Perioperative Anesthetic Considerations in HMG-CoA Lyase Deficiency: Case Report and Literature Review
Abstract
1. Introduction
2. Case Presentation
2.1. Pre-Hospital Phase and Hospital Admission to Pediatric Department
2.2. Hospital Phase—Deterioration and Admission to Surgery Department
2.3. Admission to PICU and Preoperative Optimization
2.4. Intraoperative Management
2.5. Postoperative Course
3. Discussion
4. Conclusions
- Strict avoidance of prolonged fasting with early and continuous glucose supplementation.
- Avoidance of propofol and lipid-based therapies, due to impaired fatty acid metabolism.
- Use of lactate-free intravenous solutions to prevent worsening acidosis.
- Selection of cisatracurium over rocuronium, reducing hepatic load and avoiding sugammadex concerns.
- Close interdisciplinary communication to prevent errors such as inappropriate fluid substitutions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HMGCLD | 3-hydroxy-3-methylglutaryl-CoA lyase deficiency |
HMGCL | 3-hydroxy-3-methylglutaryl-CoA lyase gene |
HMG-CoA | 3-hydroxy-3-methylglutaryl coenzyme A |
NPO | Nil per os |
PICU | Pediatric Intensive Care Unit |
ASA | American Society of Anesthesiologists |
IV | Intravenous |
ABG(s) | Arterial Blood Gas(es) |
PaO2 | Partial pressure of oxygen in arterial blood |
FiO2 | Fraction of inspired oxygen |
PaCO2 | Partial pressure of carbon dioxide in arterial blood |
BE | Base excess |
HCO3− | Bicarbonate |
NaCl | Sodium chloride |
KCl | Potassium chloride |
MgSO4 | Magnesium sulfate |
MAC | Minimum alveolar concentration |
PC | Pyruvate carboxylase |
PDH | Pyruvate dehydrogenase |
LDH | Lactate dehydrogenase |
ALT | Alanine aminotransferase |
PEPCK | Phosphoenolpyruvate carboxykinase |
G6Pase | Glucose-6-phosphatase |
G3PDH | Glyceraldehyde-3-phosphate dehydrogenase |
NADH | Nicotinamide adenine dinucleotide (reduced form) |
FADH2 | Flavin adenine dinucleotide (reduced form) |
References
- Faull, K.; Bolton, P.; Halpern, B.; Hammond, J.; Danks, D.M.; Hähnel, R.; Wilkinson, S.P.; Wysocki, S.J.; Masters, P.L. Patient with Defect in Leucine Metabolism. N. Engl. J. Med. 1976, 294, 1013–1015. [Google Scholar] [CrossRef]
- Grünert, S.C.; Schlatter, S.M.; Schmitt, R.N.; Gemperle-Britschgi, C.; Mrázová, L.; Balcı, M.C.; Bischof, F.; Çoker, M.; Das, A.M.; Demirkol, M.; et al. 3-Hydroxy-3-methylglutaryl-coenzyme A lyase deficiency: Clinical presentation and outcome in a series of 37 patients. Mol. Genet. Metab. 2017, 121, 206–215. [Google Scholar] [CrossRef] [PubMed]
- Grünert, S.C.; Sass, J.O. 3-hydroxy-3-methylglutaryl-coenzyme A lyase deficiency: One disease-many faces. Orphanet J. Rare Dis. 2020, 15, 48. [Google Scholar] [CrossRef] [PubMed]
- Thompson, S.; Hertzog, A.; Selvanathan, A.; Batten, K.; Lewis, K.; Nisbet, J.; Mitchell, A.; Dalkeith, T.; Billmore, K.; Moore, F.; et al. Treatment of HMG-CoA Lyase Deficiency-Longitudinal Data on Clinical and Nutritional Management of 10 Australian Cases. Nutrients 2023, 15, 531. [Google Scholar] [CrossRef] [PubMed]
- Pié, J.; López-Viñas, E.; Puisac, B.; Menao, S.; Pié, A.; Casale, C.; Ramos, F.J.; Hegardt, F.G.; Gómez-Puertas, P.; Casals, N. Molecular genetics of HMG-CoA lyase deficiency. Mol. Genet. Metab. 2007, 92, 198–209. [Google Scholar] [CrossRef]
- Leipnitz, G.; Vargas, C.R.; Wajner, M. Disturbance of redox homeostasis as a contributing underlying pathomechanism of brain and liver alterations in 3-hydroxy-3-methylglutaryl-CoA lyase deficiency. J. Inherit. Metab. Dis. 2015, 38, 1021–1028. [Google Scholar] [CrossRef]
- Hatano, R.; Lee, E.; Sato, H.; Kiuchi, M.; Hirahara, K.; Nakagawa, Y.; Shimano, H.; Nakayama, T.; Tanaka, T.; Miki, T. Hepatic ketone body regulation of renal gluconeogenesis. Mol. Metab. 2024, 84, 101934. [Google Scholar] [CrossRef]
- Puisac, B.; Arnedo, M.; Concepcion, M.; Teresa, E.; Pie, A.; Bueno, G.; Ramos, F.J.; Gomez-Puertas, P.; Pie, J. HMG–CoA Lyase Deficiency. In Advances in the Study of Genetic Disorders; Ikehara, K., Ed.; InTech: London, UK, 2011; ISBN 978-953-51-6575-0. Available online: http://www.intechopen.com/books/advances-in-the-study-of-genetic-disorders/hmg-coa-lyase-deficiency (accessed on 3 August 2025).
