Predicting Type 2 Diabetes Remission After Bariatric Surgery: The Role of Homeostatic Model Assessment of Insulin Resistance (Homa-IR), Visceral Adiposity Index (Vai) and Triglyceride-Glucose (TyG) Index
Abstract
1. Introduction
2. Material and Method
2.1. Study Group
2.2. Measurements
2.3. Surgery
2.4. Statistical Analysis
3. Results
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chandrasekaran, P.; Weiskirchen, R. The Role of Obesity in Type 2 Diabetes Mellitus—An Overview. Int. J. Mol. Sci. 2024, 25, 1882. [Google Scholar] [CrossRef]
- Kahn, S.E.; Hull, R.L.; Utzschneider, K.M. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 2006, 444, 840–846. [Google Scholar] [CrossRef] [PubMed]
- Ruze, R.; Liu, T.; Zou, X.; Song, J.; Chen, Y.; Xu, R.; Yin, X.; Xu, Q. Obesity and type 2 diabetes mellitus: Connections in epidemiology, pathogenesis, and treatments. Front. Endocrinol. 2023, 14, 1161521. [Google Scholar] [CrossRef] [PubMed]
- International Diabetes Federation (IDF). IDF Diabetes Atlas, 11th ed.; International Diabetes Federation: Amsterdam, The Netherlands, 2025. [Google Scholar]
- Mingrone, G.; Panunzi, S.; De Gaetano, A.; Guidone, C.; Iaconelli, A.; Leccesi, L.; Nanni, G.; Pomp, A.; Castagneto, M.; Ghirlanda, G.; et al. Bariatric surgery versus conventional medical therapy for type 2 diabetes. N. Engl. J. Med. 2012, 366, 1577–1585. [Google Scholar] [CrossRef] [PubMed]
- Schauer, P.R.; Bhatt, D.L.; Kirwan, J.P.; Wolski, K.; Aminian, A.; Brethauer, S.A.; Navaneethan, S.D.; Singh, R.P.; Pothier, C.E.; Nissen, S.E.; et al. Bariatric Surgery versus Intensive Medical Therapy for Diabetes—5-Year Outcomes. N. Engl. J. Med. 2017, 376, 641–651. [Google Scholar] [CrossRef]
- Pories, W.J.; Swanson, M.S.; MacDonald, K.G.; Long, S.B.; Morris, P.G.; Brown, B.M.; Barakat, H.A.; Deramon, R.A.; Israel, G.; Dolezal, J.M.; et al. Who would have thought it? An operation proves to be the most effective therapy for adult-onset diabetes mellitus. Ann. Surg. 1995, 222, 339–350; discussion 350–352. [Google Scholar] [CrossRef]
- Yang, Y.; Miao, C.; Wang, Y.; He, J. The long-term effect of bariatric/metabolic surgery versus pharmacologic therapy in type 2 diabetes mellitus patients: A systematic review and meta-analysis. Diabetes Metab. Res. Rev. 2024, 40, e3830. [Google Scholar] [CrossRef]
- Brito, J.P.; Montori, V.M.; Davis, A.M. Metabolic Surgery in the Treatment Algorithm for Type 2 Diabetes: A Joint Statement by International Diabetes Organizations. JAMA 2017, 317, 635–636. [Google Scholar] [CrossRef] [PubMed]
- ElSayed, N.A.; Aleppo, G.; Aroda, V.R.; Bannuru, R.R.; Brown, F.M.; Bruemmer, D.; Collins, B.S.; Hilliard, M.E.; Isaacs, D.; Johnson, E.L.; et al. 1. Improving Care and Promoting Health in Populations: Standards of Care in Diabetes-2023. Diabetes Care 2023, 46 (Suppl. S1), S10–S18. [Google Scholar] [CrossRef]
