Tooth Eruption and Microbial Correlation in Pediatric Appendicitis: An Exploratory Case–Control Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Dental Examinations
2.3. Bacterial Sample Collection and Processing
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PSI | Periodontal Screening Index |
DMF/T | Decayed, Missing, Filled Teeth |
DNA | Deoxyribonucleic Acid |
rDNA | Ribosomal Deoxyribonucleic Acid |
QIIME | Quantitative Insights Into Microbial Ecology |
RT-qPCR | Reverse Transcription quantitative Polymerase Chain Reaction |
BMI | Body Mass Index |
mRNA | Messenger Ribonucleic Acid |
rs | Spearman’s rank correlation coefficient |
SD | Standard Deviation |
IQR | Interquartile Range |
CI | Confidence Interval |
IL-1β | Interleukin 1 beta |
IL-6 | Interleukin 6 |
TNF-α | Tumor Necrosis Factor alpha |
References
- Blod, C.; Schlichting, N.; Schülin, S.; Suttkus, A.; Peukert, N.; Stingu, C.S.; Hirsch, C.; Elger, W.; Lacher, M.; Bühligen, U.; et al. The oral microbiome-the relevant reservoir for acute pediatric appendicitis? Int. J. Color. Dis. 2018, 33, 209–218. [Google Scholar] [CrossRef]
- Natarajan, P.; Madanian, S.; Marshall, S. Investigating the link between oral health conditions and systemic diseases: A cross-sectional analysis. Sci. Rep. 2025, 15, 10476. [Google Scholar] [CrossRef] [PubMed]
- Jordan, A.R.; Kuhr, K.; Sasunna, D.; Rathmann, W. Cardiovascular diseases and oral health: Results of the 6th German Oral Health Study (DMS • 6). Quintessence Int. 2025, 56, S104–S110. [Google Scholar] [CrossRef]
- La Rosa, G.R.M.; Lorenzo-Pouso, A.I.; Caponio, V.C.A.; Puci, M.V. Apical periodontitis in inflammatory bowel disease: A meta-analysis at patient and tooth level. Front. Dent. Med. 2025, 6, 1553914. [Google Scholar] [CrossRef]
- Chapple, I.L.C.; Hirschfeld, J.; Cockwell, P.; Dietrich, T.; Sharma, P. Interplay between periodontitis and chronic kidney disease. Nat. Rev. Nephrol. 2025, 21, 226–240. [Google Scholar] [CrossRef]
- Handsley-Davis, M.; Jamieson, L.; Kapellas, K.; Hedges, J.; Weyrich, L.S. The role of the oral microbiota in chronic non-communicable disease and its relevance to the Indigenous health gap in Australia. BMC Oral Health 2020, 20, 327. [Google Scholar] [CrossRef]
- Wang, Z.; Kaplan, R.C.; Burk, R.D.; Qi, Q. The Oral Microbiota, Microbial Metabolites, and Immuno-Inflammatory Mechanisms in Cardiovascular Disease. Int. J. Mol. Sci. 2024, 25, 12337. [Google Scholar] [CrossRef]
- Angjelova, A.; Jovanova, E.; Polizzi, A.; Leonardi, R.; Isola, G. Effects of Antiseptic Formulations on Oral Microbiota and Related Systemic Diseases: A Scoping Review. Antibiotics 2025, 14, 815. [Google Scholar] [CrossRef]
- Walker, A.R.; Segal, I. What causes appendicitis? J. Clin. Gastroenterol. 1990, 12, 127–129. [Google Scholar] [CrossRef] [PubMed]
- Swidsinski, A.; Dörffel, Y.; Loening-Baucke, V.; Theissig, F.; Rückert, J.C.; Ismail, M.; Rau, W.A.; Gaschler, D.; Weizenegger, M.; Kühn, S.; et al. Acute appendicitis is characterised by local invasion with Fusobacterium nucleatum/necrophorum. Gut 2011, 60, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Jackson, H.T.; Mongodin, E.F.; Davenport, K.P.; Fraser, C.M.; Sandler, A.D.; Zeichner, S.L. Culture-independent evaluation of the appendix and rectum microbiomes in children with and without appendicitis. PLoS ONE 2014, 9, e95414. [Google Scholar] [CrossRef]
- Olsen, I.; Yamazaki, K. Can oral bacteria affect the microbiome of the gut? J. Oral Microbiol. 2019, 11, 1586422. [Google Scholar] [CrossRef]
- Liu, Y.; Qiao, F.; Meng, G.; Gu, Y.; Wu, H.; Liu, D.; Niu, K. Analysis of the microbial community diversity in various regions of the healthy oral cavity. BMC Oral Health 2023, 24, 978. [Google Scholar] [CrossRef]