- Alfadhel, M.; Abadel, B.; Almaghthawi, H.; Umair, M.; Rahbeeni, Z.; Faqeih, E.; Almannai, M.; Alasmari, A.; Saleh, M.; Eyaid, W.; et al. HMG-CoA Lyase Deficiency: A Retrospective Study of 62 Saudi Patients. Front. Genet. 2022, 13, 880464. [Google Scholar] [CrossRef]
- Thompson, G.N.; Hsu, B.Y.L.; Pitt, J.J.; Treacy, E.; Stanley, C.A. Fasting Hypoketotic Coma in a Child with Deficiency of Mitochondrial 3-Hydroxy-3-Methylglutaryl-CoA Synthase. N. Engl. J. Med. 1997, 337, 1203–1207. [Google Scholar] [CrossRef]
- Holeček, M. Origin and Roles of Alanine and Glutamine in Gluconeogenesis in the Liver, Kidneys, and Small Intestine under Physiological and Pathological Conditions. Int. J. Mol. Sci. 2024, 25, 7037. [Google Scholar] [CrossRef]
- Kolb, H.; Kempf, K.; Röhling, M.; Lenzen-Schulte, M.; Schloot, N.C.; Martin, S. Ketone bodies: From enemy to friend and guardian angel. BMC Med. 2021, 19, 313. [Google Scholar] [CrossRef]
- Barendregt, K.; Soeters, P.; Allison, S.; Sobotka, L. Basics in clinical nutrition: Simple and stress starvation. Eur. e-J. Clin. Nutr. Metab. 2008, 3, e267–e271. [Google Scholar] [CrossRef]
- Xiang, F.; Zhang, Z.; Xie, J.; Xiong, S.; Yang, C.; Liao, D.; Xia, B.; Lin, L. Comprehensive review of the expanding roles of the carnitine pool in metabolic physiology: Beyond fatty acid oxidation. J. Transl. Med. 2025, 23, 324. [Google Scholar] [CrossRef]
- Houten, S.M.; Violante, S.; Ventura, F.V.; Wanders, R.J.A. The Biochemistry and Physiology of Mitochondrial Fatty Acid β-Oxidation and Its Genetic Disorders. Annu. Rev. Physiol. 2016, 78, 23–44. [Google Scholar] [CrossRef]
- Olpin, S.E. Pathophysiology of fatty acid oxidation disorders and resultant phenotypic variability. J. Inherit. Metab. Dis. 2013, 36, 645–658. [Google Scholar] [CrossRef]
- Suzuki, T.; Komatsu, T.; Shibata, H.; Inagaki, T. Metabolic Responses to Energy-Depleted Conditions. In Psychology and Pathophysiological Outcomes of Eating; Takada, A., Himmerich, H., Eds.; IntechOpen: Rijeka, Croatia, 2021; ISBN 978-1-83968-778-5. [Google Scholar] [CrossRef]
- New England Consortium of Metabolic Programs. 3-Hydroxymethylglutaryl-CoA (3-HMG CoA) Lyase Deficiency. Available online: https://www.newenglandconsortium.org/3hmg (accessed on 24 April 2025).
- G2M Network. Emergency Certificates—Ketogenesis Disorders (3-Hydroxymethylglutaryl (HMG)-CoA Lyase/3-HMG-CoA Synthase Deficiencies); French National Metabolic Network (G2M): Paris, France, 2022; p. 2. Available online: https://www.filiere-g2m.fr/images/URGENCE_PU/en_CU_deficit_de_la_cetogene_dec23_JDC.pdf (accessed on 15 June 2025).