- Arterburn, D.E.; Bogart, A.; Sherwood, N.E.; Sidney, S.; Coleman, K.J.; Haneuse, S.; O’cOnnor, P.J.; Theis, M.K.; Campos, G.M.; McCulloch, D.; et al. A multisite study of long-term remission and relapse of type 2 diabetes mellitus following gastric bypass. Obes. Surg. 2013, 23, 93–102. [Google Scholar] [CrossRef]
- Lee, W.-J.; Hur, K.Y.; Lakadawala, M.; Kasama, K.; Wong, S.K.; Chen, S.-C.; Lee, Y.-C.; Ser, K.-H. Predicting success of metabolic surgery: Age, body mass index, C-peptide, and duration score. Surg. Obes. Relat. Dis. 2013, 9, 379–384. [Google Scholar] [CrossRef]
- Still, C.D.; Wood, G.C.; Benotti, P.; Petrick, A.T.; Gabrielsen, J.; Strodel, W.E.; Ibele, A.; Seiler, J.; Irving, B.A.; Celaya, M.P.; et al. Preoperative prediction of type 2 diabetes remission after Roux-en-Y gastric bypass surgery: A retrospective cohort study. Lancet Diabetes Endocrinol. 2014, 2, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Panunzi, S.; Carlsson, L.; De Gaetano, A.; Peltonen, M.; Rice, T.; Sjöström, L.; Mingrone, G.; Dixon, J.B. Determinants of Diabetes Remission and Glycemic Control After Bariatric Surgery. Diabetes Care 2016, 39, 166–174. [Google Scholar] [CrossRef]
- Ayranci, M.; Vatansev, H. Effects Of Bariatric Surgery In Morbid Obese Patients On HOMA-IR And Lipid Profiles. Clin. Nutr. ESPEN 2023, 54, 663–664. [Google Scholar] [CrossRef]
- Amato, M.C.; Giordano, C.; Galia, M.; Criscimanna, A.; Vitabile, S.; Midiri, M.; Galluzzo, A.; AlkaMeSy Study Group. Visceral Adiposity Index: A reliable indicator of visceral fat function associated with cardiometabolic risk. Diabetes Care 2010, 33, 920–922. [Google Scholar] [CrossRef] [PubMed]
- Guerrero-Romero, F.; Simental-Mendía, L.E.; González-Ortiz, M.; MartínEz-Abundis, E.; Ramos-Zavala, M.G.; HernánDez-GonzálEz, S.O.; Jacques-Camarena, O.; RodrígUez-Morán, M. The product of triglycerides and glucose, a simple measure of insulin sensitivity. Comparison with the euglycemic-hyperinsulinemic clamp. J. Clin. Endocrinol. Metab. 2010, 95, 3347–3351. [Google Scholar] [CrossRef] [PubMed]
- Jamialahamdi, T.; Gadde, K.M.; Nguyen, N.T.; Kroh, M.; Sukhorukov, V.N.; Almahmeed, W.; Al-Rasadi, K.; Sahebkar, A. Improvement of Triglyceride-Glucose Index Following Bariatric Surgery: A Systematic Review and Meta-analysis. Obes. Surg. 2024, 34, 741–750. [Google Scholar] [CrossRef] [PubMed]
- Ozmen, M.M.; Guldogan, C.E.; Gundogdu, E. Changes in HOMA-IR index levels after bariatric surgery: Comparison of Single Anastomosis Duodenal Switch-proximal approach (SADS-p) and One Anastomosis Gastric Bypass-Mini Gastric Bypass (OAGB-MGB). Int. J. Surg. 2020, 78, 36–41. [Google Scholar] [CrossRef]