- Carr, N.J. The pathology of acute appendicitis. Ann. Diagn. Pathol. 2000, 4, 46–58. [Google Scholar] [CrossRef]
- Aarli, V.; Heyeraas, K.J. Effect of venous stasis and hypoproteinemia in gingival fluid formation in rats. J. Periodontal Res. 1995, 30, 231–237. [Google Scholar] [CrossRef]
- Xu, X.; He, J.; Xue, J.; Wang, Y.; Li, K.; Zhang, K.; Guo, Q.; Liu, X.; Zhou, Y.; Cheng, L.; et al. Oral cavity contains distinct niches with dynamic microbial communities. Environ. Microbiol. 2015, 17, 699–710. [Google Scholar] [CrossRef]
- Humes, D.J.; Simpson, J. Acute appendicitis. BMJ 2006, 333, 530–534. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, J.C. Caries process on occlusal surfaces: Evolving evidence and understanding. Caries Res. 2014, 48, 339–346. [Google Scholar] [CrossRef]
- Ohmann, C.; Franke, C.; Kraemer, M.; Yang, Q. Neues zur Epidemiologie der akuten Appendizitis. Chirurg 2002, 73, 769–776. [Google Scholar] [CrossRef]
- Anderson, J.E.; Bickler, S.W.; Chang, D.C.; Talamini, M.A. Examining a common disease with unknown etiology: Trends in epidemiology and surgical management of appendicitis in California, 1995–2009. World J. Surg. 2012, 36, 2787–2794. [Google Scholar] [CrossRef]
- Armağan, H.H.; Duman, L.; Cesur, Ö.; Karaibrahimoğlu, A.; Bilaloğlu, E.; Hatip, A.Y.; Savaş, M.Ç. Comparative analysis of epidemiological and clinical characteristics of appendicitis among children and adults. Ulus. Travma Acil Cerrahi Derg. 2021, 27, 526–533. [Google Scholar] [CrossRef]
- Addiss, D.G.; Shaffer, N.; Fowler, B.S.; Tauxe, R.V. The epidemiology of appendicitis and appendectomy in the United States. Am. J. Epidemiol. 1990, 132, 910–925. [Google Scholar] [CrossRef] [PubMed]
- Mason, M.R.; Chambers, S.; Dabdoub, S.M.; Thikkurissy, S.; Kumar, P.S. Characterizing oral microbial communities across dentition states and colonization niches. Microbiome 2018, 6, 67. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Fiscella, K.A.; Gill, S.R. Oral microbiome: Possible harbinger for children’s health. Int. J. Oral Sci. 2020, 12, 12. [Google Scholar] [CrossRef] [PubMed]
- Kaan, A.M.M.; Kahharova, D.; Zaura, E. Acquisition and establishment of the oral microbiota. Periodontol. 2000 2021, 86, 123–141. [Google Scholar] [CrossRef]
- Jain, B.; Mittal, C.; Goyal, S. A study on acute undifferentiated febrile illness in children (Age 2 Months to 18 Years). IJMPO 2023, 9, 13–18. [Google Scholar] [CrossRef]
- Peake, J.N.; Beecham, E.; Oostendorp, L.J.M.; Hudson, B.F.; Stone, P.; Jones, L.; Lakhanpaul, M.; Bluebond-Langner, M. Research barriers in children and young people with life-limiting conditions: A survey. BMJ Support. Palliat. Care 2022, 12, e715–e721. [Google Scholar] [CrossRef]
- Abusleme, L.; Dupuy, A.K.; Dutzan, N.; Silva, N.; Burleson, J.A.; Strausbaugh, L.D.; Gamonal, J.; Diaz, P.I. The subgingival microbiome in health and periodontitis and its relationship with community biomass and inflammation. ISME J. 2013, 7, 1016–1025. [Google Scholar] [CrossRef]
- Shi, W.; Qin, M.; Chen, F.; Xia, B. Supragingival Microbial Profiles of Permanent and Deciduous Teeth in Children with Mixed Dentition. PLoS ONE 2016, 11, e0146938. [Google Scholar] [CrossRef]
- Shi, W.; Tian, J.; Xu, H.; Zhou, Q.; Qin, M. Distinctions and associations between the microbiota of saliva and supragingival plaque of permanent and deciduous teeth. PLoS ONE 2018, 13, e0200337. [Google Scholar] [CrossRef]
- Marshman, Z.; Ahern, S.M.; McEachan, R.R.C.; Rogers, H.J.; Gray-Burrows, K.A.; Day, P.F. Parents’ Experiences of Toothbrushing with Children: A Qualitative Study. JDR Clin. Transl. Res. 2016, 1, 122–130. [Google Scholar] [CrossRef] [PubMed]
