Inflammatory and Nutritional Markers Predicting Pathological Complete Response to Neoadjuvant Therapy in HER2-Positive Breast Cancer: A Multicenter Real-World Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Patient Inclusion Criteria
2.2. Data Collection, Study Variables and Outcome Definitions
2.3. Statistical Analysis
2.4. Ethical Considerations
3. Results
3.1. Baseline Clinical, Demographic, and Treatment Characteristics
3.2. Inflammatory and Nutritional Markers in Relation to pCR
3.3. Predictors of pCR
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AUC | Area Under the Curve |
BC | Breast Cancer |
CAR | C-reactive Protein-to-Albumin Ratio |
CI | Confidence Interval |
DFS | Disease-Free Survival |
ECOG | Eastern Cooperative Oncology Group |
ER | Estrogen Receptor |
FISH | Fluorescence In Situ Hybridization |
HER2 | Human Epidermal Growth Factor Receptor 2 |
IHC | Immunohistochemistry |
Ki-67 | Ki-67 Proliferation Index |
LMR | Lymphocyte-to-Monocyte Ratio |
NAR | Neutrophil-to-Albumin Ratio |
NAT | Neoadjuvant Therapy |
NLR | Neutrophil-to-Lymphocyte Ratio |
OR | Odds Ratio |
OS | Overall Survival |
pCR | Pathological Complete Response |
PLR | Platelet-to-Lymphocyte Ratio |
PNI | Prognostic Nutritional Index |
PR | Progesterone Receptor |
RC | Reference Category |
ROC | Receiver Operating Characteristic |
SII | Systemic Immune-Inflammation Index |
References
- Carvalho, E.; Canberk, S.; Schmitt, F.; Vale, N. Molecular Subtypes and Mechanisms of Breast Cancer: Precision Medicine Approaches for Targeted Therapies. Cancers 2025, 17, 1102. [Google Scholar] [CrossRef] [PubMed]
- Loibl, S.; Gianni, L. HER2-positive breast cancer. Lancet 2017, 389, 2415–2429. [Google Scholar] [CrossRef]
- Pusztai, L.; Foldi, J.; Dhawan, A.; DiGiovanna, M.P.; Mamounas, E.P. Changing frameworks in treatment sequencing of triple-negative and HER2-positive, early-stage breast cancers. Lancet Oncol. 2019, 20, e390–e396. [Google Scholar] [CrossRef]
- Davey, M.G.; Browne, F.; Miller, N.; Lowery, A.J.; Kerin, M.J. Pathological complete response as a surrogate to improved survival in human epidermal growth factor receptor-2-positive breast cancer: Systematic review and meta-analysis. BJS Open 2022, 6, zrac028. [Google Scholar] [CrossRef]
- Greten, F.R.; Grivennikov, S.I. Inflammation and Cancer: Triggers, Mechanisms, and Consequences. Immunity 2019, 51, 27–41. [Google Scholar] [CrossRef] [PubMed]
- Guthrie, G.J.; Charles, K.A.; Roxburgh, C.S.; Horgan, P.G.; McMillan, D.C.; Clarke, S.J. The systemic inflammation-based neutrophil-lymphocyte ratio: Experience in patients with cancer. Crit. Rev. Oncol. Hematol. 2013, 88, 218–230. [Google Scholar] [CrossRef]
- Motomura, T.; Shirabe, K.; Mano, Y.; Muto, J.; Toshima, T.; Umemoto, Y.; Fukuhara, T.; Uchiyama, H.; Ikegami, T.; Yoshizumi, T.; et al. Neutrophil–lymphocyte ratio reflects hepatocellular carcinoma recurrence after liver transplantation via inflammatory microenvironment. J. Hepatol. 2013, 58, 58–64. [Google Scholar] [CrossRef]