- Lee, W.J.; Chong, K.; Ser, K.H.; Lee, Y.C.; Chen, S.C.; Chen, J.C.; Tsai, M.-H.; Chuang, L.-M. Gastric bypass vs sleeve gastrectomy for type 2 diabetes mellitus: A randomized controlled trial. Arch. Surg. 2011, 146, 143–148. [Google Scholar] [CrossRef]
- Behrooznia, Z.; Jangjoo, A.; Qoorchi Moheb Seraj, F.; Khadem-Rezaiyan, M.; Zandbaf, T.; Hassani, S. Diabetic Markers, Five Years after Bariatric Surgery. Middle East J. Dig. Dis. 2023, 15, 270–276. [Google Scholar] [CrossRef]
- Ekberg, N.R.; Falhammar, H.; Näslund, E.; Brismar, K. Predictors of normalized HbA1c after gastric bypass surgery in subjects with abnormal glucose levels, a 2-year follow-up study. Sci. Rep. 2020, 10, 15127. [Google Scholar] [CrossRef]
- Tahapary, D.L.; Pratisthita, L.B.; Fitri, N.A.; Marcella, C.; Wafa, S.; Kurniawan, F.; Rizka, A.; Tarigan, T.J.E.; Harbuwono, D.S.; Purnamasari, D.; et al. Challenges in the diagnosis of insulin resistance: Focusing on the role of HOMA-IR and Tryglyceride/glucose index. Diabetes Metab. Syndr. 2022, 16, 102581. [Google Scholar] [CrossRef] [PubMed]
- Voglino, C.; Tirone, A.; Ciuoli, C.; Benenati, N.; Paolini, B.; Croce, F.; Gaggelli, I.; Vuolo, M.L.; Cuomo, R.; Grimaldi, L.; et al. Cardiovascular Benefits and Lipid Profile Changes 5 Years After Bariatric Surgery: A Comparative Study Between Sleeve Gastrectomy and Roux-en-Y Gastric Bypass. J. Gastrointest. Surg. 2020, 24, 2722–2729. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; He, J.; Zhu, Y.; Wang, H.; Feng, W.; Sun, X.; Bi, Y.; Zhu, D. Body Adiposity Index Is Predictive of Weight Loss after Roux-en-Y Gastric Bypass. Ann. Nutr. Metab. 2021, 77, 168–177. [Google Scholar] [CrossRef] [PubMed]
- Dang, J.T.; Sheppard, C.; Kim, D.; Switzer, N.; Shi, X.; Tian, C.; de Gara, C.; Karmali, S.; Birch, D.W. Predictive factors for diabetes remission after bariatric surgery. Can. J. Surg. 2019, 62, 315–319. [Google Scholar] [CrossRef]
- Ghusn, W.; Ikemiya, K.; Al Annan, K.; Acosta, A.; Abu Dayyeh, B.K.; Lee, E.; Spaniolas, K.; Kendrick, M.; Higa, K.; Ma, P.; et al. Diabetes Mellitus Remission in Patients with BMI > 50 kg/m2 after Bariatric Surgeries: A Real-World Multi-Centered Study. Obes. Surg. 2023, 33, 1838–1845. [Google Scholar] [CrossRef]
Variable | |
---|---|
Age (years) | 49.9 ± 9.3 |
Gender | |
Male | 18 (27.3%) |
Female | 48 (72.7%) |
Comorbidity | |
Hypertension | 41 (62.1%) |
Thyroid disorders | 17 (25.8%) |
Hypothyroidism requiring replacement | 14 (21.2%) |
Hyperthyroidism | 2 (3.0%) |
Thyroid nodules | 1 (1.5%) |
Coronary artery disease | 2 (3.0%) |
Sleep apnea | 11 (16.7%) |
Asthma | 5 (7.6%) |
Operation type | |
Sleeve gastrectomy | 32 (48.5%) |
OAGB | 34 (51.5%) |
Pre-op insulin use | |
No | 46 (69.7%) |
