Predictive Diagnostic Power of Anthropometric Indicators for Metabolic Syndrome: A Comparative Study in Korean Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources and Study Population
2.2. Definition of Metabolic Syndrome
2.3. Anthropometric Measurement and Calculation Method of Indicators
2.4. Demographic and Health Behavior Factors
2.5. Blood Pressure and Biochemical Measurements
2.6. Statistical Analysis
3. Results
3.1. Baseline Demographic and Clinical Characteristics of the Study Participants
3.2. Differences in Measurement Variables Based on the Presence or Absence of Metabolic Syndrome by Gender
3.3. Differences in ROC Curve Analysis for Each Indicator
3.4. Differences in Prevalence Risk According to the Reference Group for Each Indicator
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sun, J.; Guo, F.; Ran, J.; Wu, H.; Li, Y.; Wang, M.; Wang, X. Bibliometric and Visual Analysis of Global Research on Taurine, Creatine, Carnosine, and Anserine with Metabolic Syndrome: From 1992 to 2022. Nutrients 2023, 15, 3374. [Google Scholar] [CrossRef] [PubMed]
- Noubiap, J.J.; Nansseu, J.R.; Lontchi-Yimagou, E.; Nkeck, J.R.; Nyaga, U.F.; Ngouo, A.T.; Tounouga, D.N.; Tianyi, F.-L.; Foka, A.J.; Ndoadoumgue, A.L. Geographic Distribution of Metabolic Syndrome and Its Components in the General Adult Population: A Meta-Analysis of Global Data from 28 Million Individuals. Diabetes Res. Clin. Pract. 2022, 188, 109924. [Google Scholar] [CrossRef]
- Park, D.; Shin, M.-J.; Després, J.-P.; Eckel, R.H.; Tuomilehto, J.; Lim, S. 20-Year Trends in Metabolic Syndrome among Korean Adults from 2001 to 2020. JACC Asia 2023, 3, 491–502. [Google Scholar] [CrossRef] [PubMed]
- Takahara, M.; Shimomura, I. Metabolic Syndrome and Lifestyle Modification. Rev. Endocr. Metab. Disord. 2014, 15, 317–327. [Google Scholar] [CrossRef] [PubMed]
- Saklayen, M.G. The Global Epidemic of the Metabolic Syndrome. Curr. Hypertens. Rep. 2018, 20, 12. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Kim, S. Validity of Muscle-to-Fat Ratio as a Predictor of Adult Metabolic Syndrome. J. Phys. Ther. Sci. 2016, 28, 1036–1045. [Google Scholar] [CrossRef]
- Park, J.-S. Analysis of Optimal Total Physical Activity for Prevention and Management of Diabetes: Using the Global Physical Activity Questionnaire(GPAQ). J. Sport Leis. Stud. 2021, 84, 565–577. [Google Scholar] [CrossRef]
- Park, S.H.; Goo, J.M.; Jo, C.-H. Receiver Operating Characteristic (ROC) Curve: Practical Review for Radiologists. Korean J. Radiol. 2004, 5, 11–18. [Google Scholar] [CrossRef]
- Franzini, M.; Scataglini, I.; Ricchiuti, A.; Fierabracci, V.; Paolicchi, A.; Pompella, A.; Dell’Omo, G.; Pedrinelli, R.; Corti, A. Association between Plasma Gamma-Glutamyltransferase Fractions and Metabolic Syndrome among Hypertensive Patients. Sci. Rep. 2017, 7, 12003. [Google Scholar] [CrossRef] [PubMed]