- Bhatti, I.; Peacock, O.; Lloyd, G.; Larvin, M.; Hall, R.I. Preoperative hematologic markers as independent predictors of prognosis in resected pancreatic ductal adenocarcinoma: Neutrophil-lymphocyte versus platelet-lymphocyte ratio. Am. J. Surg. 2010, 200, 197–203. [Google Scholar] [CrossRef]
- Sarraf, K.M.; Belcher, E.; Raevsky, E.; Nicholson, A.G.; Goldstraw, P.; Lim, E. Neutrophil/lymphocyte ratio and its association with survival after complete resection in non–small cell lung cancer. J. Thorac. Cardiovasc. Surg. 2009, 137, 425–428. [Google Scholar] [CrossRef]
- Arici, M.O.; Kivrak Salim, D.; Kocer, M.; Alparslan, A.S.; Karakas, B.R.; Ozturk, B. Predictive and Prognostic Value of Inflammatory and Nutritional Indexes in Patients with Breast Cancer Receiving Neoadjuvant Chemotherapy. Medicina 2024, 60, 1849. [Google Scholar] [CrossRef] [PubMed]
- Qu, F.; Luo, Y.; Peng, Y.; Yu, H.; Sun, L.; Liu, S.; Zeng, X. Construction and validation of a prognostic nutritional index-based nomogram for predicting pathological complete response in breast cancer: A two-center study of 1170 patients. Front. Immunol. 2023, 14, 1335546. [Google Scholar] [CrossRef]
- Yasukawa, K.; Shimizu, A.; Motoyama, H.; Kubota, K.; Notake, T.; Fukushima, K.; Ikehara, T.; Hayashi, H.; Kobayashi, A.; Soejima, Y. Preoperative C-reactive protein-to-albumin ratio predicts long-term outcomes in extrahepatic cholangiocarcinoma patients. J. Surg. Oncol. 2020, 122, 1094–1105. [Google Scholar] [CrossRef]
- Xie, J.; Guo, Z.; Zhu, Y.; Ma, M.; Jia, G. Peripheral blood inflammatory indexes in breast cancer: A review. Medicine 2023, 102, e36315. [Google Scholar] [CrossRef]
- Zhou, Q.; Dong, J.; Sun, Q.; Lu, N.; Pan, Y.; Han, X. Role of neutrophil-to-lymphocyte ratio as a prognostic biomarker in patients with breast cancer receiving neoadjuvant chemotherapy: A meta-analysis. BMJ Open 2021, 11, e047957. [Google Scholar] [CrossRef]
- Bae, S.J.; Yoon, C.-I.; Park, S.E.; Cha, C.H.; Kim, D.; Lee, J.; Ahn, S.G.; Park, H.S.; Cho, Y.; Jeong, J. A neutrophil to lymphocyte ratio is predictive of response to neoadjuvant HER2-targeted therapies in the patients with HER2-positive breast cancer. J. Clin. Oncol. 2019, 37 (Suppl. 15). [Google Scholar] [CrossRef]
- Corbeau, I.; Jacot, W.; Guiu, S. Neutrophil to Lymphocyte Ratio as Prognostic and Predictive Factor in Breast Cancer Patients: A Systematic Review. Cancers 2020, 12, 958. [Google Scholar] [CrossRef]
- Corbeau, I.; Thezenas, S.; Maran-Gonzalez, A.; Colombo, P.E.; Jacot, W.; Guiu, S. Inflammatory Blood Markers as Prognostic and Predictive Factors in Early Breast Cancer Patients Receiving Neoadjuvant Chemotherapy. Cancers 2020, 12, 2666. [Google Scholar] [CrossRef]
