Effects of Air Pollution on Dialysis and Kidney Transplantation: Clinical and Public Health Action
Abstract
1. Introduction
2. The Role of Air Pollutants in ESKD Patients
3. Air Pollution and Kidney Transplantation
4. Clinical Importance of the Relationship Between Air Pollution and Higher Rates of Kidney Disease and KRT
5. Clinical and Public Health Action
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Talbot, B.; Fletcher, R.A.; Neal, B.; Oshima, M.; Adshead, F.; Moore, K.; McGain, F.; McAlister, S.; Barraclough, K.A.; Knight, J.; et al. The potential for reducing greenhouse gas emissions through disease prevention: A secondary analysis of data from the CREDENCE trial. Lancet Planet Health 2024, 8, e1055–e1064. [Google Scholar] [CrossRef] [PubMed]
- Święczkowski, M.; Lip, G.Y.H.; Abohashem, S.; Jemielita, P.; Kurasz, A.; Duzinkiewicz, M.; Januszko, T.; Tomaszuk-Kazberuk, A.; Dobrzycki, S.; Kuźma, Ł. Interplay Between Mental Health, Greenness, and Environmental Factors in Cardiovascular Mortality: Insights from AIR-MIND. Eur. J. Prev. Cardiol. 2025, zwaf534. [Google Scholar] [CrossRef] [PubMed]
- Jemielita, P.; Lip, G.Y.H.; Święczkowski, M.; Kurasz, A.; Krepsztul-Jemielita, A.; Dobrzycki, S.; Kuźma, Ł. Light pollution exposure and a risk of hospitalization for cardiovascular disease in Poland: A population-based study (EP-PARTICLES study). Pol. Arch. Intern. Med. 2025, 135, 17064. [Google Scholar] [CrossRef]
- Cesaroni, G.; Forastiere, F.; Stafoggia, M.; Andersen, Z.J.; Badaloni, C.; Beelen, R.; Caracciolo, B.; de Faire, U.; Erbel, R.; Eriksen, K.T.; et al. Long term exposure to ambient air pollution and incidence of acute coronary events: Prospective cohort study and meta-analysis in 11 European cohorts from the ESCAPE Project. BMJ 2014, 348, f7412. [Google Scholar] [CrossRef] [PubMed]
- eBioMedicine. Wildfires, smog, and the persistent threat of air pollution to human health. EBioMedicine 2025, 112, 105602. [Google Scholar] [CrossRef]
- Fuller, R.; Landrigan, P.J.; Balakrishnan, K.; Bathan, G.; Bose-O’Reilly, S.; Brauer, M.; Caravanos, J.; Chiles, T.; Cohen, A.; Corra, L.; et al. Pollution and health: A progress update. Lancet Planet. Health 2022, 6, e535–e547. [Google Scholar] [CrossRef]
- Pope, C.A., III; Ezzati, M.; Dockery, D.W. Fine-particulate air pollution and life expectancy in the United States. N. Engl. J. Med. 2009, 360, 376–386. [Google Scholar] [CrossRef]
- Lelieveld, J.; Evans, J.S.; Fnais, M.; Giannadaki, D.; Pozzer, A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 2015, 525, 367–371. [Google Scholar] [CrossRef]
- Chamberlain, R.C.; Fecht, D.; Davies, B.; Laverty, A.A. Health effects of low emission and congestion charging zones: A systematic review. Lancet Public Health 2023, 8, e559–e574. [Google Scholar] [CrossRef]
- Zhang, Q.; Jiang, X.; Tong, D.; Davis, S.J.; Zhao, H.; Geng, G.; Feng, T.; Zheng, B.; Lu, Z.; Streets, D.G.; et al. Transboundary health impacts of transported global air pollution and international trade. Nature 2017, 543, 705–709. [Google Scholar] [CrossRef]
- Kuźma, Ł.; Dąbrowski, E.J.; Kurasz, A.; Święczkowski, M.; Jemielita, P.; Dobrzycki, S.; Lip, G.Y.H. Short and mid-term impact of ozone on myocardial infarction incidence in Poland. Lancet Reg. Health Eur. 2024, 43, 100982. [Google Scholar] [CrossRef]
- Brook, R.D.; Franklin, B.; Cascio, W.; Hong, Y.; Howard, G.; Lipsett, M.; Luepker, R.; Mittleman, M.; Samet, J.; Smith, S.C., Jr.; et al. Air pollution and cardiovascular disease: A statement for healthcare professionals from the Expert Panel on Population and Prevention Science of the American Heart Association. Circulation 2004, 109, 2655–2671. [Google Scholar] [CrossRef]
- Cohen, A.J.; Brauer, M.; Burnett, R.; Anderson, H.R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Dandona, L.; Dandona, R.; et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015. Lancet 2017, 389, 1907–1918, Erratum in Lancet 2017, 389, e15. https://doi.org/10.1016/S0140-6736(17)31221-7; Erratum in: Lancet 2018, 391, 1576. https://doi.org/10.1016/S0140-6736(18)30900-0. [Google Scholar] [CrossRef]
- World Health Organization. Air Quality Guidelines: Global Update; Report on a Working Group Meeting, Bonn, Germany; WHO Regional Office for Europe: Geneva, Switzerland, 2005; Available online: https://www.londonair.org.uk/london/asp/laqnseminar/pdf/Jan2007/WHO_Air_Quality_Guidelines_Update_2005_Dr_Michal_Krzyzanowski_WHO_Regional_Office_for_Europe.pdf (accessed on 23 August 2025).