- Hung, J.; McQuillan, B.M.; Thompson, P.L.; Beilby, J.P. Circulating Adiponectin Levels Associate with Inflammatory Markers, Insulin Resistance and Metabolic Syndrome Independent of Obesity. Int. J. Obes. 2008, 32, 772–779. [Google Scholar] [CrossRef] [PubMed]
- Franks, P.W.; Brage, S.; Luan, J.; Ekelund, U.; Rahman, M.; Farooqi, I.S.; Halsall, I.; O’Rahilly, S.; Wareham, N.J. Leptin Predicts a Worsening of the Features of the Metabolic Syndrome Independently of Obesity. Obes. Res. 2005, 13, 1476–1484. [Google Scholar] [CrossRef]
- Liu, C.-C.; Ko, H.-J.; Liu, W.-S.; Hung, C.-L.; Hu, K.-C.; Yu, L.-Y.; Shih, S.-C. Neutrophil-to-Lymphocyte Ratio as a Predictive Marker of Metabolic Syndrome. Medicine 2019, 98, e17537. [Google Scholar] [CrossRef]
- Kim, M.S.; A Shin, K. Serum Uric Acid to Creatinine Ratio as a Predictor of Metabolic Syndrome in Healthy Adults Men. Korean J. Clin. Lab. Sci. 2019, 51, 42–49. [Google Scholar] [CrossRef]
- Moon, Y.-S.; Kim, D.-H.; Song, D.-K. Serum Tumor Necrosis Factor-α Levels and Components of the Metabolic Syndrome in Obese Adolescents. Metabolism 2004, 53, 863–867. [Google Scholar] [CrossRef] [PubMed]
- Silva, K.C.; Paiva, N.S.; de Faria, F.R.; Franceschini, S.D.C.C.; Piore, S.E. Predictive Ability of Seven Anthropometric Indices for Cardiovascular Risk Markers and Metabolic Syndrome in Adolescents. J. Adolesc. Health 2020, 66, 491–498. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-S.; Jung, S.Y. A Study on the Usefulness of the Muscle Mass-Waist Circumference Ratio Index as an Indicator for the Prediction of Metabolic Syndrome in Korean Adults. J. Sport. Leis. Stud. 2023, 93, 309–324. [Google Scholar] [CrossRef]
- Shin, K.-A. Assessing a Body Shape Index and Waist to Height Ratio as a Risk Predictor for Insulin Resistance and Metabolic Syndrome among Korean Adults. Korean J. Clin. Lab. Sci. 2018, 50, 44–53. [Google Scholar] [CrossRef]
- Romero-Saldaña, M.; Tauler, P.; Vaquero-Abellán, M.; López-González, A.-A.; Fuentes-Jiménez, F.-J.; Aguiló, A.; Álvarez-Fernández, C.; Molina-Recio, G.; Bennasar-Veny, M. Validation of a Non-Invasive Method for the Early Detection of Metabolic Syndrome: A Diagnostic Accuracy Test in a Working Population. BMJ Open 2018, 8, e020476. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Vélez, R.; Carrillo, H.A.; Correa-Bautista, J.E.; Schmidt-RioValle, J.; González-Jiménez, E.; Correa-Rodríguez, M.; González-Ruíz, K.; García-Hermoso, A. Fat-to-Muscle Ratio: A New Anthropometric Indicator as a Screening Tool for Metabolic Syndrome in Young Colombian People. Nutrients 2018, 10, 1027. [Google Scholar] [CrossRef]
- Lo, K.; Wong, M.; Khalechelvam, P.; Tam, W. Waist-to-Height Ratio, Body Mass Index and Waist Circumference for Screening Paediatric Cardio-Metabolic Risk Factors: A Meta-Analysis. Obes. Rev. 2016, 17, 1258–1275. [Google Scholar] [CrossRef] [PubMed]
- Suliga, E.; Ciesla, E.; Głuszek-Osuch, M.; Rogula, T.; Głuszek, S.; Kozieł, D. The Usefulness of Anthropometric Indices to Identify the Risk of Metabolic Syndrome. Nutrients 2019, 11, 2598. [Google Scholar] [CrossRef]