- Jin, X.; Wang, K.; Shao, X.; Huang, J. Prognostic implications of the peripheral platelet-to-lymphocyte ratio and neutrophil-to-lymphocyte ratio in predicting pathologic complete response after neoadjuvant chemotherapy in breast cancer patients. Gland. Surg. 2022, 11, 1057–1066. [Google Scholar] [CrossRef] [PubMed]
- Ma, R.; Wei, W.; Ye, H.; Dang, C.; Li, K.; Yuan, D. A nomogram based on platelet-to-lymphocyte ratio for predicting pathological complete response of breast cancer after neoadjuvant chemotherapy. BMC Cancer 2023, 23, 245. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, J.; Chen, X. Lymphocyte-to-Monocyte Ratio is Associated with the Poor Prognosis of Breast Cancer Patients Receiving Neoadjuvant Chemotherapy. Cancer Manag. Res. 2021, 13, 1571–1580. [Google Scholar] [CrossRef]
- Truffi, M.; Piccotti, F.; Albasini, S.; Tibollo, V.; Morasso, C.F.; Sottotetti, F.; Corsi, F. Preoperative Systemic Inflammatory Biomarkers Are Independent Predictors of Disease Recurrence in ER+ HER2- Early Breast Cancer. Front. Oncol. 2021, 11, 773078. [Google Scholar] [CrossRef]
- Deng, Y.X.; Zhao, Y.J.; Nong, Q.H.; Qiu, H.M.; Guo, Q.L.; Hu, H. Predictive Value of Pretreatment Neutrophil to Albumin Ratio in Response to Neoadjuvant Chemotherapy of Breast Cancer. Breast Cancer 2024, 16, 393–402. [Google Scholar] [CrossRef]
- Phung, A.T.; Shah, J.R.; Dong, T.; Reid, T.; Larson, C.; Sanchez, A.B.; Oronsky, B.; Trogler, W.C.; Kummel, A.C.; Aisagbonhi, O. CAR expression in invasive breast carcinoma and its effect on adenovirus transduction efficiency. Breast Cancer Res. 2024, 26, 131. [Google Scholar] [CrossRef]
- Zhang, Z.; Zeng, Y.; Liu, W. The role of systemic immune-inflammation index in predicting pathological complete response of breast cancer after neoadjuvant therapy and the establishment of related predictive model. Front. Oncol. 2024, 14, 1437140. [Google Scholar] [CrossRef] [PubMed]
- Peng, P.; Chen, L.; Shen, Q.; Xu, Z.; Ding, X. Prognostic Nutritional Index (PNI) and Controlling Nutritional Status (CONUT) score for predicting outcomes of breast cancer: A systematic review and meta-analysis. Pak. J. Med. Sci. 2023, 39, 1535–1541. [Google Scholar] [CrossRef] [PubMed]
- Prasetiyo, P.D.; Baskoro, B.A.; Hariyanto, T.I. The role of nutrition-based index in predicting survival of breast cancer patients: A systematic review and meta-analysis. Heliyon 2024, 10, e23541. [Google Scholar] [CrossRef]
- Yan, L.; Nakamura, T.; Casadei-Gardini, A.; Bruixola, G.; Huang, Y.-L.; Hu, Z.-D. Long-term and short-term prognostic value of the prognostic nutritional index in cancer: A narrative review. Ann. Transl. Med. 2021, 9, 1630. [Google Scholar] [PubMed]
- Onodera, T.; Goseki, N.; Kosaki, G. Prognostic nutritional index in gastrointestinal surgery of malnourished cancer patients. Nihon Geka Gakkai Zasshi 1984, 85, 1001–1005. [Google Scholar]
