Mahowald, M.; Moldofsky, H.; Rosa, A.; et al. Atlas, rules, and recording techniques for the scoring of cyclic alternating pattern (CAP) in human sleep. Sleep Med. 2001, 2, 537–553. [Google Scholar] [CrossRef]
- Parrino, L.; Rausa, F.; Azzi, N.; Pollara, I.; Mutti, C. Cyclic alternating patterns and arousals: What is relevant in obstructive sleep apnea? In Memoriam Mario Giovanni Terzano. Curr. Opin. Pulm. Med. 2021, 27, 496–504. [Google Scholar] [CrossRef]
- Terzano, M.G.; Parrino, L.; Smerieri, A.; De Carli, F.; Nobili, L.; Donadio, S.; Ferrillo, F. CAP and arousals are involved in the homeostatic and ultradian sleep processes. J. Sleep Res. 2005, 14, 359–368. [Google Scholar] [CrossRef]
- Hartmann, S.; Bruni, O.; Ferri, R.; Redline, S.; Baumert, M. Characterization of cyclic alternating pattern during sleep in older men and women using large population studies. Sleep 2020, 43, zsaa016. [Google Scholar] [CrossRef] [PubMed]
- Moser, D.; Kloesch, G.; Fischmeister, F.P.; Bauer, H.; Zeitlhofer, J. Cyclic alternating pattern and sleep quality in healthy subjects—Is there a first-night effect on different approaches of sleep quality? Biol. Psychol. 2010, 83, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Mutti, C.; Rapina, C.; Rausa, F.; Balella, G.; Bottignole, D.; Maggio, M.G.; Parrino, L. Commentary on “Transient intracranial pressure elevations (B waves) associated with sleep apnea”: The neglected role of cyclic alternating pattern. Fluids Barriers CNS 2024, 21, 75. [Google Scholar] [CrossRef]
- Riedel, C.S. In response to Mutti et al. 2024 commentary on “Transient intracranial pressure elevations (B waves) associated with sleep apnea: The neglected role of cyclic alternating pattern”. Fluids Barriers CNS 2024, 21, 105. [Google Scholar] [CrossRef]
- Kim, H.; Jung, H.R.; Kim, J.B.; Kim, D.-J. Autonomic Dysfunction in Sleep Disorders: From Neurobiological Basis to Potential Therapeutic Approaches. J. Clin. Neurol. 2022, 18, 140–151. [Google Scholar] [CrossRef]
- Gonzalez-Salazar, J.S.; Alba, A.; Mendez, M.O.; Luna-Rivera, J.M.; Parrino, L.; Grassi, A.; Terzano, M.; Milioli, G. Characterization of the autonomic system during the cyclic alternating pattern of sleep. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; IEEE: New York, NY, USA, 2014; pp. 3805–3808. [Google Scholar] [CrossRef]
- Kondo, H.; Ozone, M.; Ohki, N.; Sagawa, Y.; Yamamichi, K.; Fukuju, M.; Yoshida, T.; Nishi, C.; Kawasaki, A.; Mori, K.; et al. Association between Heart Rate Variability, Blood Pressure and Autonomic Activity in Cyclic Alternating Pattern during Sleep. Sleep 2014, 37, 187–194. [Google Scholar] [CrossRef]
- Misirocchi, F.; Mutti, C.; Hirsch, L.J.; Parrino, L.; Florindo, I. Cyclic Alternating EEG Patterns: From Sleep to Encephalopathy. J. Clin. Neurophysiol. 2024, 41, 485–494. [Google Scholar] [CrossRef]
- Khan, M.S.; Javaid, S.S.; Mentz, R.J.; Lindenfeld, J.; Wu, H.-T.; Prochaska, J.H.; Johansen, J.B.; Wild, P.S.; Linz, D.; Dinh, W.; et al. Heart rate variability in patients with cardiovascular diseases. Prog. Cardiovasc. Dis. 2025, 91, 67–79. [Google Scholar] [CrossRef]
- Ucak, S.; Dissanayake, H.U.; Sutherland, K.; De Chazal, P.; Cistulli, P.A. Heart rate variability and obstructive sleep apnea: Current perspectives and novel technologies. J. Sleep Res. 2021, 30, e13274. [Google Scholar] [CrossRef]
- Alomri, R.M.; Kennedy, G.A.; Wali, S.O.; Alhejaili, F.; Robinson, S.R. Association between nocturnal activity of the sympathetic nervous system and cognitive dysfunction in obstructive sleep apnoea. Sci. Rep. 2021, 11, 11990. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Mu, Z.; Wan, Y.; Shen, J.; Yuan, Y.; Xie, X.; Meng, Z.; Ma, Q.; Xu, J. Relationship between sleep-breathing events induced nocturnal blood pressure surge and sympathetic nervous activity in patients with obstructive sleep apnea. Sleep Breath. 2025, 29, 113. [Google Scholar] [CrossRef] [PubMed]
- Brigo, F.; Lochner, P.; Nardone, R.; Manganotti, P.; Lattanzi, S. Increased risk of stroke and myocardial infarction in patients with epilepsy: A systematic review of population-based cohort studies. Epilepsy Behav. 2020, 104, 106307. [Google Scholar] [CrossRef]
- Fayaz, A.; Raza, M.; Khan, A.; Mohandas, P.; Getnet Ayalew, H.; Perswani, P.; Wei, C.R.; Abdelbaki, M.A. Comparison of Cardiovascular Outcomes and All-Cause Mortality Between Patients with and Without Epilepsy: A Systematic Review and Meta-Analysis of Observational Studies. Cureus 2024, 16, e54706. [Google Scholar] [CrossRef]