Yes | 20 (30.3%) |
Postop insulin cessation | |
No | 1 (5.0%) |
Quit but started again | 0 (0.0%) |
Completely quit | 19 (95.0%) |
Insulin cessation time | |
Preoperative | 0 (0.0%) |
Immediately after surgery | 19 (100.0%) |
Postop 1–3 months | 0 (0.0%) |
Preop OAD use | |
No | 4 (6.1%) |
Yes | 62 (93.9%) |
Postop OAD cessation | |
No | 5 (8.1%) |
Quit but started again | 5 (8.1%) |
Completely quit | 52 (83.8%) |
OAD cessation time | |
Preoperative | 4 (7.0%) |
Immediately after surgery | 49 (86.0%) |
Postop 1–3 months | 4 (7.0%) |
Remission | |
No | 16 (24.25%) |
Partial | 16 (24.25%) |
Full | 34 (51.5%) |
Preoperative | Postoperative 6th Month | p | |
---|---|---|---|
Body mass index, kg/m2 | 42.8 (38.7–50.2) | 32.7 (28.5–36.3) | <0.001 † |
Waist circumference, cm | 134.5 (121–148) | 103 (88–112) | <0001 † |
USG liver steatosis | |||
Grade 0 | 6 (9.1%) | 27 (40.9%) | <0.001 § |
Grade 1 | 15 (22.7%) | 37 (56.1%) | |
Grade 2 | 29 (43.9%) | 2 (3.0%) | |
Grade 3 | 16 (24.3%) | 0 (0.0%) | |
Fasting glucose, mg/dL | 136 (114–164) | 96 (89–118) | <0.001 † |
Postprandial glucose, mg/dL | 159 (117–230) | 102 (87.2–134) | <0.001 † |
Fasting insulin, mU/L | 13.4 (9.4–20.1) | 7.0 (5.4–9.3) | <0.001 † |
Postprandial insulin, mU/L | 28.7 (16.4–98) | 12.9 (8.1–23.1) | <0.001 † |
HbA1c, % | 6.9 (6.2–8.2) | 5.7 (5.2–6.0) | <0.001 † |
Triglyceride, mg/dL | 161 (118–205) | 117.7 (88–156) | <0.001 † |
HDL, mg/dL | 43.5 (37–49) | 48.8 (41.6–57) | <0.001 † |
HOMA-IR | 5.1 (3.4–828) | 1.6 (1.2–2.3) | <0.001 † |
VAI | 3.1 (2.3–4.3) | 1.9 (1.2–2.6) | <0.001 † |
TyG index | 9.3 (8.9–9.6) | 8.6 (8.3–8.9) | <0.001 † |
DM Remission | ||||
---|---|---|---|---|
No (n = 16) | Partial Remission (n = 16) | Full Remission (n = 34) | p (Intergroup) | |
Age | 55.9 ± 6.8 | 49.7 ± 10.6 | 47.1 ± 8.5 * | 0.006 † |
Gender | ||||
Male | 4 (25.0%) | 5 (31.2%) | 9 (26.5%) | 0.937 ¶ |
Female | 12 (75.0%) | 11 (68.8%) | 25 (73.5%) | |
Operation type | ||||
Sleeve gastrectomy | 4 (25.0%) | 7 (43.8%) | 21 (61.8%) * | 0.048 § |
OAGB | 12 (75.0%) | 9 (56.2%) | 13 (38.2%) * | |
Pre-op insulin use | ||||
No | 4 (25.0%) | 13 (81.3%) * | 29 (85.3%) * | <0.001 ¶ |
Yes | 12 (75.0%) | 3 (18.7%) * | 5 (14.7%) * | |
Preop OAD use | ||||
No | 1 (6.3%) | 0 (0.0%) | 3 (8.8%) | 0.801 ¶ |
Yes | 15 (93.7%) | 16 (100.0%) | 31 (91.2%) | |
Postop OAD cessation | ||||
No | 2 (13.3%) | 2 (12.5%) | 1 (3.25%) | 0.016 ¶ |
Quit but started again | 4 (26.7%) | 0 (0.0%) * | 1 (3.25%) * | |
Completely quit | 9 (60.0%) | 14 (87.5%) | 29 (93.5%) * | |
C-peptide | 2.9 ± 1.0 | 3.8 ± 1.6 | 4.3 ± 1.6 * | 0.008 † |
ABCD score | 4 (4–5) | 5 (3–7) | 6 (5–7) * | <0.001 ‡ |
DiaRem score | 17 (13–19) | 6.5 (4–10) * | 5 (2–8) * | <0.001 ‡ |
DM Remission | ||||
---|---|---|---|---|