- Delgado, C.A.; Guerreiro, G.B.B.; Jacques, C.E.D.; Coelho, D.d.M.; Sitta, A.; Manfredini, V.; Wajner, M.; Vargas, C.R. Prevention by L-carnitine of DNA damage induced by 3-hydroxy-3-methylglutaric and 3-methylglutaric acids and experimental evidence of lipid and DNA damage in patients with 3-hydroxy-3-methylglutaric aciduria. Arch. Biochem. Biophys. 2019, 668, 16–22. [Google Scholar] [CrossRef]
- Yu, H.K.; Ok, S.-H.; Kim, S.; Sohn, J.-T. Anesthetic management of patients with carnitine deficiency or a defect of the fatty acid β-oxidation pathway: A narrative review. Medicine 2022, 101, e28853. [Google Scholar] [CrossRef] [PubMed]
- Martins, P. Glutaric acidaemia type 1. Anästh Intensiv. 2020, 61 (Suppl. S6), S108–S114. [Google Scholar] [CrossRef]
- Robbins, K.A.; León-ruiz, E.N. Anesthetic Management of a Patient with 3-Methylcrotonyl-CoA Carboxylase Deficiency. Anesth. Analg. 2008, 107, 648. [Google Scholar] [CrossRef] [PubMed]
- Colleoni, M.; Costa, B.; Gori, E.; Santagostino, A. Biochemical Characterization of the Effects of the Benzodiazepine, Midazolam, on Mitochondrial Electron Transfer. Pharmacol. Toxicol. 1996, 78, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Mastronicola, D.; Arcuri, E.; Arese, M.; Bacchi, A.; Mercadante, S.; Cardelli, P.; Citro, G.; Sarti, P. Morphine but not fentanyl and methadone affects mitochondrial membrane potential by inducing nitric oxide release in glioma cells. Cell. Mol. Life Sci. 2004, 61, 2991–2997. [Google Scholar] [CrossRef]
- Hsieh, V.C.; Krane, E.J.; Morgan, P.G. Mitochondrial Disease and Anesthesia. J. Inborn Errors Metab. Screen. 2017, 5, 232640981770777. [Google Scholar] [CrossRef]
- Morgan, P.G.; Hoppel, C.L.; Sedensky, M.M. Mitochondrial Defects and Anesthetic Sensitivity. Anesthesiology 2002, 96, 1268–1270. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, V.C.; Niezgoda, J.; Sedensky, M.M.; Hoppel, C.L.; Morgan, P.G. Anesthetic Hypersensitivity in a Case-Controlled Series of Patients With Mitochondrial Disease. Anesth. Analg. 2021, 133, 924–932. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Tai, Y.; Chen, T.; Lin, L.; Ueng, Y.; Chen, R. Propofol Specifically Inhibits Mitochondrial Membrane Potential but Not Complex I NADH Dehydrogenase Activity, Thus Reducing Cellular ATP Biosynthesis and Migration of Macrophages. Ann. N. Y. Acad. Sci. 2005, 1042, 168–176. [Google Scholar] [CrossRef] [PubMed]
- Wolf, A.; Weir, P.; Segar, P.; Stone, J.; Shield, J. Impaired fatty acid oxidation in propofol infusion syndrome. Lancet 2001, 357, 606–607. [Google Scholar] [CrossRef]
- Gul, G.G.; Ozer, A.B.; Demirel, I.; Aksu, A.; Erhan, O.L. The effect of sugammadex on steroid hormones: A randomized clinical study. J. Clin. Anesth. 2016, 34, 62–67. [Google Scholar] [CrossRef]
- Tobin, K.A.R.; Steineger, H.H.; Alberti, S.; Spydevold, Ø.; Auwerx, J.; Gustafsson, J.-Å.; Nebb, H.I. Cross-Talk between Fatty Acid and Cholesterol Metabolism Mediated by Liver X Receptor-α. Mol. Endocrinol. 2000, 14, 741–752. [Google Scholar] [CrossRef]
- Hung, K.-C.; Chen, J.-Y.; Chu, C.-C.; Sun, C.-K. Perioperative Surgical Pleth Index as a Stress Indicator for the Prevention of Perioperative Euglycemic Diabetic Ketoacidosis. J. Clin. Monit. Comput. 2021, 35, 673–674. [Google Scholar] [CrossRef]
- Berthet, V. The Impact of Cognitive Biases on Professionals’ Decision-Making: A Review of Four Occupational Areas. Front. Psychol. 2022, 12, 802439. [Google Scholar] [CrossRef]
- Helmreich, R.L.; Davies, J.M. Culture, threat, and error: Lessons from aviation. Can. J. Anesth. Can. Anesth. 2004, 51, R1–R4. [Google Scholar] [CrossRef]