- de Pizzol Júnior, J.P.; Sasso-Cerri, E.; Cerri, P.S. Matrix Metalloproteinase-1 and Acid Phosphatase in the Degradation of the Lamina Propria of Eruptive Pathway of Rat Molars. Cells 2018, 7, 206. [Google Scholar] [CrossRef] [PubMed]
- Makino, Y.; Fujikawa, K.; Matsuki-Fukushima, M.; Inoue, S.; Nakamura, M. Role of Innate Inflammation in the Regulation of Tissue Remodeling during Tooth Eruption. Dent. J. 2021, 9, 7. [Google Scholar] [CrossRef] [PubMed]
N | |
---|---|
Total | 36 |
Mean age (SD 1) | 10.48 (±3.68) |
Sex (%) | |
Male | 21 (58.3) |
Female | 15 (41.7) |
Tooth brushing frequency (%) | |
Never | 2 (5.6) |
Once daily | 9 (25.0) |
Twice daily | 22 (61.1) |
Three times daily | 3 (8.3) |
Regular dental check-ups (%) | |
No | 1 (2.8) |
Yes | 35 (97.2) |
Teeth erupting (%) | |
No | 16 (44.4) |
Yes | 20 (55.6) |
Mean PSI 2 (SD) | 1.14 (±0.87) |
Mean dmf/t 3 + DMF/T 4 (SD) | 1.25 (±2.74) |
Appendicitis Patients | Healthy Controls | p-Value | |
---|---|---|---|
Age (year) | 10.94 (±4.10) | 9.97 (±3.19) | 0.440 † |
Sex (m:f) | 12 (70.6%):5 (29.4%) | 9 (47.4%):10 (52.6%) | 0.158 # |
Tooth brushing | 1.71 (±0.85) | 1.74 (±0.56) | 0.900 † |
Regular dental check-ups | 17 (100%) | 18 (94.74%) | 0.337 # |
Eruption (Number of teeth) | 3.82 (±3.50) | 1.68 (±2.54) | 0.021 † |
Number of teeth | 24.18 (±2.35) | 24.53 (±4.43) | 0.383 † |
Number of primary teeth | 7.76 (±7.47) | 5.42 (±7.86) | 0.367 † |
PSI 1 (median, IQR) | 1.00 (1.92) | 1.33 (1.50) | 0.203 † |
BMI 2 | 18.68 (±4.32) | 20.07 (±5.52) | 0.205 † |
dmf/t 3 + DMF/T 4 (median, IQR) | 2.00 (4) | 0.50 (2) | 0.590 †† |
OR 2 | 95% CI 3 | p-Value | |
---|---|---|---|
Age (year) | 0.93 | 0.75–1.14 | 0.480 |
Sex (m:f) | 1.69 | 0.34–8.31 | 0.519 |
Eruption (Number of teeth) | 1.42 | 1.04–1.94 | 0.025 |
PSI 1 (mean) | 0.37 | 0.12–1.15 | 0.085 |
Bacterium | Median (IQR 1) | rs 2 | p-Value | n Paired | rs 2 | p-Value | n Paired | ||
---|---|---|---|---|---|---|---|---|---|
Buccal Mucosa | Sulcus | Appendix | Buccal vs. Appendix | Sulcus vs. Appendix | |||||
Eikenella corrodens | 9.34 (0.69) | 7.51 (1.32) | 3.39 (4.46) | 0.143 | 0.760 | 7 | −0.643 | 0.119 | 7 |
Peptostreptococcus stomatis | 3.51 (2.80) | 4.60 (1.04) | 5.52 (5.26) | 0.143 | 0.736 | 8 | −0.107 | 0.819 | 7 |
Fusobacterium nucleatum | 1.86 (0.02) | 3.09 (3.51) | 2.12 (0.95) | nc 3 | - | 2 | nc 3 | - | 2 |
Fusobacterium periodonticum | 1.15 (1.15) | 1.46 (1.49) | 1.03 (2.07) | nc 3 | - | 2 | nc 3 | - | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elger, W.; Blod, C.; Schülin, S.; Hirsch, C.; Lacher, M.; Mayer, S. Tooth Eruption and Microbial Correlation in Pediatric Appendicitis: An Exploratory Case–Control Study. J. Clin. Med. 2025, 14, 7372. https://doi.org/10.3390/jcm14207372
Elger W, Blod C, Schülin S, Hirsch C, Lacher M, Mayer S. Tooth Eruption and Microbial Correlation in Pediatric Appendicitis: An Exploratory Case–Control Study. Journal of Clinical Medicine. 2025; 14(20):7372. https://doi.org/10.3390/jcm14207372
Chicago/Turabian StyleElger, Wieland, Carlotta Blod, Sara Schülin, Christian Hirsch, Martin Lacher, and Steffi Mayer. 2025. "Tooth Eruption and Microbial Correlation in Pediatric Appendicitis: An Exploratory Case–Control Study" Journal of Clinical Medicine 14, no. 20: 7372. https://doi.org/10.3390/jcm14207372
APA StyleElger, W., Blod, C., Schülin, S., Hirsch, C., Lacher, M., & Mayer, S. (2025). Tooth Eruption and Microbial Correlation in Pediatric Appendicitis: An Exploratory Case–Control Study. Journal of Clinical Medicine, 14(20), 7372. https://doi.org/10.3390/jcm14207372