- Morgan, T.M.; Tang, D.; Stratton, K.L.; Barocas, D.A.; Anderson, C.B.; Gregg, J.R.; Chang, S.S.; Cookson, M.S.; Herrell, S.D.; Smith, J.A.; et al. Preoperative nutritional status is an important predictor of survival in patients undergoing surgery for renal cell carcinoma. Eur. Urol. 2011, 59, 923–928. [Google Scholar] [CrossRef]
- Dai, Y.; Liu, M.; Lei, L.; Lu, S. Prognostic significance of preoperative prognostic nutritional index in ovarian cancer: A systematic review and meta-analysis. Medicine 2020, 99, e21840. [Google Scholar] [CrossRef]
- Zhao, P.; Wu, Z.; Wang, Z.; Wu, C.; Huang, X.; Tian, B. Prognostic role of the prognostic nutritional index in patients with pancreatic cancer who underwent curative resection without preoperative neoadjuvant treatment: A systematic review and meta-analysis. Front. Surg. 2022, 9, 992641. [Google Scholar] [CrossRef]
- Gupta, D.; Lis, C.G. Pretreatment serum albumin as a predictor of cancer survival: A systematic review of the epidemiological literature. Nutr. J. 2010, 9, 69. [Google Scholar] [CrossRef] [PubMed]
- Ray-Coquard, I.; Cropet, C.; Van Glabbeke, M.; Sebban, C.; Le Cesne, A.; Judson, I.; Tredan, O.; Verweij, J.; Biron, P.; Labidi, I.; et al. Lymphopenia as a prognostic factor for overall survival in advanced carcinomas, sarcomas, and lymphomas. Cancer Res. 2009, 69, 5383–5391. [Google Scholar] [CrossRef]
- Chen, Z.; Gao, H.; Cheng, M.; Song, C. A Prognostic Nutritional Index-Based Nomogram to Predict Breast Cancer Metastasis: A Retrospective Cohort Validation. Breast Cancer 2025, 17, 497–510. [Google Scholar] [CrossRef]
- Gosav, E.M.; Tanase, D.M.; Ouatu, A.; Buliga-Finis, O.N.; Popescu, D.; Dascalu, C.G.; Dima, N.; Badescu, M.C.; Rezus, C. The Role of Neutrophil-to-Lymphocyte Ratio and Platelet-to-Lymphocyte Ratio in Predicting Atrial Fibrillation and Its Comorbidities. Life 2025, 15, 960. [Google Scholar] [CrossRef]
- Buonacera, A.; Stancanelli, B.; Colaci, M.; Malatino, L. Neutrophil to Lymphocyte Ratio: An Emerging Marker of the Relationships between the Immune System and Diseases. Int. J. Mol. Sci. 2022, 23, 3636. [Google Scholar] [CrossRef] [PubMed]
- Büyükşimşek, M.; Oğul, A.; Mirili, C.; Paydaş, S. Inflammatory Markers Predicting Pathological Complete Response in Cases with Breast Cancer Treated by Neoadjuvant Chemotherapy. Eur. J. Breast Health 2020, 16, 229–234. [Google Scholar] [CrossRef]
- Wang, Y.; Battseren, B.; Yin, W.; Lin, Y.; Zhou, L.; Yang, F.; Wang, Y.; Sun, L.; Lu, J. Predictive and prognostic value of prognostic nutritional index for locally advanced breast cancer. Gland. Surg. 2019, 8, 618–626. [Google Scholar] [CrossRef]
- Luz, P.; Lopes-Brás, R.; de Pinho, I.S.; Patel, V.; Esperança-Martins, M.; Gonçalves, L.; Gonçalves, J.; Freitas, R.; Simão, D.; Galnares, M.R.; et al. Predictive factors for pCR and relapse following neoadjuvant dual HER2-blockade in HER2+ breast cancer: An international cohort study. Clin. Transl. Oncol. 2025. [Google Scholar] [CrossRef] [PubMed]