- Lee, B.J. Grip Strength, Anthropometric Indices, and Their Combination in Screening for Metabolic Syndrome in the Korean Population. J. Clin. Med. 2024, 13, 5988. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.H.; Cho, K.H.; Park, J.W.; Do, J.Y. Comparison of Waist to Height Ratio and Body Indices for Prediction of Metabolic Disturbances in the Korean Population: The Korean National Health and Nutrition Examination Survey 2008–2011. BMC Endocr. Disord. 2015, 15, 79. [Google Scholar] [CrossRef] [PubMed]
- Fahami, M.; Hojati, A.; Farhangi, M.A. Body Shape Index (ABSI), Body Roundness Index (BRI) and Risk Factors of Metabolic Syndrome among Overweight and Obese Adults: A Cross-Sectional Study. BMC Endocr. Disord. 2024, 24, 230. [Google Scholar] [CrossRef]
- Wu, Q.; Qin, K.; Wang, Y.; Nie, H. Anthropometric Indices and Their Predictive Ability on Metabolic Syndrome in West China. Int. J. Diabetes Dev. Ctries. 2022, 42, 666–682. [Google Scholar] [CrossRef]
- Jin, X.; Liu, J.; Cao, Q.; Lin, J.; Wu, G.; Liu, L.; Jiang, S.; Zhou, X.; Li, Z.; Yang, A. Normal-Weight Central Obesity: Implications for Diabetes Mellitus. Front. Nutr. 2023, 10, 1239493. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.; Chen, H.; Lin, Y.; Li, F.; Zhong, Q.; Huang, Y.; Wu, X. Total and Regional Fat/Muscle Mass Ratio and Risks of Incident Cardiovascular Disease and Mortality. J. Am. Heart Assoc. 2023, 12, e030101. [Google Scholar] [CrossRef] [PubMed]
- Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA 2001, 285, 2486–2497. [CrossRef]
- Kim, B.-Y.; Kang, S.M.; Kang, J.-H.; Kang, S.Y.; Kim, K.K.; Kim, K.-B.; Kim, B.; Kim, S.J.; Kim, Y.-H.; Kim, J.-H.; et al. 2020 Korean Society for the Study of Obesity Guidelines for the Management of Obesity in Korea. J. Obes. Metab. Syndr. 2021, 30, 81–92. [Google Scholar] [CrossRef]
- Woo, H.D.; Shin, A.; Kim, J. Dietary Patterns of Korean Adults and the Prevalence of Metabolic Syndrome: A Cross-Sectional Study. PLoS ONE 2014, 9, e111593. [Google Scholar] [CrossRef] [PubMed]
- Yi, Y.; An, J. Sex Differences in Risk Factors for Metabolic Syndrome in the Korean Population. Int. J. Environ. Res. Public Health 2020, 17, 9513. [Google Scholar] [CrossRef] [PubMed]
- López-Ratón, M.; Rodríguez-Álvarez, M.X.; Cadarso-Suárez, C.; Gude-Sampedro, F. OptimalCutpoints: An R Package for Selecting Optimal Cutpoints in Diagnostic Tests. J. Stat. Softw. 2014, 61, 1–36. [Google Scholar] [CrossRef]
- Hajian-Tilaki, K. Receiver Operating Characteristic (ROC) Curve Analysis for Medical Diagnostic Test Evaluation. Casp. J. Intern. Med. 2013, 4, 627–635. [Google Scholar]
- Pavanello, C.; Zanaboni, A.M.; Gaito, S.; Botta, M.; Mombelli, G.; Sirtori, C.R.; Ruscica, M. Influence of Body Variables in the Development of Metabolic Syndrome—A Long Term Follow-up Study. PLoS ONE 2018, 13, e0192751. [Google Scholar] [CrossRef] [PubMed]