- World Health Organization. WHO Ambient Air Quality Database, 2022 Update: Status Report; World Health Organization: Geneva, Switzerland, 2023; ISBN 978-92-4-004769-3. [Google Scholar]
- European Environment Agency. Air Quality in Europe—2022 Report; 24 November 2022. Available online: https://www.eea.europa.eu/en/analysis/publications/air-quality-in-europe-2022 (accessed on 28 August 2025).
- Available online: https://www.healtheffects.org/announcements/new-state-global-air-report-finds-air-pollution-second-leading-risk-factor-death?utm_source=chatgpt.com (accessed on 21 September 2025).
- GBD 2021 Risk Factors Collaborators. Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: A systematic analysis for the Global Burden of Disease Study 2021. Lancet 2024, 403, 2162–2203. [Google Scholar] [CrossRef]
- Carlsten, C.; Blomberg, A.; Pui, M.; Sandstrom, T.; Wong, S.W.; Alexis, N.; Hirota, J. Diesel Exhaust Augments Allergen-Induced Lower Airway Inflammation in Allergic Individuals: A Controlled Human Exposure Study. Thorax 2016, 71, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Nie, S.; Ding, H.; Hou, F.F. Environmental Pollution and Kidney Diseases. Nat. Rev. Nephrol. 2018, 14, 313–324. [Google Scholar] [CrossRef] [PubMed]
- Nemmar, A.; Holme, J.A.; Rosas, I.; Schwarze, P.E.; Alfaro-Moreno, E. Recent advances in particulate matter and nanoparticle toxicology: A review of the in vivo and in vitro studies. Biomed. Res. Int. 2013, 2013, 279371. [Google Scholar] [CrossRef]
- Lee, S.; Kang, S.; Joo, Y.S.; Lee, C.; Nam, K.H.; Yun, H.R.; Park, J.T.; Chang, T.I.; Yoo, T.H.; Kim, S.W.; et al. Smoking, Smoking Cessation, and Progression of Chronic Kidney Disease: Results From KNOW-CKD Study. Nicotine Tob. Res. 2021, 23, 92–98. [Google Scholar] [CrossRef]
- Sabolić, I. Common mechanisms in nephropathy induced by toxic metals. Nephron Physiol. 2006, 104, 107–114. [Google Scholar] [CrossRef]
- Kilbo Edlund, K.; Xu, Y.; Andersson, E.M.; Christensson, A.; Dehlin, M.; Forsblad-d’Elia, H.; Harari, F.; Ljunggren, S.; Molnár, P.; Oudin, A.; et al. Long-term ambient air pollution exposure and renal function and biomarkers of renal disease. Environ. Health 2024, 23, 67. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.J.; Wang, S.S.; Fang, Y.; Zhang, X.J.; Hu, C.Y. Ambient air pollution exposure and risk of chronic kidney disease: A systematic review of the literature and meta-analysis. Environ. Res. 2021, 195, 110867. [Google Scholar] [CrossRef]
- Xu, W.; Jia, L.; Lin, Y.; Zhang, C.; Sun, X.; Jiang, L.; Yao, X.; Wang, N.; Deng, H.; Wang, S.; et al. Association of air pollution and risk of chronic kidney disease: A systematic review and meta-analysis. J. Biochem. Mol. Toxicol. 2024, 38, e23610. [Google Scholar] [CrossRef]
- Wathanavasin, W.; Banjongjit, A.; Phannajit, J.; Eiam-Ong, S.; Susantitaphong, P. Association of Fine Particulate Matter (PM2.5) Exposure and Chronic Kidney Disease Outcomes: A Systematic Review and Meta-Analysis. Sci. Rep. 2024, 14, 1048. [Google Scholar] [CrossRef]
- Cesaroni, G.; Jaensch, A.; Renzi, M.; Marino, C.; Ferraro, P.M.; Kerschbaum, J.; Haller, P.; Brozek, W.; Michelozzi, P.; Stafoggia, M.; et al. Association of air pollution with incidence of end-stage kidney disease in two large European cohorts. Sci. Total Environ. 2024, 948, 174796. [Google Scholar] [CrossRef]
- Li, J.; Dai, L.; Deng, X.; Zhang, J.; Song, C.; Xu, J.; Wang, A.; Xiong, Z.; Shan, Y.; Huang, X. Association between long-term exposure to low level air pollutants and incident end-stage kidney disease in the UK Biobank: A prospective cohort. Chemosphere 2023, 338, 139470. [Google Scholar] [CrossRef]
- Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2024 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int. 2024, 105, S117–S314. [Google Scholar] [CrossRef] [PubMed]
- Foreman, K.J.; Marquez, N.; Dolgert, A.; Fukutaki, K.; Fullman, N.; McGaughey, M.; Pletcher, M.A.; Smith, A.E.; Tang, K.; Yuan, C.; et al. Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death: Reference and alternative scenarios for 2016–40 for 195 countries and territories. Lancet 2018, 392, 2052–2090. [Google Scholar] [CrossRef] [PubMed]
- Jager, K.J.; Kovesdy, C.; Langham, R.; Rosenberg, M.; Jha, V.; Zoccali, C. A single number for advocacy and communication—Worldwide more than 850 million individuals have kidney diseases. Nephrol. Dial. Transplant. 2019, 34, 1803–1805. [Google Scholar] [CrossRef]