- Goorts, B.; van Nijnatten, T.J.; de Munck, L.; Moossdorff, M.; Heuts, E.M.; de Boer, M.; Lobbes, M.B.I.; Smidt, M.L. Clinical tumor stage is the most important predictor of pathological complete response rate after neoadjuvant chemotherapy in breast cancer patients. Breast Cancer Res. Treat. 2017, 163, 83–91. [Google Scholar] [CrossRef]
- Zhou, S.; Qin, X.; Xing, W.; Xu, Z.; Wei, C.; Ren, Y.; Gong, Z. Differences in treatment response and survival between HER2(2+)/FISH-positive and HER2(3+) breast cancer patients after dual-target neoadjuvant therapy: A matched case-control study. Front. Oncol. 2025, 15, 1530793. [Google Scholar] [CrossRef] [PubMed]
- Gianni, L.; Pienkowski, T.; Im, Y.-H.; Roman, L.; Tseng, L.-M.; Liu, M.-C.; Lluch, A.; Staroslawska, E.; De La Haba-Rodriguez, J.; Im, S.-A.; et al. Efficacy and safety of neoadjuvant pertuzumab and trastuzumab in women with locally advanced, inflammatory, or early HER2-positive breast cancer (NeoSphere): A randomised multicentre, open-label, phase 2 trial. Lancet Oncol. 2012, 13, 25–32. [Google Scholar] [CrossRef] [PubMed]
Variables | Overall Cohort (n: 174) | Non-PCR (n: 88) | PCR (n: 86) | p | ||||
---|---|---|---|---|---|---|---|---|
Age, median | 51 (min 25–max 80) | 51 (min 25–max 779 | 51 (min 29–max 80) | 0.570 1 | ||||
Age, n (%) | <50 | 80 | 46% | 40 | 45% | 40 | 47% | 0.889 2 |
≥50 | 94 | 54% | 48 | 55% | 46 | 53% | ||
Comorbidity, n (%) | Absent | 105 | 60% | 58 | 66% | 47 | 55% | 0.129 2 |
Present | 69 | 40% | 30 | 34% | 39 | 45% | ||
BMI kg/m2, median | 27.6 (min 17.9–max 42.9) | 27.9 (min 17.9–max 42.9) | 27.3 (min 18.2–max 42) | 0.378 1 | ||||
BMI kg/m2, n (%) | <30 | 115 | 66% | 57 | 65% | 58 | 67% | 0.710 2 |
≥30 | 59 | 34% | 31 | 35% | 28 | 33% | ||
Menopause status, n (%) | Premenopausal | 73 | 42% | 37 | 42% | 36 | 42% | 0.980 2 |
Postmenopausal | 101 | 58% | 51 | 58% | 50 | 58% | ||
Primary Tumor Laterality, n (%) | Right | 85 | 49% | 40 | 45% | 45 | 52% | 0.365 2 |
Left | 89 | 51% | 48 | 55% | 41 | 48% | ||
Histological Subtype, n (%) | IDC | 152 | 87% | 76 | 86% | 76 | 88% | 0.690 2 |
Other | 22 | 13% | 12 | 14% | 10 | 12% | ||
Grade, n (%) | 2 | 73 | 42% | 43 | 49% | 30 | 35% | 0.062 2 |
3 | 101 | 58% | 45 | 51% | 56 | 65% | ||
Ki-67%, median | 30 (min 5–max 95) | 30 (min 5–max 95) | 40 (min 5–max 90) | 0.095 1 | ||||
Ki-67, n (%) | <30 | 71 | 41% | 38 | 43% | 33 | 38% | 0.519 2 |
≥30 | 103 | 59% | 50 | 57% | 53 | 62% | ||
ER %, median | 65 (min 0–max 100) | 90 (min 0–max 100) | 27 (min 0–max 100) | 0.002 1 | ||||
PR %, median | 0 (min 0–max 100) | 0 (min 0–max 100) | 0 (min 0–max 95) | 0.240 1 | ||||
Subtype, n (%) | HR-negative | 64 | 37% | 25 | 28% | 39 | 45% | 0.021 2 |
HR-positive | 110 | 63% | 63 | 72% | 47 | 55% | ||
Her2 status, n (%) | IHC 2+, FISH+ | 23 | 13% | 18 | 20% | 5 | 6% | 0.004 2 |
IHC 3+ | 151 | 87% | 70 | 80% | 81 | 94% | ||
T stage, n (%) | T1–2 | 135 | 78% | 63 | 72% | 72 | 84% | 0.055 2 |