- Tewari, A.; Kumar, G.; Maheshwari, A.; Tewari, V.; Tewari, J. Comparative Evaluation of Waist-to-Height Ratio and BMI in Predicting Adverse Cardiovascular Outcome in People with Diabetes: A Systematic Review. Cureus 2023, 15, e38801. [Google Scholar] [CrossRef] [PubMed]
- Méthot, J.; Houle, J.; Poirier, P. Obesity: How to Define Central Adiposity? Expert. Rev. Cardiovasc. Ther. 2010, 8, 639–644. [Google Scholar] [CrossRef]
- Kim, Y.H.; So, W.-Y. Anthropometrics and Metabolic Syndrome in Healthy Korean Adults: A 7-Year Longitudinal Study. J. Men’s Health 2018, 14, 1–10. [Google Scholar] [CrossRef]
- Schneider, H.J.; Friedrich, N.; Klotsche, J.; Pieper, L.; Nauck, M.; John, U.; Dorr, M.; Felix, S.; Lehnert, H.; Pittrow, D. The Predictive Value of Different Measures of Obesity for Incident Cardiovascular Events and Mortality. J. Clin. Endocrinol. Metab. 2010, 95, 1777–1785. [Google Scholar] [CrossRef] [PubMed]
- Rothman, K.J. BMI-Related Errors in the Measurement of Obesity. Int. J. Obes. 2008, 32, S56–S59. [Google Scholar] [CrossRef]
- Smith, G.I.; Mittendorfer, B. Sexual Dimorphism in Skeletal Muscle Protein Turnover. J. Appl. Physiol. 2016, 120, 674–682. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, R.R.; Silva, T.C.d.A.; Lins, T.A.; Almeida, A.P.d.S.; Guimarães, F.J.d.S.P.; Costa, M.d.C. Muscle Mass Analysis in Women of Different Ages. Man. Ther. Posturology Rehabil. J. 2017, 15, 1–4. [Google Scholar] [CrossRef]
- Ji, S.; Qian, Z.; Hu, P.; Chen, F. Age-Dependent Changes in Skeletal Muscle Mass and Visceral Fat Area in a Chinese Population. Curr. Med. Sci. 2023, 43, 838–844. [Google Scholar] [CrossRef]
- Nagayama, D.; Fujishiro, K.; Watanabe, Y.; Yamaguchi, T.; Suzuki, K.; Saiki, A.; Shirai, K. A Body Shape Index (ABSI) as a Variant of Conicity Index Not Affected by the Obesity Paradox: A Cross-Sectional Study Using Arterial Stiffness Parameter. J. Pers. Med. 2022, 12, 2014. [Google Scholar] [CrossRef] [PubMed]
- Calderón-García, J.F.; Roncero-Martín, R.; Rico-Martín, S.; De Nicolás-Jiménez, J.M.; López-Espuela, F.; Santano-Mogena, E.; Alfageme-García, P.; Sanchez Munoz-Torrero, J.F. Effectiveness of Body Roundness Index (BRI) and a Body Shape Index (ABSI) in Predicting Hypertension: A Systematic Review and Meta-Analysis of Observational Studies. Int. J. Environ. Res. Public Health 2021, 18, 11607. [Google Scholar] [CrossRef] [PubMed]
- Malara, M.; Kęska, A.; Tkaczyk, J.; Lutosławska, G. Body Shape Index versus Body Mass Index as Correlates of Health Risk in Young Healthy Sedentary Men. J. Transl. Med. 2015, 13, 75. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Zhu, W.; Qiao, Q.; Huang, L.; Li, Y.; Chen, L. Novel and Traditional Anthropometric Indices for Identifying Metabolic Syndrome in Non-Overweight/Obese Adults. Nutr. Metab. 2021, 18, 3. [Google Scholar] [CrossRef] [PubMed]