- Johansen, K.L.; Gilbertson, D.T.; Li, S.; Li, S.; Liu, J.; Roetker, N.S.; Ku, E.; Schulman, I.H.; Greer, R.C.; Chan, K.; et al. US renal data system 2023 annual data report: Epidemiology of kidney disease in the United States. Am. J. Kidney Dis. 2024, 83 (Suppl. 1), A8–A13. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Cao, F.; Xiao, J.P.; Fang, X.Y.; Wang, X.R.; Ding, L.H.; Wang, D.G.; Pan, H.F. Emerging role of air pollution in chronic kidney disease. Environ. Sci. Pollut. Res. Int. 2021, 28, 52610–52624. [Google Scholar] [CrossRef]
- Bowe, B.; Xie, Y.; Li, T.; Yan, Y.; Xian, H.; Al-Aly, Z. Particulate matter air pollution and the risk of incident chronic kidney disease and progression to end-stage renal disease. J. Am. Soc. Nephrol. 2018, 29, 218–230. [Google Scholar] [CrossRef]
- Tsai, H.J.; Wu, P.Y.; Huang, J.C.; Chen, S.C. Environmental pollution and chronic kidney disease. Int. J. Med. Sci. 2021, 18, 1121–1129. [Google Scholar] [CrossRef]
- Kuźma, Ł.; Małyszko, J.; Bachórzewska-Gajewska, H.; Kralisz, P.; Dobrzycki, S. Exposure to air pollution and renal function. Sci. Rep. 2021, 11, 11419. [Google Scholar] [CrossRef]
- Kurasz, A.; Lip, G.Y.H.; Święczkowski, M.; Tomaszuk-Kazberuk, A.; Dobrzycki, S.; Kuźma, Ł. Air quality and the risk of acute atrial fibrillation (EP-PARTICLES study): A nationwide study in Poland. Eur. J. Prev. Cardiol. 2025, zwaf016. [Google Scholar] [CrossRef] [PubMed]
- Święczkowski, M.; Lip, G.Y.H.; Kurasz, A.; Dąbrowski, E.J.; Tomaszuk-Kazberuk, A.; Kamiński, J.W.; Strużewska, J.; Dobrzycki, S.; Kuźma, Ł. Association between exposure to air pollution and increased ischaemic stroke incidence: A retrospective population-based cohort study (EP-PARTICLES study). Eur. J. Prev. Cardiol. 2025, 32, 276–287. [Google Scholar] [CrossRef] [PubMed]
- Kuźma, Ł.; Dąbrowski, E.J.; Kurasz, A.; Święczkowski, M.; Jemielita, P.; Kowalewski, M.; Wańha, W.; Kralisz, P.; Tomaszuk-Kazberuk, A.; Bachórzewska-Gajewska, H.; et al. Effect of air pollution exposure on risk of acute coronary syndromes in Poland: A nationwide population-based study (EP-PARTICLES study). Lancet Reg. Health Eur. 2024, 41, 100910. [Google Scholar] [CrossRef] [PubMed]
- Święczkowski, M.; Dobrzycki, S.; Kuźma, Ł. Multi-City Analysis of the Acute Effect of Polish Smog on Cause-Specific Mortality (EP-PARTICLES Study). Int. J. Environ. Res. Public. Health 2023, 20, 5566. [Google Scholar] [CrossRef]
- Feng, Y.; Jones, M.R.; Chu, N.M.; Segev, D.L.; McAdams-DeMarco, M. Ambient air pollution and mortality among older patients initiating maintenance dialysis. Am. J. Nephrol. 2021, 52, 217–227. [Google Scholar] [CrossRef]
- Xi, Y.; Kshirsagar, A.V.; Wade, T.J.; Richardson, D.B.; Brookhart, M.A.; Wyatt, L.; Rappold, A.G. Mortality in US hemodialysis patients following exposure to wildfire smoke. J. Am. Soc. Nephrol. 2020, 31, 1824–1835. [Google Scholar] [CrossRef]
- Weng, C.H.; Hu, C.C.; Yen, T.H.; Huang, W.H. Association between environmental particulate matter and carpal tunnel syndrome in patients undergoing hemodialysis. Kidney Blood Press. Res. 2017, 42, 827–836. [Google Scholar] [CrossRef]
- Huang, W.H.; Lin, J.H.; Weng, C.H.; Hsu, C.W.; Yen, T.H. Environmental NO2 and CO exposure: Ignored factors associated with uremic pruritus in patients undergoing hemodialysis. Sci. Rep. 2016, 6, 31168. [Google Scholar] [CrossRef]
- Weng, C.H.; Hu, C.C.; Yen, T.H.; Huang, W.H. Association between environmental particulate matter and arterial stiffness in patients undergoing hemodialysis. BMC Cardiovasc. Disord. 2015, 15, 115. [Google Scholar] [CrossRef]
- Guerin, A.P.; Pannier, B.; Marchais, S.J.; London, G.M. Cardiovascular disease in the dialysis population: Prognostic significance of arterial disorders. Curr. Opin. Nephrol. Hypertens. 2006, 15, 105–110. [Google Scholar] [CrossRef]
- Huang, W.H.; Yen, T.H.; Chan, M.J.; Su, Y.J. Environmental carbon monoxide level is associated with the level of high-sensitivity C-reactive protein in peritoneal dialysis patients. Medicine 2014, 93, e181. [Google Scholar] [CrossRef]
- Chiu, P.F.; Chang, C.H.; Wu, C.L.; Chang, T.H.; Tsai, C.C.; Kor, C.T.; Li, J.R.; Kuo, C.L.; Huang, C.S.; Chu, C.C.; et al. High particulate matter 2.5 levels and ambient temperature are associated with acute lung edema in patients with nondialysis stage 5 chronic kidney disease. Nephrol. Dial. Transplant. 2019, 34, 1354–1360. [Google Scholar] [CrossRef] [PubMed]