No (n = 16) | Partial Remission (n = 16) | Full Remission (n = 34) | p (Intergroup) | |
Body mass index, kg/m2 | ||||
Preoperative | 41.7 (39.2–47.8) | 38.6 (35.5–42.2) | 46.6 (39.4–51.9) # | 0.005 ‡ |
Postop 6. month | 32.3 (29.6–37.3) | 29.0 (26.8–32.4) | 34.5 (29.6–37.5) # | 0.039 ‡ |
p (intergroup) | <0.001 † | <0.001 † | <0.001 † | |
Change (a) | −10.4 (−12.7–−7.9) | −9.8 (−10.3–−8.2) | −12.6 (−15.6–−9.8) # | 0.005 ‡ |
Waist circumference, cm | ||||
Preoperative | 128 (122–144) | 130 (113–140.5) | 144.5 (127–156) | 0.051 ‡ |
Postop 6. month | 102 (89–115.5) | 101 (85–108) | 106 (92–121) | 0.344 ‡ |
p (intergroup) | <0.001 † | <0.001 † | <0.001 † | |
Change (a) | −27.5 (−37–−25) | −30.5 (−35.5–−23.5) | −38 (−47–−31) *,# | 0.003 ‡ |
Fasting glucose, mg/dL | ||||
Preoperative | 173 (153.5–233) | 131 (107–165.5) * | 131 (112–146) * | 0.002 ‡ |
Postop 6. month | 133 (119–148) | 103.5 (102–113) | 90.5 (81–94) *,# | <0.001 ‡ |
p (intergroup) | 0.011 † | 0.002 † | <0.001 † | |
Change (a) | −47.5 (−103.2–−15) | −31.5 (−60–−4) | −38.5 (−65–−21) | 0.435 ‡ |
Postprandial glucose, mg/dL | ||||
Preoperative | 212 (146–325) | 125 (103–186) | 141 (117–205.85) | 0.086 ‡ |
Postop 6. month | 156 (134–202) | 94 (87.2–113) * | 97 (82–104) * | <0.001 ‡ |
p (intergroup) | 0.158 † | 0.038 † | <0.001 † | |
Change (a) | −14.5 (−191–18) | −21 (−78.8–1.1) | −61 (−139–−24) | 0.138 ‡ |
Fasting insulin, mU/L | ||||
Preoperative | 12.4 (10.4–15.5) | 11.1 (6.0–16.1) | 18.0 (10.1–29.7) # | 0.026 ‡ |
Postop 6. month | 7.4 (3.6–9.3) | 6.2 (4.3–8.3) | 7.0 (5.7–10) | 0.378 ‡ |
p (intergroup) | 0.001 † | 0.002 † | <0.001 † | |
Change (a) | −6.8 (−10.9–−2.5) | −4.8 (−8.4–−2.3) | −8.1 (−18.2–−3.7) | 0.105 ‡ |
Postprandial insulin, mU/L | ||||
Preoperative | 19.1 (11.6–46) | 17.6 (13.6–28.2) | 47.7 (22–162) # | 0.015 ‡ |
Postop 6. month | 11.9 (7.2–22.3) | 9.0 (7.6–14.0) | 15.7 (8.4–25.2) | 0.312 ‡ |
p (intergroup) | 0.093 † | 0.028 † | <0.001 † | |
Change (a) | −11.8 (−35.0–−3.6) | −4.3 (−14.4–−0.01) | −33.2 (−116.1–−14.1) # | 0.029 ‡ |
HbA1c, % | ||||
Preoperative | 8.5 (7.5–10.1) | 6.7 (6–7.9) * | 6.8 (5.9–7.2) * | <0.001 ‡ |
Postop 6. month | 6.8 (6.6–7.2) | 5.7 (5.1–5.9) * | 5.4 (5.1–5.6) * | <0.001 ‡ |
p (intergroup) | <0.001 † | <0.001 † | <0.001 † | |
Change (a) | −1.3 (−2.8–−0.4) | −1.5 (−1.9–−0.5) | −1.3 (−1.7–−0.7) | 0.984 ‡ |
Triglyceride, mg/dL | ||||
Preoperative | 151 (131.5–291.5) | 157 (109.5–210.5) | 166 (119–196) | 0.849 ‡ |
Postop 6. month | 132 (108–179.5) | 116 (87–155.5) | 110 (83–140) | 0.128 ‡ |
p (intergroup) | 0.023 † | 0.005 † | <0.001 † | |
Change (a) | −45 (−103.5–−2) | −44 (−102.5–−6) | −39.7 (−86.4–−16) | 0.982 ‡ |
HDL, mg/dL | ||||
Preoperative | 45 (34.5–48.5) | 41.4 (36.6–49.7) | 43.0 (38–49) | 0.861 ‡ |