- Ji, M.; Zhang, S.; An, R. Effectiveness of A Body Shape Index (ABSI) in Predicting Chronic Diseases and Mortality: A Systematic Review and Meta-analysis. Obes. Rev. 2018, 19, 737–759. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-H.; Choi, S.-J.; Lee, K.-S.; Park, H.-Y. Waist Circumference and Waist-to-Height Ratio as Predictors of Cardiovascular Disease Risk in Korean Adults. Circ. J. 2009, 73, 1643–1650. [Google Scholar] [CrossRef]
- Ezzatvar, Y.; Izquierdo, M.; Ramírez-Vélez, R.; Del Pozo Cruz, B.; García-Hermoso, A. Accuracy of Different Cutoffs of the Waist-to-height Ratio as a Screening Tool for Cardiometabolic Risk in Children and Adolescents: A Systematic Review and Meta-analysis of Diagnostic Test Accuracy Studies. Obes. Rev. 2022, 23, e13375. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Xu, S.; Chen, L.; Zhang, H. Waist to Height Ratio as a Predictor of Abdominal Fat Distribution in Men. Chin. J. Physiol. 2009, 52, 441–445. [Google Scholar] [CrossRef]
- Tuglo, L.S. Comparison of Adiposity Anthropometric Indices and Their Associations with Visceral Fat Levels Determined by Bioelectrical Impedance Analysis among Diabetic Patients. Sci. Rep. 2022, 12, 17824. [Google Scholar] [CrossRef] [PubMed]
Variables | Total (n = 13,725) | Men (n = 5888) | Women (n = 7837) | t | p |
---|---|---|---|---|---|
Age (years) | 42.97 ± 12.13 | 43.10 ± 12.17 | 42.87 ± 12.10 | 1.092 | 0.275 |
Height (cm) | 163.58 ± 8.73 | 170.89 ± 6.25 | 158.09 ± 5.80 | 122.415 | <0.001 |
Weight (kg) | 63.31 ± 11.53 | 70.65 ± 10.51 | 57.80 ± 8.89 | 75.637 | <0.001 |
BMI (kg/m2) | 23.58 ± 3.35 | 24.16 ± 3.13 | 23.14 ± 3.44 | 18.069 | <0.001 |
WC (cm) | 80.32 ± 9.90 | 84.27 ± 8.84 | 77.36 ± 9.62 | 43.604 | <0.001 |
Body fat percentage (%) | 28.12 ± 7.58 | 21.94 ± 5.44 | 32.76 ± 5.32 | −116.490 | <0.001 |
Fat mass (kg) | 17.60 ± 5.68 | 15.66 ± 5.49 | 19.05 ± 5.38 | −36.160 | <0.001 |
Total muscle mass (kg) | 42.87 ± 9.38 | 51.70 ± 6.41 | 36.23 ± 4.53 | 157.876 | <0.001 |
MWR (kg/cm) | 0.533 ± 0.092 | 0.616 ± 0.06 | 0.471 ± 0.05 | 141.446 | <0.001 |
WHtR (cm/cm) | 0.492 ± 0.060 | 0.494 ± 0.05 | 0.490 ± 0.06 | 3.398 | 0.001 |
MFR (kg/kg) | 2.75 ± 1.33 | 3.72 ± 1.44 | 2.03 ± 0.54 | 85.607 | <0.001 |
ABSI (m11/6/kg−2/3) | 0.076 ± 0.004 | 0.077 ± 0.004 | 0.076 ± 0.005 | 18.404 | <0.001 |
Triglyceride (mg/dL) | 130.27 ± 110.15 | 161.70 ± 137.78 | 106.65 ± 75.41 | 27.700 | <0.001 |
Total cholesterol (mg/dL) | 186.95 ± 35.43 | 188.41 ± 35.73 | 185.85 ± 35.16 | 4.196 | <0.001 |
LDL-C (mg/dL) | 163.96 ± 49.46 | 174.88 ± 54.28 | 155.76 ± 43.76 | 22.155 | <0.001 |
HDL-C (mg/dL) | 49.04 ± 11.31 | 45.87 ± 10.59 | 51.42 ± 11.26 | −29.559 | <0.001 |
Fasting blood glucose (mg/dL) | 95.88 ± 21.15 | 98.50 ± 23.31 | 93.91 ± 19.13 | 12.644 | <0.001 |
HbA1c (%) | 6.23 ± 1.34 | 6.35 ± 1.39 | 6.13 ± 1.29 | 3.904 | <0.001 |
SBP (mmHg) | 116.17 ± 16.15 | 119.90 ± 14.94 | 113.37 ± 16.46 | 24.241 | <0.001 |
DBP (mmHg) | 76.70 ± 11.02 | 80.39 ± 10.75 | 73.92 ± 10.38 | 35.390 | <0.001 |