- Wanner, C.; Metzger, T. C-reactive protein a marker for all-cause and cardiovascular mortality in haemodialysis patients. Curr. Opin. Nephrol. Hypertens. 2002, 17 (Suppl. 8), 29–32; discussion 39–40. [Google Scholar] [CrossRef]
- Hamroun, A.; Génin, M.; Glowacki, F.; Sautenet, B.; Leffondré, K.; De Courrèges, A.; Dauchet, L.; Gauthier, V.; Bayer, F.; Lassalle, M.; et al. Multiple air pollutant exposure is associated with higher risk of all-cause mortality in dialysis patients: A French registry-based nationwide study. Front. Public. Health 2024, 12, 1390999. [Google Scholar] [CrossRef]
- Kadelbach, P.; Weinmayr, G.; Chen, J.; Jaensch, A.; Rodopoulou, S.; Strak, M.; de Hoogh, K.; Andersen, Z.J.; Bellander, T.; Brandt, J.; et al. Long-term exposure to air pollution and chronic kidney disease-associated mortality-Results from the pooled cohort of the European multicentre ELAPSE-study. Environ. Res. 2024, 252 Pt 3, 118942. [Google Scholar] [CrossRef]
- Lin, Y.T.; Lo, Y.C.; Chiang, H.Y.; Jung, C.R.; Wang, C.M.; Chan, T.C.; Kuo, C.C.; Hwang, B.F. Particulate Air Pollution and Progression to Kidney Failure with Replacement Therapy: An Advanced CKD Registry-Based Cohort Study in Taiwan. Am. J. Kidney Dis. 2020, 76, 645–657.e1. [Google Scholar] [CrossRef] [PubMed]
- Couchoud, C.; Lobbedez, T.; Bayat, S.; Glowacki, F.; Brunet, P.; Frimat, L. Moderately elevated ambient temperature is associated with mortality in dialysis patients, but not in transplant patients. Clin. Kidney J. 2024, 18, sfae428. [Google Scholar] [CrossRef] [PubMed]
- Amorim, F.; Schlader, Z. The kidney under heat stress: A vulnerable state. Curr. Opin. Nephrol. Hypertens. 2025, 34, 170–176. [Google Scholar] [CrossRef]
- Zhao, J.J.; Leyva, E.W.; Wong, K.A.; Kataoka-Yahiro, M.; Saligan, L.N. Heat Stress and Determinants of Kidney Health Among Agricultural Workers in the United States: An Integrative Review. Int. J. Environ. Res. Public Health 2025, 22, 1268. [Google Scholar] [CrossRef]
- Liu, J.; Varghese, B.M.; Hansen, A.; Borg, M.A.; Zhang, Y.; Driscoll, T.; Morgan, G.; Dear, K.; Gourley, M.; Capon, A.; et al. Hot weather as a risk factor for kidney disease outcomes: A systematic review and meta-analysis of epidemiological evidence. Sci. Total Environ. 2021, 801, 149806. [Google Scholar] [CrossRef]
- Park, M.Y.; Ahn, J.; Bae, S.; Chung, B.H.; Myong, J.P.; Lee, J.; Kang, M.Y. Effects of cold and hot temperatures on the renal function of people with chronic disease. .J Occup. Health 2024, 66, uiae037. [Google Scholar] [CrossRef] [PubMed]
- Park, M.Y.; Kang, M.Y. Occupational Risk Factors for Kidney Disease: A Comprehensive Review. J. Korean Med. Sci. 2025, 40, e224. [Google Scholar] [CrossRef] [PubMed]
- Nerbass, F.B.; Pecoits-Filho, R.; Clark, W.F.; Sontrop, J.M.; McIntyre, C.W.; Moist, L. Occupational heat stress and kidney health: From farms to factories. Kidney Int. Rep. 2017, 2, 998–1008. [Google Scholar] [CrossRef]
- Dally, M.; Krisher, L.; Jaramillo, D.; Newman, L.S.; Barnoya, J. A Systems-Based Approach for the Prevention of Heat-Associated Kidney Disease in Latin American Workers. Ann. Glob. Health 2025, 91, 53. [Google Scholar] [CrossRef] [PubMed]
- Hansson, E.; Glaser, J.; Weiss, I.; Arias-Monge, E.; Pacheco-Zenteno, F.; Raines, N.H.; Silva-Peñaherrera, M.; Vasquez, J.; Castellón, Z.E.; Poveda, S.; et al. Rest, shade, hydration and hygiene for the prevention of kidney injuries and inflammation in a Nicaraguan sugarcane worker cohort. Occup. Environ. Med. 2025, 82, 270–277. [Google Scholar] [CrossRef]
- Johnson, R.J.; Wesseling, C.; Newman, L.S. Chronic kidney disease of unknown cause in agricultural communities. N. Engl. J. Med. 2019, 380, 1843–1852. [Google Scholar] [CrossRef]
- Ben Khadda, Z.; Lahmamsi, H.; El Karmoudi, Y.; Ezrari, S.; El Hanafi, L.; Sqalli Houssaini, T. Chronic Kidney Disease of Unknown Etiology: A Global Health Threat in Rural Agricultural Communities-Prevalence, Suspected Causes, Mechanisms, and Prevention Strategies. Pathophysiology 2024, 31, 761–786. [Google Scholar] [CrossRef]
- Alvarenga, L.; Ribeiro, M.; Cardozo, L.F.M.F.; Borges, N.A.; Stenvinkel, P.; Mafra, D. The Exposome and the Kidney: A Silent Dialogue Shaping Chronic Kidney Disease. J. Xenobiot. 2025, 15, 73. [Google Scholar] [CrossRef]
- Lou, X.; Zhang, P.; Shi, N.; Ding, Z.; Xu, Z.; Liu, B.; Hu, W.; Yan, T.; Wang, J.; Liu, L.; et al. Associations between short-term exposure of ambient particulate matter and hemodialysis patients death: A nationwide, longitudinal case-control study in China. Sci. Total Environ. 2022, 852, 158215. [Google Scholar] [CrossRef] [PubMed]
