Deep Learning-Based Risk Assessment and Prediction of Cardiac Outcomes Using Single-Lead 24-Hour Holter-ECG in Patients with Heart Failure or Myocardial Infarction
Abstract
1. Introduction
2. Methods
2.1. Study Population
2.2. Data Collection
2.3. Overview of the AI Model
2.4. Study Outcomes
2.5. Statistical Analysis
3. Results
3.1. Clinical Characteristics
3.2. Clinical Events and Predictive Performance
3.3. Hazard Across Model Probability Risks
4. Discussion
4.1. Challenges in Risk Stratification for Sudden Cardiac Death
4.2. Personalized Risk Prediction Using Deep Learning
4.3. Limitation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pouleur, A.C.; Barkoudah, E.; Uno, H.; Skali, H.; Finn, P.V.; Zelenkofske, S.L.; Belenkov, Y.N.; Mareev, V.; Velazquez, E.J.; Rouleau, J.L.; et al. Pathogenesis of sudden unexpected death in a clinical trial of patients with myocardial infarction and left ventricular dysfunction, heart failure, or both. Circulation 2010, 122, 597–602. [Google Scholar] [CrossRef]
- Zheng, Z.J.; Croft, J.B.; Giles, W.H.; Mensah, G.A. Sudden cardiac death in the United States, 1989 to 1998. Circulation 2001, 104, 2158–2163. [Google Scholar] [CrossRef] [PubMed]
- Stecker, E.C.; Vickers, C.; Waltz, J.; Socoteanu, C.; John, B.T.; Mariani, R.; McAnulty, J.H.; Gunson, K.; Jui, J.; Chugh, S.S. Population-Based Analysis of Sudden Cardiac Death with and Without Left Ventricular Systolic Dysfunction: Two-Year Findings from the Oregon Sudden Unexpected Death Study. J. Am. Coll. Cardiol. 2006, 47, 1161–1166. [Google Scholar] [CrossRef] [PubMed]
- Qu, Z.; Liu, Q.; Liu, C. Classification of congestive heart failure with different New York Heart Association functional classes based on heart rate variability indices and machine learning. Expert Syst. 2019, 36, e12396. [Google Scholar] [CrossRef]
- Kwon, J.-m.; Kim, K.-H.; Jeon, K.-H.; Lee, S.E.; Lee, H.-Y.; Cho, H.-J.; Choi, J.O.; Jeon, E.-S.; Kim, M.-S.; Kim, J.-J.; et al. Artificial intelligence algorithm for predicting mortality of patients with acute heart failure. PLoS ONE 2019, 14, e0219302. [Google Scholar] [CrossRef]
- Greenberg, B.; Adler, E.; Campagnari, C.; Yagil, A. A machine learning risk score predicts mortality across the spectrum of left ventricular ejection fraction. Eur. J. Heart Fail. 2021, 23, 995–999. [Google Scholar] [CrossRef]
- Kim, J.Y.; Park, Y.J.; Park, S.-J.; Kim, J.; Park, K.-M.; On, Y.K.; Kim, J.S.; Nam, G.-B.; Lee, Y.S.; Kim, D.H.; et al. Noninvasive risk assessment and prediction of cardiac outcomes in patients with congestive heart failure or myocardial infarction. Heart Rhythm 2024, 22, 1030–1039. [Google Scholar] [CrossRef]
- Park, S.-J.; Hwang, G.-S.; Nam, G.-B.; Park, H.W.; Chung, J.-W.; Shin, S.Y.; Kim, S.M.; Kim, J.H.; Lee, Y.S.; Park, Y.M.; et al. Design of Korean Noninvasive Risk Evaluation Study for Sudden Cardiac Death from Infarction or Heart Failure—Heart failure study of K-REDEFINE registry. Int. J. Arrhythm. 2016, 17, 181–189. [Google Scholar] [CrossRef]
- Vaid, A.; Jiang, J.; Sawant, A.; Lerakis, S.; Argulian, E.; Ahuja, Y.; Lampert, J.; Charney, A.; Greenspan, H.; Narula, J.; et al. A foundational vision transformer improves diagnostic performance for electrocardiograms. npj Digit. Med. 2023, 6, 108. [Google Scholar] [CrossRef]
- Na, Y.; Park, M.; Tae, Y.; Joo, S. Guiding Masked Representation Learning to Capture Spatio-Temporal Relationship of Electrocardiogram. arXiv 2024, arXiv:2402.09450. [Google Scholar] [CrossRef]