ABGs | Reference Values | Pre-PICU | PICU Prior to Surgery | Intraoperative 1 | Intraoperative 2 | Postoperative |
---|---|---|---|---|---|---|
pH | 7.35–7.45 | 7.577 | 7.472 | 7.406 | 7.368 | 7.414 |
PaO2 (mmHg) | can vary based on FiO2; usually maintained ≥80 mmHg in stable patients | 234 | 166 | 201 | 204 | 188.7 |
FiO2 | adjusted to maintain adequate oxygenation | 0.5 | ~0.28 | 0.35 | 0.35 | ~0.28 |
PaCO2 (mmHg) | 35–45 | 16.4 | 28.4 | 30.6 | 34 | 33 |
BE (mmol/L) | −2 to +2 | −4.8 | −2.5 | −5.1 | −5.4 | −1.3 |
HCO3 (mmol/L) | 22–26 | 15 | 20.3 | 18.8 | 19.3 | 20.4 |
Lactate (mmol/L) | 0.5–2.2 | 3.38 | 1.64 | 1.8 | 1.8 | 1.5 |
Glucose (mg/dL) | 70–120 | 74 | 173 | 144 | 177 | 204 |
Consideration | Recommendation | Rationale |
---|---|---|
Fasting | Strict avoidance, early and continuous glucose supplementation | Prevents hypoglycemia and metabolic decompensation |
Anesthetic Technique | Regional or neuraxial techniques should be carefully considered based on the risks and benefits | May provide less stringent pre-operative fasting and potentially reduce intraoperative stress Intralipid, the antidote in case of local anesthetic toxicity (LAST) is contraindicated. |
General Anesthesia | Avoid propofol and lipid-based therapies | Impaired fatty acid metabolism |
Avoid/limit the use of intravenous lidocaine | Avoidance of LAST and possible use of intralipid | |
Volatiles Pro: rapid pulmonary elimination and termination of any possible effect Con: Possible hypersensitivity to sevoflurane and other volatiles in mitochondrial metabolic disorders | monitoring of anesthetic depth, preferably with processed electroencephalogram (EEG) monitoring, may be a valuable adjunct for guiding anesthetic administration | |
Cautious use of ketamine | Avoid high doses to prevent increased energy consumption | |
Intravenous Fluids | Use lactate-free solutions (e.g., Normal Saline 0.9%) with Dextrose 10% | Prevents worsening lactic acidosis |
Neuromuscular Blockers | Prefer cisatracurium over rocuronium | Cisatracurium has lower hepatic metabolism Avoid theoretical sugammadex concerns |
Multidisciplinary communication Deviation from standard fasting and fluid administration protocols | Close coordination among healthcare professionals | Minimizes errors in fluid and medication management, ensures tailored care for this rare metabolic disorder |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nyktari, V.; Papastratigakis, G.; Koulousi, A.; Mandola, C.; Chaniotaki, F.; Goniotakis, I.; Ilia, S.; Papaioannou, A. Perioperative Anesthetic Considerations in HMG-CoA Lyase Deficiency: Case Report and Literature Review. J. Clin. Med. 2025, 14, 7332. https://doi.org/10.3390/jcm14207332
Nyktari V, Papastratigakis G, Koulousi A, Mandola C, Chaniotaki F, Goniotakis I, Ilia S, Papaioannou A. Perioperative Anesthetic Considerations in HMG-CoA Lyase Deficiency: Case Report and Literature Review. Journal of Clinical Medicine. 2025; 14(20):7332. https://doi.org/10.3390/jcm14207332
Chicago/Turabian StyleNyktari, Vasileia, Georgios Papastratigakis, Alexandra Koulousi, Chrysi Mandola, Foteini Chaniotaki, Ioannis Goniotakis, Stavroula Ilia, and Alexandra Papaioannou. 2025. "Perioperative Anesthetic Considerations in HMG-CoA Lyase Deficiency: Case Report and Literature Review" Journal of Clinical Medicine 14, no. 20: 7332. https://doi.org/10.3390/jcm14207332
APA StyleNyktari, V., Papastratigakis, G., Koulousi, A., Mandola, C., Chaniotaki, F., Goniotakis, I., Ilia, S., & Papaioannou, A. (2025). Perioperative Anesthetic Considerations in HMG-CoA Lyase Deficiency: Case Report and Literature Review. Journal of Clinical Medicine, 14(20), 7332. https://doi.org/10.3390/jcm14207332