- Huh, H.; Kim, E.; Yoon, U.A.; Choi, M.J.; Lee, H.; Kwon, S.; Kim, C.T.; Kim, D.K.; Kim, Y.S.; Lim, C.S.; et al. Ambient carbon monoxide correlates with mortality risk of hemodialysis patients: Comparing results of control selection in the case-crossover designs. Kidney Res. Clin. Pract. 2022, 41, 601–610. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Remigio, R.V.; He, H.; Raimann, J.G.; Kotanko, P.; Maddux, F.W.; Sapkota, A.R.; Liang, X.Z.; Puett, R.; He, X.; Sapkota, A. Combined effects of air pollution and extreme heat events among ESKD patients within the Northeastern United States. Sci. Total Environ. 2022, 812, 152481. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xi, Y.; Richardson, D.B.; Kshirsagar, A.V.; Wade, T.J.; Flythe, J.E.; Whitsel, E.A.; Peterson, G.C.; Wyatt, L.H.; Rappold, A.G. Effects of short-term ambient PM2.5 exposure on cardiovascular disease incidence and mortality among U.S. hemodialysis patients: A retrospective cohort study. Environ. Health 2022, 21, 33. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lin, S.Y.; Ju, S.W.; Lin, C.L.; Hsu, W.H.; Lin, C.C.; Ting, I.W.; Kao, C.H. Air pollutants and subsequent risk of chronic kidney disease and end-stage renal disease: A population-based cohort study. Environ. Pollut. 2020, 261, 114154. [Google Scholar] [CrossRef] [PubMed]
- Troost, J.P.; D’Souza, J.; Buxton, M.; Kshirsagar, A.V.; Engel, L.S.; O’Lenick, C.R.; Smoyer, W.E.; Klein, J.; Ju, W.; Eddy, S.; et al. Elevated Exposure to Air Pollutants Accelerates Primary Glomerular Disease Progression. Kidney Int. Rep. 2024, 9, 2527–2536. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wu, Y.H.; Wu, C.D.; Chung, M.C.; Chen, C.H.; Wu, L.Y.; Chung, C.J.; Hsu, H.T. Long-Term Exposure to Fine Particulate Matter and the Deterioration of Estimated Glomerular Filtration Rate: A Cohort Study in Patients with Pre-End-Stage Renal Disease. Front. Public. Health 2022, 10, 858655. [Google Scholar] [CrossRef]
- Blum, M.F.; Feng, Y.; Tuholske, C.P.; Kim, B.; McAdams DeMarco, M.A.; Astor, B.C.; Grams, M.E. Extreme Humid-Heat Exposure and Mortality Among Patients Receiving Dialysis. Am. J. Kidney Dis. 2024. epub ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Xi, Y.; Richardson, D.B.; Kshirsagar, A.V.; Wade, T.J.; Flythe, J.E.; Whitsel, E.A.; Rappold, A.G. Association Between Long-term Ambient PM2.5 Exposure and Cardiovascular Outcomes Among US Hemodialysis Patients. Am. J. Kidney Dis. 2022, 80, 648–657.e1. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.; Park, J.Y.; Kim, Y.C.; Lee, H.; Kim, E.; Kim, Y.L.; Kim, Y.S.; Lee, J.P.; Kim, H.; Clinical Research Center for End-Stage Renal Disease CRC for ESRD Investigators. Long-Term Effects of Air Pollutants on Mortality Risk in Patients with End-Stage Renal Disease. Int. J. Environ. Res. Public Health 2020, 17, 546. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lin, J.H.; Yen, T.H.; Weng, C.H.; Huang, W.H. Environmental NO2 level is associated with 2-year mortality in patients undergoing peritoneal dialysis. Medicine 2015, 94, e368. [Google Scholar] [CrossRef]
- Bhinder, S.; Chen, H.; Sato, M.; Copes, R.; Evans, G.J.; Chow, C.-W.; Singer, L.G. Air pollution and the development of posttransplant chronic lung allograft dysfunction. Am. J. Transplant. 2014, 14, 2749–2757. [Google Scholar] [CrossRef]
- Al-Kindi, S.G.; Sarode, A.; Zullo, M.; Brook, J.; Burnett, R.; Oliveira, G.H.; Huang, W.; Brook, R.; Rajagopalan, S. Ambient air pollution and mortality after cardiac transplantation. J. Am. Coll. Cardiol. 2019, 74, 3026–3035. [Google Scholar] [CrossRef]
- Spencer-Hwang, R.; Knutsen, S.F.; Soret, S.; Ghamsary, M.; Beeson, W.L.; Oda, K.; Shavlik, D.; Jaipaul, N. Ambient air pollutants and risk of fatal coronary heart disease among kidney transplant recipients. Am. J. Kidney Dis. 2011, 58, 608–616. [Google Scholar] [CrossRef]
- Spencer-Hwang, R.; Knutsen, S.F.; Ghamsary, M.; Beeson, L.; Oda, K.; Shavlik, D.; Jaipaul, N.; Soret, S. Female renal transplant recipients potentially at increased risk of fatal coronary heart disease associated with ambient air pollutants. J. Clin. Exp. Cardiol. 2013, 2013, 1–6. [Google Scholar] [CrossRef]