- Hsu, S.P.C.; Yeh, C.-C.; Chou, Y.-C.; Shih, C.-C.; Hu, C.-J.; Cherng, Y.-G.; Chen, T.L.; Liao, C.-C. Stroke risk and outcomes in epilepsy patients: Two retrospective cohort studies based on National Health Insurance in Taiwan. Atherosclerosis 2019, 280, 147–154. [Google Scholar] [CrossRef]
- On behalf of the Epilepsy Study Group of the Italian Neurological Society; Gasparini, S.; Ferlazzo, E.; Sueri, C.; Cianci, V.; Ascoli, M.; Cavalli, S.M.; Beghi, E.; Belcastro, V.; Bianchi, A.; et al. Hypertension, seizures, and epilepsy: A review on pathophysiology and management. Neurol. Sci. 2019, 40, 1775–1783. [Google Scholar] [CrossRef]
- Prasad Gajurel, B.; Kharel, S.; Bhagat, R.; Ghimire, R.; Bhusal, K.; Rijal, D. Anti-epileptic Drugs Use and Increased Risk of Stroke: A Systematic Review. Ann. Neurosci. 2024, 31, 283–291. [Google Scholar] [CrossRef]
Sleep Disorders | 2020 International Statements | Current Knowledge | |
---|---|---|---|
Obstructive Sleep Apnea | Stroke risk | Untreated severe OSA doubles the risk of incident stroke. Such risk appears especially relevant in young to middle-aged patients, without differences between men and women. | Untreated OSA is one of the most neglected risk factors, especially in young/middle-aged adults. Up to 50% of stroke patients may experience post-stroke OSA, potentially increasing the risk of secondary events. |
Treatment influence | Observational cohort studies suggest that CPAP treatment is associated with a reduced risk of stroke in patients with OSA, but the results are very variable. In meta-analyses, CPAP treatment is not associated with stroke risk reduction; however, patients adherent to CPAP therapy (>4 h per day) may benefit. There is insufficient evidence on treatment options other than CPAP. | Patients without an overt CVD may benefit more from PAP treatment, although data about secondary prevention are still somewhat uncertain. Good PAP adherence (≥4 h/night) is protective against CVDs. Improper PAP termination is associated with an increased risk of MACEs. GLP-1 receptor agonists may have a CV protective effect in OSA patients, although data are still scarce. OSA patients’ phenotypization may help to select specific subgroups with better prognosis. | |
Central Sleep Apnea | Stroke risk | Not enough data to express a detailed position. | Whether CSA impacts the individual risk of CVDs is still uncertain due to contrasting evidence. But several methodological biases hamper conclusions. During the post-stroke acute phase, patients experience a higher incidence of CSA, with seminal data reporting an increased risk of mortality due to stroke recurrence, but evidence is still limited. |
Obesity Hypoventilation Syndrome | Stroke risk | Not included in international statements. | OHS was associated with a higher risk of chronic hypertension, diabetes mellitus, and major cardiac conditions. Evidence about the impact on stroke risk is still insufficient. |
Insomnia disorder | Stroke risk | Insomnia slightly increases the risk for cardiovascular events, but the risk for stroke is uncertain. Prospective studies evaluating the association of insomnia with stroke risk are scarce, and all available studies are based on subjective measures to define insomnia, thus reducing the accuracy of exposure identification. There is a link between post-stroke insomnia, female gender, and depression | Insomnia is associated with an increased risk of stroke, particularly sleep onset and sleep maintenance insomnia. LVO stroke is the most frequent type, but no correlation with the affected vascular territory has been shown. Post-stroke insomnia affects up to 40% of patients and is correlated with more severe strokes, a higher risk of post-stroke depression, and worse functional outcomes. |
Treatment influence | Treatment of insomnia with BDZ/BDZRs is linked with an increased risk of cognitive dysfunction, dementia, and mortality, and possibly also stroke, especially in high doses and long-term use. This effect may also be related to an indication bias (patients who are in a worse general or neurological condition suffer more frequently from insomnia and may receive BDZ/BDZRs more frequently). There are no systematic data on the effect of insomnia treatment on stroke outcome; worsening of neurological deficits with hypnotics has been reported. | BDZ treatment hinders rehabilitation processes, particularly regaining walking independence. Large biobank analysis associated post-stroke BDZ treatment with an increased risk of CVDs (but not specifically stroke). Z-drugs displayed safer profiles on CV and rehabilitation outcomes, particularly for zolpidem and eszopiclone. No data regarding melatonin and DORAs are available. Preliminary data suggest a potential positive effect of repetitive TMS and digital CBT-I on sleep quality, insomnia symptoms, and depressive manifestations, although data are still limited. | |