T3–4 | 39 | 22% | 25 | 28% | 14 | 16% | ||
N stage, n (%) | N0–1 | 151 | 87% | 75 | 85% | 76 | 88% | 0.540 2 |
N2–3 | 23 | 13% | 13 | 15% | 10 | 12% | ||
Stage, n (%) | 2 | 118 | 68% | 54 | 61% | 64 | 74% | 0.065 2 |
3 | 56 | 32% | 34 | 39% | 22 | 26% | ||
Neoadjuvant CT, n (%) | AC-THP | 100 | 57% | 43 | 49% | 57 | 66% | 0.038 2 |
AC-TH | 44 | 25% | 29 | 33% | 15 | 17% | ||
TCHP | 30 | 17% | 16 | 18% | 14 | 16% | ||
Dual anti-Her2 therapy, n (%) | Not received | 44 | 25% | 29 | 33% | 15 | 17% | 0.019 2 |
Received | 130 | 75% | 59 | 67% | 71 | 83% | ||
Anthracycline-based chemotherapy, n (%) | Not received | 30 | 17% | 16 | 18% | 14 | 16% | 0.740 2 |
Received | 144 | 83% | 72 | 82% | 72 | 84% | ||
Recurrence, n (%) | Absent | 150 | 86% | 71 | 81% | 79 | 92% | 0.033 2 |
Present | 24 | 14% | 17 | 19% | 7 | 8% | ||
Current status, n (%) | Alive | 158 | 91% | 78 | 89% | 80 | 93% | 0.317 2 |
Exitus | 16 | 9% | 10 | 11% | 6 | 7% |
Variables | Overall Cohort (n: 174) | Non-PCR (n: 88) | PCR (n: 86) | p | ||||
---|---|---|---|---|---|---|---|---|
NLR, median | 2.1 (min 0.4–max 12.2) | 2.0 (min 0.4–max 7.3) | 2.1(min 0.7–12.2) | 0.350 1 | ||||
NLR, n (%) | <2.1 | 85 | 48% | 46 | 52% | 39 | 45% | 0.361 2 |
≥2.1 | 89 | 52% | 42 | 48% | 47 | 55% | ||
PLR, median | 133.1 (min 56–max 452) | 133 (min 64–max 452) | 134 (min 56–max 347) | 0.520 1 | ||||
PLR, n (%) | <133 | 88 | 51% | 45 | 51% | 43 | 50% | 0.881 2 |
≥133 | 86 | 49% | 43 | 49% | 43 | 50% | ||
LMR, median | 4.2 (min 1.5–max 20) | 4 (min 1.6–max 18) | 4.4 (min 1.5–max 20) | 0.180 1 | ||||
LMR, n (%) | <4.2 | 85 | 49% | 49 | 56% | 36 | 42% | 0.068 2 |
≥4.2 | 89 | 51% | 39 | 44% | 50 | 58% | ||
NAR, median | 0.9 (min 0.2–max 2.5) | 0.9 (min 0.2–max 2.3) | 0.8 (min 0.4–2.5) | 0.816 1 | ||||
NAR, n (%) | <0.9 | 85 | 49% | 49 | 56% | 36 | 42% | 0.580 2 |
≥0.9 | 89 | 51% | 39 | 44% | 50 | 58% | ||
CAR, median | 0.5 (min 0.02–max 6.9) | 0.56 (min 0.02–5) | 0.5 (min 0.004–max 6.9) | 0.489 1 | ||||
CAR, n (%) | <0.5 | 81 | 47% | 40 | 45% | 41 | 48% | 0.765 2 |
≥0.5 | 93 | 53% | 48 | 55% | 45 | 52% | ||
SII, median | 595 (min 107–max 4233) | 580 (min 107–max 2079) | 634 (min 220–max 4233) | 0.517 1 | ||||
SII, n (%) | <595 | 87 | 50% | 47 | 53% | 40 | 47% | 0.363 2 |
≥595 | 87 | 50% | 41 | 47% | 46 | 53% | ||
PNI, median | 55 (min 39–max 76) | 55 (min 42–max 70) | 57 (min 39–max 76) | 0.068 1 | ||||
PNI, n (%) | <55 | 64 | 37% | 39 | 44% | 25 | 29% | 0.037 2 |
≥55 | 110 | 63% | 49 | 56% | 61 | 71% |
Variables | Univariate Analiz | Multivariate Analiz | |||
---|---|---|---|---|---|
OR (95%CI) | p | OR (95%CI) | p | ||
Age | <50 | 1.04 (0.57–1.89) | 0.889 | ||
≥50 | |||||
Comorbidity | Absent | 1.60 (0.87–2.95) | 0.130 | 1.70 (0.86–3.36) | 0.124 |
Present | |||||
BMI | <30 | 0.88 (0.47–1.66) | 0.710 | ||
≥30 | |||||
Menopause status | Premenopausal | 1.0 (0.55–1.84) | 0.980 | ||
Postmenopausal | |||||