Postop 6. month | 46.9 (38–52.1) | 50.5 (42.1–57.5) | 49 (40.5–57) | 0.511 ‡ |
p (intergroup) | 0.155 † | 0.015 † | 0.011 † | |
Change (a) | 5.7 (−3.5–11.2) | 7.6 (−0.9–16.1) | 2 (−1–10.5) | 0.479 ‡ |
HOMA-IR | ||||
Preoperative | 6.0 (3.9–9.1) | 4.7 (1.8–6.5) | 5.2 (3.6–9.3) | 0.096 ‡ |
Postop 6. month | 2.2 (1.2–3.0) | 1.68 (1.2–2.0) | 1.5 (1.2–2.1) | 0.327 ‡ |
p (intergroup) | <0.001 † | 0.001 † | <0.001 † | |
Change (a) | −3.7 (−6.7–−1.9) | −2.9 (−3.8–−0.6) | −3.6 (−8.0–−1.7) | 0.150 ‡ |
VAI | ||||
Preoperative | 3.5 (2.4–4.9) | 3.2 (2.1–4.0) | 3.0 (2.5–4.2) | 0.704 ‡ |
Postop 6. month | 2.3 (1.3–3.2) | 1.8 (1.1–2.3) | 1.5 (1.2–2.5) | 0.129 ‡ |
p (intergroup) | 0.003 † | <0.001 † | <0.001 † | |
Change (a) | −1.1 (−2.4–−0.9) | −1.3 (−2.5–−0.6) | −1.1 (−2–−0.6) | 0.960 ‡ |
TyG index | ||||
Preoperative | 9.5 (9.3–10.3) | 9.2 (8.9–9.7) | 9.2 (8.9–9.5) | 0.155 ‡ |
Postop 6. month | 9.1 (8.8–9.4) | 8.7 (8.5–9.0) | 8.5 (8.2–8.7) * | <0.001 ‡ |
p (intergroup) | 0.015 † | <0.001 † | <0.001 † | |
Change (a) | −0.5 (−1.0–−0.3) | −0.4 (−1.0–−0.2) | −0.7 (−1.1–−0.3) | 0.325 ‡ |
β Coefficient | Standard Error | p | Exp (β) (95% CI) | |
---|---|---|---|---|
Age | −0.131 | 0.049 | 0.008 | 0.877 (0.797–0.966) |
Body mass index, kg/m2, Preoperative | 0.182 | 0.066 | 0.006 | 1.199 (1.053–1.366) |
Postprandial insulin, Preoperative | 0.018 | 0.007 | 0.008 | 1.018 (1.005–1.032) |
Constant | −2.354 | 2.759 | 0.394 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ocakli, S.; Banli, O. Predicting Type 2 Diabetes Remission After Bariatric Surgery: The Role of Homeostatic Model Assessment of Insulin Resistance (Homa-IR), Visceral Adiposity Index (Vai) and Triglyceride-Glucose (TyG) Index. J. Clin. Med. 2025, 14, 7273. https://doi.org/10.3390/jcm14207273
Ocakli S, Banli O. Predicting Type 2 Diabetes Remission After Bariatric Surgery: The Role of Homeostatic Model Assessment of Insulin Resistance (Homa-IR), Visceral Adiposity Index (Vai) and Triglyceride-Glucose (TyG) Index. Journal of Clinical Medicine. 2025; 14(20):7273. https://doi.org/10.3390/jcm14207273
Chicago/Turabian StyleOcakli, Serhat, and Oktay Banli. 2025. "Predicting Type 2 Diabetes Remission After Bariatric Surgery: The Role of Homeostatic Model Assessment of Insulin Resistance (Homa-IR), Visceral Adiposity Index (Vai) and Triglyceride-Glucose (TyG) Index" Journal of Clinical Medicine 14, no. 20: 7273. https://doi.org/10.3390/jcm14207273
APA StyleOcakli, S., & Banli, O. (2025). Predicting Type 2 Diabetes Remission After Bariatric Surgery: The Role of Homeostatic Model Assessment of Insulin Resistance (Homa-IR), Visceral Adiposity Index (Vai) and Triglyceride-Glucose (TyG) Index. Journal of Clinical Medicine, 14(20), 7273. https://doi.org/10.3390/jcm14207273