- Han, S.H.; You, E.; Ko, A.; Kwon, S.; Lee, D.; Kang, E.; Lee, H.; Kim, D.K.; Kim, Y.S.; Lim, C.S.; et al. Impact of Ozone on Kidney Transplant Outcomes. Am. J. Transplant. 2025, in press. [CrossRef] [PubMed]
- Kim, Y.C.; Kim, E.; Jung, J.; Park, J.Y.; Lee, H.; Kim, D.K.; Kim, Y.S.; Lim, C.S.; Lee, J.P.; Kim, H. Clinical outcomes associated with long-term exposure to airborne particulate pollution in kidney transplant recipients. Environ. Health 2021, 20, 61. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Jones, M.R.; Ahn, J.B.; Garonzik-Wang, J.M.; Segev, D.L.; McAdams-DeMarco, M. Ambient air pollution and posttransplant outcomes among kidney transplant recipients. Am. J. Transplant. 2021, 21, 3333–3345. [Google Scholar] [CrossRef]
- Dehom, S.; Knutsen, S.; Bahjri, K.; Shavlik, D.; Oda, K.; Ali, H.; Pompe, L.; Spencer-Hwang, R. Racial difference in the association of long-term exposure to fine particulate matter (PM2.5) and cardiovascular disease mortality among renal transplant recipients. Int. J. Environ. Res. Public Health 2021, 18, 4297. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.H.; Merzkani, M.; Murad, H.; Wang, M.; Bowe, B.; Lentine, K.L.; Al-Aly, Z.; Alhamad, T. Association of Ambient Fine Particulate Matter Air Pollution with Kidney Transplant Outcomes. JAMA Netw. Open 2021, 4, e2128190. [Google Scholar] [CrossRef]
- Li, Y.; Menon, G.; Long, J.J.; Wilson, M.; Kim, B.; Orandi, B.J.; Bae, S.; Wu, W.; Thurston, G.D.; Segev, D.L.; et al. The Synergistic Impact of Air Pollution and Residential Neighborhood Segregation on Post-Kidney Transplant Mortality. Kidney360 2025, 6, 1599–1601. [Google Scholar] [CrossRef]
- Moon, H.W.; Shin, D.; Cho, H.J.; Ha, U.S.; Hong, S.H.; Lee, J.Y.; Kim, S.W.; Park, Y.H. Impact of Particulate Matter with an Aerodynamic Diameter <2.5 μm Concentration on Postoperative Renal Function in Living Kidney Donors. Transplant. Proc. 2023, 55, 1515–1520. [Google Scholar] [CrossRef] [PubMed]
- Wasilewska, E.; Wołoszyk, P.; Małgorzewicz, S.; Chamienia, A.; Jassem, E.; Dębska-Ślizień, A. Impact of tobacco smoking on pulmonary and kidney function after successful kidney transplantation—A single-centre pilot study. Acta Biochim. Pol. 2021, 68, 717–724. [Google Scholar] [CrossRef]
- Khalil, M.A.M.; Tan, J.; Khamis, S.; Khalil, M.A.U.; Azmat, R.; Ullah, A.R. Cigarette smoking and its hazards in kidney transplantation. Adv. Med. 2017, 2017, 6213814. [Google Scholar] [CrossRef]
- Abramowicz, D.; Cochat, P.; Claas, F.H.J.; Heemann, U.; Pascual, J.; Dudley, C.; Harden, P.; Hourmant, M.; Maggiore, U.; Salvadori, M.; et al. European renal best practice guideline on kidney donor and recipient evaluation and perioperative care. Nephrol. Dial. Transplant. 2015, 30, 1790–1797. [Google Scholar] [CrossRef]
- Kasiske, B.L.; Snyder, J.J.; Gilbertson, D.; Matas, A.J. Diabetes mellitus after kidney transplantation in the United States. Am. J. Transplant. 2003, 3, 178–185. [Google Scholar] [CrossRef]
- Rangaswami, J.; Mathew, R.O.; Parasuraman, R.; Tantisattamo, E.; Lubetzky, M.; Rao, S.; Yaqub, M.S.; Birdwell, K.A.; Bennett, W.; Dalal, P.; et al. Cardiovascular disease in the kidney transplant recipient: Epidemiology, diagnosis and management strategies. Nephrol. Dial. Transplant. 2019, 34, 760–773. [Google Scholar] [CrossRef] [PubMed]
- Fishman, J.A. Infection in organ transplantation. Am. J. Transplant. 2017, 17, 856–879. [Google Scholar] [CrossRef]
- Au, E.; Wong, G.; Chapman, J.R. Cancer in kidney transplant recipients. Nat. Rev. Nephrol. 2018, 14, 508–520. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Gao, D.; Liao, F.; Zhou, F.; Wang, X. The health effects of ambient PM2.5 and potential mechanisms. Ecotoxicol. Environ. Saf. 2016, 128, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Chatauret, N.; Badet, L.; Barrou, B.; Hauet, T. Ischemia-reperfusion: From cell biology to acute kidney injury. Prog. Urol. 2014, 24, 4–12. [Google Scholar] [CrossRef]
- Zhao, J.; Gao, Z.; Tian, Z.; Xie, Y.; Xin, F.; Jiang, R.; Kan, H.; Song, W. The biological effects of individual-level PM2.5 exposure on systemic immunity and inflammatory response in traffic policemen. Occup. Environ. Med. 2013, 70, 426–431. [Google Scholar] [CrossRef]
- Mori, D.N.; Kreisel, D.; Fullerton, J.N.; Gilroy, D.W.; Goldstein, D.R. Inflammatory triggers of acute rejection of organ allografts. Immunol. Rev. 2015, 258, 132–144. [Google Scholar] [CrossRef]