Grade | 2 (RC) | 1.78 (0.97–3.28) | 0.063 | 1.68 (0.85–3.31) | 0.129 |
3 | |||||
Her2 status | IHC 2+, FISH+ | 0.24 (0.08–0.68) | 0.007 | 0.23 (0.07–0.71) | 0.011 |
IHC 3+ (RC) | |||||
T stage | T1–2 (RC) | 0.49 (0.23–1.02) | 0.058 | 0.34 (0.14–0.79) | 0.012 |
T3–4 | |||||
N stage | N0–1 | 0.75 (0.31–1.83) | 0.541 | ||
N2–3 | |||||
Stage | 2 | 0.54 (0.28–1.04) | 0.067 | 0.80 (0.26–2.46) | 0.709 |
3 | |||||
Subtype | HR-negative | 2.09 (1.11–3.92) | 0.021 | 2.59 (1.25–5.36) | 0.01 |
HR-positive (RC) | |||||
Ki-67 | <30 | 1.22 (0.66–2.23) | 0.519 | ||
≥30 | |||||
Anthracycline-based chemotherapy | Not received | 0.87 (0.39–1.92) | 0.740 | ||
Received | |||||
Dual anti-Her2 therapy | Not received (RC) | 0.43 (0.21–0.87) | 0.02 | 2.49 (1.16–5.33) | 0.019 |
Received | |||||
NLR | <2.1 (RC) | 1.32 (0.72–2.39) | 0.361 | ||
≥2.1 | |||||
PLR | <133 (RC) | 1.04 (0.57–1.89) | 0.881 | ||
≥133 | |||||
PNI | <55 (RC) | 1.94 (1.03–3.63) | 0.038 | 2.89 (1.40–5.99) | 0.004 |
≥55 | |||||
LMR | <4.2 (RC) | 1.74 (0.95–3.18) | 0.069 | 1.56 (0.72–3.37) | 0.253 |
≥4.2 | |||||
NAR | <0.9 (RC) | 1.19 (0.63–2.28) | 0.580 | ||
≥0.9 | |||||
CAR | <0.5 (RC) | 0.91 (0.50–1.66) | 0.769 | ||
≥0.5 | |||||
SII | <595 (RC) | 1.31 (0.72–2.39) | 0.363 | ||
≥595 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Birsin, Z.; Nazlı, İ.; Alkan, O.; Odabaşı Bükün, H.; Günaltılı, M.; Çerme, E.; Aliyev, V.; Cebeci, S.; Jeral, S.; Abbasov, H.; et al. Inflammatory and Nutritional Markers Predicting Pathological Complete Response to Neoadjuvant Therapy in HER2-Positive Breast Cancer: A Multicenter Real-World Study. J. Clin. Med. 2025, 14, 7271. https://doi.org/10.3390/jcm14207271
Birsin Z, Nazlı İ, Alkan O, Odabaşı Bükün H, Günaltılı M, Çerme E, Aliyev V, Cebeci S, Jeral S, Abbasov H, et al. Inflammatory and Nutritional Markers Predicting Pathological Complete Response to Neoadjuvant Therapy in HER2-Positive Breast Cancer: A Multicenter Real-World Study. Journal of Clinical Medicine. 2025; 14(20):7271. https://doi.org/10.3390/jcm14207271
Chicago/Turabian StyleBirsin, Zeliha, İsmail Nazlı, Onur Alkan, Hülya Odabaşı Bükün, Murat Günaltılı, Emir Çerme, Vali Aliyev, Selin Cebeci, Seda Jeral, Hamza Abbasov, and et al. 2025. "Inflammatory and Nutritional Markers Predicting Pathological Complete Response to Neoadjuvant Therapy in HER2-Positive Breast Cancer: A Multicenter Real-World Study" Journal of Clinical Medicine 14, no. 20: 7271. https://doi.org/10.3390/jcm14207271
APA StyleBirsin, Z., Nazlı, İ., Alkan, O., Odabaşı Bükün, H., Günaltılı, M., Çerme, E., Aliyev, V., Cebeci, S., Jeral, S., Abbasov, H., Evrensel, T., Papila, Ç., Papila, B., Sönmez Wetherilt, C., Demirci, N. S., & Alan, Ö. (2025). Inflammatory and Nutritional Markers Predicting Pathological Complete Response to Neoadjuvant Therapy in HER2-Positive Breast Cancer: A Multicenter Real-World Study. Journal of Clinical Medicine, 14(20), 7271. https://doi.org/10.3390/jcm14207271