- He, K.; Chen, X.; Xie, S.; Li, Y.; Dollár, P.; Girshick, R. Masked autoencoders are scalable vision learners. arXiv 2022, arXiv:2111.06377. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. arXiv 2016, arXiv:1512.03385. [Google Scholar]
- Wellens, H.J.; Schwartz, P.J.; Lindemans, F.W.; Buxton, A.E.; Goldberger, J.J.; Hohnloser, S.H.; Huikuri, H.V.; Kääb, S.; La Rovere, M.T.; Malik, M.; et al. Risk stratification for sudden cardiac death: Current status and challenges for the future. Eur. Heart J. 2014, 35, 1642–1651. [Google Scholar] [CrossRef] [PubMed]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef] [PubMed]
- Moss, A.J.; Zareba, W.; Hall, W.J.; Klein, H.; Wilber, D.J.; Cannom, D.S.; Daubert, J.P.; Higgins, S.L.; Brown, M.W.; Andrews, M.L. Prophylactic implantation of a defibrillator in patients with myocardial infarction and reduced ejection fraction. N. Engl. J. Med. 2002, 346, 877–883. [Google Scholar] [CrossRef]
- Peek, N.; Hindricks, G.; Akbarov, A.; Tijssen, J.G.P.; Jenkins, D.A.; Kapacee, Z.; Parkes, L.M.; van der Geest, R.J.; Longato, E.; Sprague, D.; et al. Sudden cardiac death after myocardial infarction: Individual participant data from pooled cohorts. Eur. Heart J. 2024, 45, 4616–4626. [Google Scholar] [CrossRef]
- Gatzoulis, K.A.; Tsiachris, D.; Arsenos, P.; Antoniou, C.-K.; Dilaveris, P.; Sideris, S.; Kanoupakis, E.; Simantirakis, E.; Korantzopoulos, P.; Goudevenos, I.; et al. Arrhythmic risk stratification in post-myocardial infarction patients with preserved ejection fraction: The PRESERVE EF study. Eur. Heart J. 2019, 40, 2940–2949. [Google Scholar] [CrossRef]
- Bardy, G.H.; Lee, K.L.; Mark, D.B.; Poole, J.E.; Packer, D.L.; Boineau, R.; Domanski, M.; Troutman, C.; Anderson, J.; Johnson, G.; et al. Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure. N. Engl. J. Med. 2005, 352, 225–237. [Google Scholar] [CrossRef]
- Køber, L.; Thune, J.J.; Nielsen, J.C.; Haarbo, J.; Videbæk, L.; Korup, E.; Jensen, G.; Hildebrandt, P.; Steffensen, F.H.; Bruun, N.E.; et al. Defibrillator Implantation in Patients with Nonischemic Systolic Heart Failure. N. Engl. J. Med. 2016, 375, 1221–1230. [Google Scholar] [CrossRef]
- Yehya, A.; Lopez, J.; Sauer, A.J.; Davis, J.D.; Ibrahim, N.E.; Tung, R.; Bozkurt, B.; Fonarow, G.C.; Al-Khatib, S.M. Revisiting ICD Therapy for Primary Prevention in Patients with Heart Failure and Reduced Ejection Fraction. JACC Heart Fail. 2025, 13, 1–13. [Google Scholar] [CrossRef]
- Anantha Narayanan, M.; Vakil, K.; Reddy Yogesh, N.; Baskaran, J.; Deshmukh, A.; Benditt David, G.; Adabag, S. Efficacy of Implantable Cardioverter-Defibrillator Therapy in Patients with Nonischemic Cardiomyopathy. JACC Clin. Electrophysiol. 2017, 3, 962–970. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, A.; Hayıroğlu, M.; Salturk, S.; Pay, L.; Demircali, A.A.; Coşkun, C.; Varol, R.; Tezen, O.; Eren, S.; Çetin, T.; et al. Machine Learning Approach on High Risk Treadmill Exercise Test to Predict Obstructive Coronary Artery Disease by using P, QRS, and T waves' Features. Curr. Probl. Cardiol. 2023, 48, 101482. [Google Scholar] [CrossRef] [PubMed]
- Cicek, V.; Orhan, A.L.; Saylik, F.; Sharma, V.; Tur, Y.; Erdem, A.; Babaoglu, M.; Ayten, O.; Taslicukur, S.; Oz, A.; et al. Predicting Short-Term Mortality in Patients with Acute Pulmonary Embolism with Deep Learning. Circ. J. 2025, 89, 602–611. [Google Scholar] [CrossRef] [PubMed]