- Guerrieri, D.; Re, L.; Petroni, J.; Ambrosi, N.; Pilotti, R.E.; Chuluyan, H.E.; Casadei, D.; Incardona, C. Gene expression profile in delayed graft function: Inflammatory markers are associated with recipient and donor risk factors. Mediat. Inflamm. 2014, 2014, 167361. [Google Scholar] [CrossRef]
- Siedlecki, A.; Irish, W.; Brennan, D.C. Delayed graft function in the kidney transplant. Am. J. Transplant. 2012, 11, 2279–2296. [Google Scholar] [CrossRef]
- Kezic, A.; Stajic, N.; Thaiss, F. Innate immune response in kidney ischemia-reperfusion injury: Potential target for therapy. J. Immunol. Res. 2017, 2017, 6305439. [Google Scholar] [CrossRef] [PubMed]
- Rasking, L.; Koshy, P.; Bongaerts, E.; Bové, H.; Ameloot, M.; Plusquin, M.; De Vusser, K.; Nawrot, T.S. Ambient black carbon reaches the kidneys. Environ. Int. 2023, 177, 107997. [Google Scholar] [CrossRef]
- Rasking, L.; Vanbrabant, K.; Sun, P.; Vangeneugden, M.; Strauch, M.; Schins, R.P.F.; Cassee, F.R.; Bové, H.; De Vusser, K.; Nawrot, T.S.; et al. Kidney morphological changes associated with early-life carbonaceous ultrafine particle exposure: A pathomics approach. Environ. Res. 2025, 285 Pt 3, 122458. [Google Scholar] [CrossRef] [PubMed]
- Brugge, D.; Eliasziw, M.; Thanikachalam, M.; Kuchhal, V.; Morson, C.; Vazquez-Dodero, T.; Mertl, A.; Tallam, P.; Kunwar, S.; Sprague Martinez, L.; et al. Effect of HEPA Filtration Air Purifiers on Blood Pressure: A Pragmatic Randomized Crossover Trial. J. Am. Coll. Cardiol. 2025, 86, 577–589. [Google Scholar] [CrossRef]
- Brugge, D.; Lerman Ginzburg, S.; Hudda, N.; Sprague Martinez, L.; Meunier, L.; Hersey, S.P.; Hochman, I.; Walker, D.I.; Echevarria, B.; Thanikachalam, M.; et al. A randomized crossover trial of HEPA air filtration to reduce cardiovascular risk for near highway residents: Methods and approach. Contemp. Clin. Trials 2021, 108, 106520. [Google Scholar] [CrossRef]
- Hudda, N.; Eliasziw, M.; Hersey, S.O.; Reisner, E.; Brook, R.D.; Zamore, W.; Durant, J.L.; Brugge, D. Effect of Reducing Ambient Traffic-Related Air Pollution on Blood Pressure: A Randomized Crossover Trial. Hypertension 2021, 77, 823–832. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.F.; Lee, M.C.; Lai, Y.C.; Chen, P.C. Reduction in ambient PM2.5 associated with decreased risk of dialysis and mortality among patients with advanced chronic kidney disease: A population-based retrospective cohort study in Taiwan. Ecotoxicol. Environ. Saf. 2025, 299, 118383. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.F.; Chien, Y.H.; Chen, P.C. The association between long-term ambient fine particulate exposure and the mortality among adult patients initiating dialysis: A retrospective population-based cohort study in Taiwan. Environ. Pollut. 2023, 316 Pt 2, 120606. [Google Scholar] [CrossRef] [PubMed]
- Bo, Y.; Brook, J.R.; Lin, C.; Chang, L.Y.; Guo, C.; Zeng, Y.; Yu, Z.; Tam, T.; Lau, A.K.H.; Lao, X.Q. Reduced Ambient PM2.5 Was Associated with a Decreased Risk of Chronic Kidney Disease: A Longitudinal Cohort Study. Environ. Sci. Technol. 2021, 55, 6876–6883. [Google Scholar] [CrossRef]
- Liu, H.; Shao, X.; Jiang, X.; Liu, X.; Bai, P.; Lin, Y.; Chen, J.; Hou, F.; Cui, Z.; Zhang, Y.; et al. Joint exposure to outdoor ambient air pollutants and incident chronic kidney disease: A prospective cohort study with 90,032 older adults. Front. Public. Health 2022, 10, 992353. [Google Scholar] [CrossRef]
- Chin, W.S.; Guo, Y.L.; Chang, Y.K.; Huang, L.F.; Hsu, C.C. Long-term exposure to NO2 and PM2.5 and the occurrence of chronic kidney disease among patients with type 2 diabetes in Taiwan. Ecotoxicol. Environ. Saf. 2024, 284, 116940. [Google Scholar] [CrossRef]
- Duan, J.W.; Li, Y.L.; Li, S.X.; Yang, Y.P.; Li, F.; Li, Y.; Wang, J.; Deng, P.Z.; Wu, J.J.; Wang, W.; et al. Association of Long-term Ambient Fine Particulate Matter (PM2.5) and Incident CKD: A Prospective Cohort Study in China. Am. J. Kidney Dis. 2022, 80, 638–647.e1. [Google Scholar] [CrossRef]
- Ran, J.; Yang, A.; Sun, S.; Han, L.; Li, J.; Guo, F.; Zhao, S.; Yang, Y.; Mason, T.G.; Chan, K.P.; et al. Long-Term Exposure to Ambient Fine Particulate Matter and Mortality From Renal Failure: A Retrospective Cohort Study in Hong Kong, China. Am. J. Epidemiol. 2020, 189, 602–612. [Google Scholar] [CrossRef]
Short/Long-Term | Country/Population | Study Design | Pollutants | Health Effects | |
---|---|---|---|---|---|