Total calorie intake level (kcal/day) | 1994.20 ± 864.91 | 2429.57 ± 956.83 | 1705.29 ± 654.06 | 45.656 | <0.001 |
Average sleep duration (h/day) | 6.91 ± 1.69 | 6.90 ± 2.09 | 6.91 ± 1.31 | −0.169 | 0.866 |
Total physical activity level n (%) | |||||
low | 4142 (30.2) | 1475 (25.1) | 2667 (34.0) | 200.560 | <0.001 |
moderate | 5706 (41.6) | 2426 (41.2) | 3280 (41.9) | ||
high | 3877 (28.2) | 1987 (33.7) | 1890 (24.1) | ||
Drinking level n (%) | |||||
non-drinking | 5659 (41.2) | 1272 (21.6) | 4387 (56.0) | 2741.938 | <0.001 |
low drinking | 4723 (34.4) | 1998 (33.9) | 2725 (34.8) | ||
middle drinking | 2202 (16.0) | 1614 (27.4) | 588 (7.5) | ||
high drinking | 1141 (8.3) | 1004 (17.1) | 137 (1.7) | ||
Current smoker n (%) | 4539 (33.1) | 3851 (65.4) | 688 (8.8) | 4870.405 | <0.001 |
Metabolic syndrome variables n (%) | |||||
abdominal obesity | 3176 (23.1) | 1517 (25.8) | 1659 (21.2) | 39.920 | <0.001 |
Elevated blood glucose | 6578 (47.9) | 3079 (52.3) | 3499 (44.6) | 78.748 | <0.001 |
High triglyceride | 4269 (31.1) | 2474 (42.0) | 1795 (22.9) | 573.161 | <0.001 |
hypertension | 7302 (53.2) | 3506 (59.5) | 3796 (48.4) | 166.616 | <0.001 |
low HDL cholesterol | 5725 (41.7) | 1928 (32.7) | 3797 (48.4) | 341.072 | <0.001 |
metabolic syndrome | 4911 (35.8) | 2349 (39.9) | 2562 (32.7) | 75.926 | <0.001 |
Variables | Men | t | Women | t | ||
---|---|---|---|---|---|---|
Without MetS (n = 3539) | With MetS (n = 2349) | Without MetS (n = 5275) | With MetS (n = 2562) | |||
Age (years) | 40.74 ± 12.30 | 46.66 ± 11.06 | −19.213 *** | 40.18 ± 11.57 | 48.41 ± 11.27 | −29.812 *** |
Height (cm) | 171.13 ± 6.22 | 170.53 ± 6.29 | 3.613 *** | 158.56 ± 5.76 | 157.11 ± 5.77 | 10.504 *** |
Weight (kg) | 67.66 ± 9.35 | 75.16 ± 10.56 | −27.916 *** | 55.75 ± 7.64 | 62.02 ± 9.76 | −28.540 *** |
BMI (kg/m2) | 23.08 ± 2.74 | 25.80 ± 2.97 | −35.531 *** | 22.18 ± 2.89 | 25.12 ± 3.64 | −35.717 *** |
WC (cm) | 80.80 ± 7.64 | 89.49 ± 7.92 | −42.147 *** | 74.43 ± 8.02 | 83.40 ± 9.81 | −40.242 *** |
Body fat percentage (%) | 20.21 ± 5.25 | 24.54 ± 4.61 | −33.413 *** | 31.57 ± 5.16 | 35.22 ± 4.78 | −30.894 *** |
Fat mass (kg) | 13.79 ± 4.84 | 18.49 ± 5.20 | −34.946 *** | 17.66 ± 4.71 | 21.91 ± 5.55 | −33.279 *** |
Total muscle mass (kg) | 50.61 ± 6.01 | 53.33 ± 6.64 | −16.007 *** | 35.57 ± 4.06 | 37.60 ± 5.11 | −17.591 *** |
MWR (kg/cm) | 0.628 ± 0.064 | 0.597 ± 0.060 | 19.144 *** | 0.480 ± 0.051 | 0.452 ± 0.048 | 23.554 *** |
WHtR (cm/cm) | 0.473 ± 0.046 | 0.525 ± 0.047 | −42.349 *** | 0.470 ± 0.054 | 0.532 ± 0.064 | −41.467 *** |
MFR (kg/kg) | 4.14 ± 1.58 | 3.08 ± 0.871 | 32.812 *** | 2.14 ± 0.56 | 1.80 ± 0.41 | 30.294 *** |
ABSI (m11/6/kg−2/3) | 0.076 ± 0.004 | 0.079 ± 0.004 | −23.140 *** | 0.075 ± 0.004 | 0.078 ± 0.005 | −24.625 *** |
Triglyceride (mg/dL) | 117.63 ± 88.46 | 228.11 ± 168.71 | −29.189 *** | 84.79 ± 47.72 | 151.67 ± 98.49 | −32.563 *** |
Total cholesterol (mg/dL) | 183.70 ± 32.41 | 195.52 ± 39.16 | −12.132 *** | 182.26 ± 32.97 | 193.25 ± 38.25 | −12.464 *** |