- Chefer, H.; Gur, S.; Wolf, L. Generic attention-model explainability for interpreting bi-modal and encoder-decoder transformers. arXiv 2021, arXiv:2103.15679. [Google Scholar]
- Hicks, S.A.; Isaksen, J.L.; Thambawita, V.; Ghouse, J.; Ahlberg, G.; Linneberg, A.; Grarup, N.; Strümke, I.; Ellervik, C.; Olesen, M.S.; et al. Explaining deep neural networks for knowledge discovery in electrocardiogram analysis. Sci. Rep. 2021, 11, 10949. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.-I. A unified approach to interpreting model predictions. arXiv 2017, arXiv:1705.07874. [Google Scholar] [CrossRef]
Total (n = 1108) | |
---|---|
Age [years], mean(SD) | 60.8 ± 12.9 |
Gender, male (%) | 844 (76.2) |
Body weight [kg], mean (SD) | 67.2 ± 13.5 |
BMI, mean (SD) | 24.8 ± 13.8 |
Medical history, n (%) | |
Hypertension | 606 (54.7) |
Stroke | 69 (6.2) |
Diabetes | 327 (29.5) |
Vascular disease | 128 (11.6) |
CKD | 74 (6.7) |
EF [%], mean (SD) | 48.2 ± 16.7 |
HFpEF | 529 (47.7%) |
HFmrEF | 291 (26.3%) |
HFrEF | 258 (23.3%) |
Sensitivity | Specificity | PPV | NPV | F1 Score | |
---|---|---|---|---|---|
DL model | 0.27 (0.09–0.46) | 0.96 (0.93–0.99) | 0.30 (0.20–0.40) | 0.96 (0.95–0.97) | 0.23 (0.16–0.31) |
DL with EF | 0.36 (0.27–0.46) | 0.92 (0.91–0.94) | 0.19 (0.15–0.24) | 0.97 (0.96–0.97) | 0.25 (0.19–0.31) |
EF | 0.26 (0.11–0.42) | 0.94 (0.91–0.97) | 0.16 (0.06–0.26) | 0.96 (0.96–0.97) | 0.20 (0.08–0.31) |
Sensitivity | Specificity | PPV | NPV | F1 Score | |
---|---|---|---|---|---|
DL model | 0.38 (0.25–0.51) | 0.95 (0.93–0.97) | 0.24 (0.19–0.29) | 0.98 (0.97–0.98) | 0.27 (0.21–0.32) |
DL with EF | 0.44 (0.28–0.61) | 0.96 (0.94–0.98) | 0.31 (0.22–0.40) | 0.98 (0.97–0.99) | 0.32 (0.26–0.38) |
EF | 0.30 (0.17–0.44) | 0.93 (0.91–0.94) | 0.12 (0.08–0.15) | 0.97 (0.97–0.98) | 0.17 (0.11–0.22) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.Y.; Kim, K.G.; Joo, S.; Chang, M.; Kim, J.; Park, K.-M.; On, Y.K.; Kim, J.S.; Lee, Y.S.; Park, S.-J., on behalf of the K-REDEFINE Investigators. Deep Learning-Based Risk Assessment and Prediction of Cardiac Outcomes Using Single-Lead 24-Hour Holter-ECG in Patients with Heart Failure or Myocardial Infarction. J. Clin. Med. 2025, 14, 7209. https://doi.org/10.3390/jcm14207209
Kim JY, Kim KG, Joo S, Chang M, Kim J, Park K-M, On YK, Kim JS, Lee YS, Park S-J on behalf of the K-REDEFINE Investigators. Deep Learning-Based Risk Assessment and Prediction of Cardiac Outcomes Using Single-Lead 24-Hour Holter-ECG in Patients with Heart Failure or Myocardial Infarction. Journal of Clinical Medicine. 2025; 14(20):7209. https://doi.org/10.3390/jcm14207209
Chicago/Turabian StyleKim, Ju Youn, Kyung Geun Kim, Sunghoon Joo, Mineok Chang, Juwon Kim, Kyoung-Min Park, Young Keun On, June Soo Kim, Young Soo Lee, and Seung-Jung Park on behalf of the K-REDEFINE Investigators. 2025. "Deep Learning-Based Risk Assessment and Prediction of Cardiac Outcomes Using Single-Lead 24-Hour Holter-ECG in Patients with Heart Failure or Myocardial Infarction" Journal of Clinical Medicine 14, no. 20: 7209. https://doi.org/10.3390/jcm14207209
APA StyleKim, J. Y., Kim, K. G., Joo, S., Chang, M., Kim, J., Park, K.-M., On, Y. K., Kim, J. S., Lee, Y. S., & Park, S.-J., on behalf of the K-REDEFINE Investigators. (2025). Deep Learning-Based Risk Assessment and Prediction of Cardiac Outcomes Using Single-Lead 24-Hour Holter-ECG in Patients with Heart Failure or Myocardial Infarction. Journal of Clinical Medicine, 14(20), 7209. https://doi.org/10.3390/jcm14207209