1. Lou et al. [66] | Short-term | 18,114 hemodialysis death cases/China | Case–control study | PM2.5 and PM10 | Each short-term increase of 10 µg/m3 in PM2.5 and PM10 was statistically significantly associated with a relative increase of 1.07% and 0.89% in daily mortality rate of hemodialysis patients. |
2. Huh et al. [67] | Short-term | 134,478 dialysis patients/Korea | Cohort | CO | A significant association between CO exposure and all-cause mortality. |
3. Remigio et al. [68] | Short-term | 43,338 ESKD patients/USA | Cohort | PM2.5 O3 | A 10-unit increase in PM2.5 concentration was associated with a 5% increase in all-cause mortality and same-day O3 after adjusting for extreme heat exposures. |
4. Xi et al. [69] | Short-term | 314,079 hemodialysis patients/USA | Cohort | PM2.5 | A 10 µg/m3 increase in the average lag 0–1 daily PM2.5 exposure was associated with cardiovascular disease (CVD) incidence, CVD mortality, and all-cause mortality. |
5. Lin et al. [70] | Long-term | 161,970 subjects without CKD/Taiwan | Cohort | PM2.5 NO, SO2 | Compared with Q1-level SO2, exposure to the Q4 level was associated with a 1.46-fold higher risk of developing CKD and 1.32-fold higher risk of ESRD. Compared with Q1-level NOx, exposure to the Q4 level was associated with a 1.39-fold higher risk of developing CKD and 1.70-fold higher risk of ESRD. Compared with Q1-level NO, exposure to the Q4 level was associated with a 1.48-fold higher risk of CKD and 1.54-fold higher risk of ESRD. Compared with Q1-level particles <2.5 µm (PM2.5), exposure to the Q4 level was associated with a 1.74-fold higher risk of CKD and 1.69-fold higher risk of ESRD. |
6. Troost et al. [71] | Long-term | 925 patients with primary glomerulopathies/USA | Cohort | PM2.5, BC, and sulfate | A doubling of baseline PM2.5 and BC was associated with a greater risk of disease progression (ESKD diagnosis or ≥40% reduction in eGFR from baseline). No association with sulfates in unadjusted or adjusted analyses. |
7. Wu et al. [72] | Long-term | 6480 CKD/ Taiwan | Cohort | PM2.5, NO2 | The risk of eGFR deterioration was found to increase with increasing PM2.5 and NO2 level especially for those exposed to PM2.5 ≥ 31.44 µg/m3 or NO2 ≥ 15.00 ppb. |
8. Blum et al. [73] | Long-term | 945,251 dialyzed adults/USA | Retrospective cohort from US Renal Data System | Extreme heat | 498,049 adults were exposed to at least 1 of 7154 extreme humid-heat events, 500,025 deaths occurred at the mean follow-up of 3.6 years. Increased risk of death (hazard ratio 1.18 (95% CI, 1.15–1.20)) during extreme humid-heat exposure for dialysis patients, higher relative mortality among patients living in the southeast (p < 0.001) compared with the southwest of USA. |
9. Xi et al. [74] | Long-term | 314,079 hemodialysis patients/USA | Cohort | PM2.5 | Each 1 µg/m3 increase in annual average PM2.5 was associated with a greater rate of CV events and CVD-specific mortality. |
10. Jung et al. [75] | Long-term | 5041 hemodialysis patients/South Korea | Cohort | PM10, NO2, and SO2 | A significant long-term relationship between mortality risk and interquartile range (IQR) of increase in PM10, NO2, and SO2. |
11. Lin et al. [76] | Long-term | 160 peritoneal dialysis (PD) patients | Cohort | NO2 | Patients undergoing PD and having high environmental NO2 exposure have a higher 2-year mortality rate than those with low environmental NO2 exposure. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Małyszko, S.J.; Gryko, A.; Małyszko, J.; Musiałowska, D.; Fabiańska, A.; Kuźma, Ł. Effects of Air Pollution on Dialysis and Kidney Transplantation: Clinical and Public Health Action. J. Clin. Med. 2025, 14, 7194. https://doi.org/10.3390/jcm14207194
Małyszko SJ, Gryko A, Małyszko J, Musiałowska D, Fabiańska A, Kuźma Ł. Effects of Air Pollution on Dialysis and Kidney Transplantation: Clinical and Public Health Action. Journal of Clinical Medicine. 2025; 14(20):7194. https://doi.org/10.3390/jcm14207194
Chicago/Turabian StyleMałyszko, Sławomir Jerzy, Adam Gryko, Jolanta Małyszko, Dominika Musiałowska, Anna Fabiańska, and Łukasz Kuźma. 2025. "Effects of Air Pollution on Dialysis and Kidney Transplantation: Clinical and Public Health Action" Journal of Clinical Medicine 14, no. 20: 7194. https://doi.org/10.3390/jcm14207194
APA StyleMałyszko, S. J., Gryko, A., Małyszko, J., Musiałowska, D., Fabiańska, A., & Kuźma, Ł. (2025). Effects of Air Pollution on Dialysis and Kidney Transplantation: Clinical and Public Health Action. Journal of Clinical Medicine, 14(20), 7194. https://doi.org/10.3390/jcm14207194