Restless Legs Syndrome | Stroke risk | Current evidence does not suggest an increased risk of stroke in patients with RLS. | Preliminary data support an increased risk of stroke among untreated RLS patients. Uncontrolled hypertension, higher mean and maximum carotid intima-media thickness, increased resistive index in carotid arteries, and higher mean and maximal MCA velocities could be potential underlying mechanisms. |
Treatment influence | Based on the lack of evidence, no statement can be made. | A single prospective observational study reported a significant protective effect of almost all treatment options (dopaminergic agents, alpha-2-ligands, BDZ, and opiates) against CVDs. | |
Periodic Limb Movements Disorder | Stroke risk | Periodic limb movements in sleep may represent an independent risk factor for stroke. | Although some studies reported an increased incidence of PLMs after ischemic strokes and their correlation with worse functional outcomes, data regarding pre-stroke PLMs and their impact on stroke risk are still lacking. |
Treatment influence | Based on the lack of evidence, no statement can be made. | No further progress has been made. | |
Parasomnias | Stroke risk | Not included in international statements due to insufficient data. | RBD exerts a detrimental effect on blood pressure control, increasing the risk of CVDs. A historical community-based study reporting an increased risk of both ischemic and hemorrhagic stroke in RBD patients is the only reliable evidence so far. |
Central Disorders of Hypersomnolence | Stroke risk | Not included in international statements due to insufficient data. | NT1 adult patients might experience an increased risk of stroke, although data are still limited. NT2 and IH patients seem to have a higher incidence of metabolic syndrome-related comorbidities, but not a clearly increased risk of MACEs. |
Circadian Rhythm Sleep–Wake Disorders | Stroke risk | Not included in international statements. | Although several mechanisms have been proposed to explain the connection between CRSWDs and stroke risk, the only structured data available so far regards Shift-Work Sleep Disorders, which is associated with the accumulation of several CVDs and worse long-term functional outcomes in stroke patients. |
Extreme Sleep Durations | Stroke risk | Not included in international statements. | Depicted a U-shaped relationship between extreme sleep durations (both reduced and long) and stroke risk. Pre-stroke extreme sleep durations have been associated with worse post-stroke functional and psychological outcomes, particularly among females and younger patients. |
CAP Rate % | A1% | A2% | A3% | |
---|---|---|---|---|
Chronic insomnia | + | + | + | + |
Severe Obstructive sleep apnea | + | - | = | + |
Periodic limb movement disorder | + | - | + | + |
Bruxism | + | - | + | + |
NREM sleep parasomnia | + | + | = | = |
Sleep-related epilepsies | + | + | + | + |
Narcolepsy | - | - | + | = |
Neurodegenerative disorders | - | = | = | = |
REM sleep parasomnia | - | - | = | = |
Chronic use of hypnotics | - | - | - | = |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bottignole, D.; Mutti, C.; Parrino, L.; Pezzini, A. Sleep and Stroke—An Overlooked Bidirectional Influence: Why Should Sleep and Vascular Neurologists Work Closer? J. Clin. Med. 2025, 14, 7420. https://doi.org/10.3390/jcm14207420
Bottignole D, Mutti C, Parrino L, Pezzini A. Sleep and Stroke—An Overlooked Bidirectional Influence: Why Should Sleep and Vascular Neurologists Work Closer? Journal of Clinical Medicine. 2025; 14(20):7420. https://doi.org/10.3390/jcm14207420
Chicago/Turabian StyleBottignole, Dario, Carlotta Mutti, Liborio Parrino, and Alessandro Pezzini. 2025. "Sleep and Stroke—An Overlooked Bidirectional Influence: Why Should Sleep and Vascular Neurologists Work Closer?" Journal of Clinical Medicine 14, no. 20: 7420. https://doi.org/10.3390/jcm14207420
APA StyleBottignole, D., Mutti, C., Parrino, L., & Pezzini, A. (2025). Sleep and Stroke—An Overlooked Bidirectional Influence: Why Should Sleep and Vascular Neurologists Work Closer? Journal of Clinical Medicine, 14(20), 7420. https://doi.org/10.3390/jcm14207420