LDL-C (mg/dL) | 157.97 ± 42.62 | 200.36 ± 59.74 | −29.734 *** | 144.62 ± 36.24 | 178.70 ± 48.70 | −31.452 *** |
HDL-C (mg/dL) | 49.25 ± 10.44 | 40.78 ± 8.58 | 33.980 *** | 54.60 ± 10.98 | 44.88 ± 8.71 | 42.458 *** |
Fasting blood glucose (mg/dL) | 93.12 ± 17.17 | 106.60 ± 28.45 | −20.608 *** | 90.26 ± 12.24 | 101.42 ± 26.98 | −19.951 *** |
HbA1c (%) | 5.88 ± 1.11 | 6.85 ± 1.47 | −12.396 *** | 5.63 ± 0.77 | 7.02 ± 1.52 | −18.651 *** |
SBP (mmHg) | 116.33 ± 13.60 | 125.29 ± 15.25 | −23.030 *** | 109.17 ± 13.96 | 122.04 ± 17.79 | −32.146 *** |
DBP (mmHg) | 77.88 ± 10.08 | 84.17 ± 10.63 | −22.692 *** | 71.81 ± 9.52 | 78.28 ± 10.71 | −25.991 *** |
Total calorie intake level (kcal/day) | 2423.54 ± 948.92 | 2438.51 ± 968.63 | −0.530 | 1713.40 ± 667.93 | 1688.61 ± 624.39 | 1.543 |
Average sleep duration (h/day) | 6.94 ± 2.50 | 6.85 ± 1.23 | 1.575 | 6.95 ± 1.26 | 6.81 ± 1.40 | 4.287 *** |
Total physical activity level | ||||||
low | 843 (23.8) | 632 (26.9) | 20.042 *** | 1794 (34.0) | 873 (34.1) | 0.425 |
moderate | 1424 (40.2) | 1002 (42.7) | 2219 (42.1) | 1.061 (41.4) | ||
high | 1272 (35.9) | 715 (30.4) | 1262 (23.9) | 628 (24.5) | ||
Drinking level n (%) | ||||||
non-drinking | 787 (22.2) | 485 (20.6) | 28.330 *** | 2801 (53.1) | 1586 (61.9) | 54.522 *** |
low drinking | 1266 (35.8) | 732 (31.2) | 1949 (36.9) | 776 (28.5) | ||
middle drinking | 945 (26.7) | 669 (28.5) | 427 (8.1) | 161 (6.3) | ||
high drinking | 541 (15.3) | 463 (19.7) | 98 (1.9) | 39 (1.5) | ||
Current smoker n (%) | 2362 (66.7) | 1489 (63.4) | 7.017 ** | 517 (9.8) | 171 (6.7) | 21.049 *** |
Metabolic syndrome variables n (%) | ||||||
High waist circumference | 300 (8.5) | 1217 (51.8) | 1386.081 *** | 451 (8.5) | 1208 (47.2) | 1539.756 *** |
High blood glucose | 1148 (32.4) | 1931 (82.2) | 1401.673 *** | 1392 (26.4) | 2107 (82.2) | 2176.669 *** |
High triglycerides | 665 (18.8) | 1809 (77.0) | 1964.381 *** | 433 (8.2) | 1362 (53.2) | 1973.444 *** |
Hypertension | 1447 (40.9) | 2059 (87.7) | 1281.911 *** | 1545 (29.3) | 2251 (87.9) | 2386.731* ** |
low HDL-C | 541 (15.3) | 1387 (59.0) | 1227.654 *** | 1726 (32.7) | 2071 (80.8) | 1598.412 *** |
AUC | SE | 95% CI | Comparison Diagnostics | |||||
---|---|---|---|---|---|---|---|---|
Lower | Upper | All | Men | Women | ||||
BMI (a) | All | 0.751 *** | 0.005 | 0.744 | 0.758 | d < c < e < a < b | d < e < c < a < b | d < e < c < a < b |
Men | 0.756 *** | 0.006 | 0.745 | 0.767 | ||||
Women | 0.742 *** | 0.006 | 0.732 | 0.752 | ||||
WHtR (b) | All | 0.778 *** | 0.004 | 0.771 | 0.785 | |||
Men | 0.792 *** | 0.006 | 0.782 | 0.803 | ||||
Women | 0.768 *** | 0.006 | 0.759 | 0.778 | ||||
MFR (c) | All | 0.606 *** | 0.005 | 0.598 | 0.614 | |||
Men | 0.732 *** | 0.006 | 0.720 | 0.743 | ||||
Women | 0.696 *** | 0.006 | 0.686 | 0.707 | ||||
MWR (d) | All | 0.554 *** | 0.005 | 0.545 | 0.562 | |||
Men | 0.642 *** | 0.007 | 0.630 | 0.655 | ||||
Women | 0.657 *** | 0.007 | 0.646 | 0.667 | ||||
ABSI (e) | All | 0.674 *** | 0.005 | 0.666 | 0.682 | |||
Men | 0.671 *** | 0.007 | 0.659 | 0.683 | ||||
Women | 0.669 *** | 0.007 | 0.659 | 0.680 |
Variables | Cutoff | Youden Index | Sensitivity (%) | Specificity (%) | PPV (%) | NPV (%) | Accuracy (%) | |
---|---|---|---|---|---|---|---|---|
BMI (kg/m2) | Men | 24.59 | 0.3875 | 67.0 | 71.7 | 61.1 | 76.6 | 69.8 |
Women | 23.40 | 0.3727 | 67.6 | 69.6 | 51.9 | 81.5 | 68.9 | |
WHtR (cm/cm) | Men | 0.511 | 0.4443 | 63.3 | 80.9 | 68.8 | 76.9 | 73.9 |
Women | 0.515 | 0.4176 | 61.4 | 80.2 | 60.1 | 81.0 | 74.1 | |
MFR (kg/kg) | Men | 3.417 | 0.3426 | 73.0 | 61.2 | 55.5 | 77.3 | 65.9 |
Women | 1.893 | 0.2930 | 66.4 | 62.8 | 46.4 | 79.4 | 64.0 | |
MWR (kg/cm) | Men | 0.616 | 0.2182 | 65.4 | 56.3 | 49.8 | 71.0 | 60.0 |
Women | 0.470 | 0.2333 | 66.3 | 56.8 | 42.7 | 77.6 | 60.0 | |
ABSI (m11/6/kg−2/3) | Men | 0.0776 | 0.2579 | 62.0 | 63.5 | 53.0 | 71.6 | 62.9 |
Women | 0.0776 | 0.2566 | 53.2 | 72.3 | 48.3 | 76.1 | 66.1 |
Variables | Model 1 | Model 2 | |||||
---|---|---|---|---|---|---|---|
NG | AG | NG | AG | ||||
OR | 95% CI | OR | 95% CI | ||||
Men | BMI | Reference | 5.142 *** | 4.593–5.757 | Reference | 5.630 *** | 4.930–6.429 |
WHtR | Reference | 7.319 *** | 6.501–8.241 | Reference | 6.793 *** | 5.929–7.784 | |
MFR | Reference | 4.263 *** | 3.806–4.775 | Reference | 4.514 *** | 3.953–5.155 | |
MWR | Reference | 2.435 *** | 2.186–2.712 | Reference | 1.823 *** | 1.599–2.079 | |
ABSI | Reference | 2.843 *** | 2.552–3.166 | Reference | 2.189 *** | 1.920–2.495 | |
Women | BMI | Reference | 4.767 *** | 4.308–5.276 | Reference | 3.796 *** | 3.396–4.243 |
WHtR | Reference | 6.443 *** | 5.804–7.152 | Reference | 4.665 *** | 4.151–5.243 | |
MFR | Reference | 3.336 *** | 3.021–3.684 | Reference | 2.910 *** | 2.610–3.244 | |
MWR | Reference | 2.590 *** | 2.347–2.858 | Reference | 1.722 *** | 1.540–1.926 | |
ABSI | Reference | 2.969 *** | 2.692–3.276 | Reference | 2.020 *** | 1.808–2.258 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.; Byun, Y.; Kim, S. Predictive Diagnostic Power of Anthropometric Indicators for Metabolic Syndrome: A Comparative Study in Korean Adults. J. Clin. Med. 2025, 14, 448. https://doi.org/10.3390/jcm14020448
Park J, Byun Y, Kim S. Predictive Diagnostic Power of Anthropometric Indicators for Metabolic Syndrome: A Comparative Study in Korean Adults. Journal of Clinical Medicine. 2025; 14(2):448. https://doi.org/10.3390/jcm14020448
Chicago/Turabian StylePark, Jongsuk, Yonghyun Byun, and Sangho Kim. 2025. "Predictive Diagnostic Power of Anthropometric Indicators for Metabolic Syndrome: A Comparative Study in Korean Adults" Journal of Clinical Medicine 14, no. 2: 448. https://doi.org/10.3390/jcm14020448
APA StylePark, J., Byun, Y., & Kim, S. (2025). Predictive Diagnostic Power of Anthropometric Indicators for Metabolic Syndrome: A Comparative Study in Korean Adults. Journal of Clinical Medicine, 14(2), 448. https://doi.org/10.3390/jcm14020448