In Vitro Evaluation of Antimicrobial Effects of Endodontic Irrigants Containing Disodium Edetate and Chlorhexidine Gluconate, Octenidine Dihydrochloride, and Benzalkonium Bromide Against Intracanal Enterococcus faecalis
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Size
2.2. Specimen Preparations
2.3. Bacterial Strains and Growth Conditions
- Group 1 (n = 12): 2 mL of Endoxal (Chema-Elektromet, Rzeszów, Poland);
- Group 2 (n = 12): 2 mL of Octenisolv (Chema-Elektromet, Rzeszów, Poland);
- Group 3 (n = 12): 2 mL of Endosal (Chema-Elektromet, Rzeszów, Poland);
- Group 4 (n = 12): 2 mL of a 15% EDTA (Chema-Elektromet, Rzeszów, Poland);
- Group 5 (n = 12): 2 mL of 2% NaOCl (Chloraxid 2.0%; Cerkamed, Stalowa Wola, Poland);
- Group 6 (n = 12): 2 mL of sterile saline solution (0.9% NaCl);
- Group 7 (n = 12): no decontamination procedure was performed (positive control group).
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ALX | alexidine |
CFU | colony forming units |
CHX | bisbiguanide antimicriobial agent—chlorhexidine |
CTR | cetrimide |
EDTA | ethylenediaminetetraacetic acid |
NaOCl | sodium hypochlorite |
MTAD | mixture of a tetracycline, an acid, and a detergent |
0.9% NaCl | sterile sodium solution |
OCT | octenidine hydrochloride |
References
- Fiegler-Rudol, J.; Skaba, D.; Wiench, R. Antimicrobial Efficacy of Nd:YAG Laser in Polymicrobial Root Canal Infections: A Systematic Review of In Vitro Studies. Int. J. Mol. Sci. 2025, 26, 5631. [Google Scholar] [CrossRef]
- Siqueira, J.F.; Rôças, I.N., Jr. Present status and future directions: Microbiology of endodontic infections. Int. Endod. J. 2022, 55, 512–530. [Google Scholar] [CrossRef]
- Haroon, S.; Khabeer, A.; Faridi, M.A. Light-activated disinfection in endodontics: A comprehensive review. Dent. Med. Probl. 2021, 58, 411–418. [Google Scholar] [CrossRef]
- Souto, R.; Colombo, A.P. Prevalence of Enterococcus faecalis in subgingival biofilm and saliva of subjects with chronic periodontal infection. Arch. Oral Biol. 2008, 53, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Love, R.M. Enterococcus faecalis—A mechanism for its role in endodontic failure. Int. Endod. J. 2001, 34, 399–405. [Google Scholar] [CrossRef] [PubMed]
- Parga, A.; Mattu, J.; Belibasakis, G.N.; Kline, K.A.; Leprince, J.G.; Manoil, D. A polymicrobial perspective into the ecological role of Enterococcus faecalis in dental root canal infections. Npj Biofilms Microbiomes 2025, 11, 83. [Google Scholar] [CrossRef] [PubMed]
- Jett, B.D.; Huycke, M.M.; Gilmore, M.S. Virulence of enterococci. Clin. Microbiol. Rev. 1994, 7, 462–478. [Google Scholar] [CrossRef]
- Pinheiro, E.T.; Gomes, B.P.F.A.; Ferraz, C.C.R.; Sousa, E.L.R.; Teixeira, F.B.; Souza-Filho, F.J. Microorganisms from canals of root-filled teeth with periapical lesions. Int. Endod. J. 2003, 36, 1–11. [Google Scholar] [CrossRef]
- Haapasalo, M.; Orstavik, D. In vitro infection and disinfection of dentinal tubules. J. Dent. Res. 1987, 66, 1375–1379. [Google Scholar] [CrossRef]
- Peters, O.A.; Laib, A.; Gohring, T.N.; Barbakow, F. Changes in root canal geometry after preparation assessed by high-resolution computed tomography. J. Endod. 2001, 27, 1–6. [Google Scholar] [CrossRef]
- Lauritano, D.; Moreo, G.; Carinci, F.; Della Vella, F.; Di Spirito, F.; Sbordone, L.; Petruzzi, M. Cleaning Efficacy of the XP-Endo® Finisher Instrument Compared to Other Irrigation Activation Procedures: A Systematic Review. Appl. Sci. 2019, 9, 5001. [Google Scholar] [CrossRef]
- Barbero-Navarro, I.; Sofian-Pauliuc, I.; Irigoyen-Camacho, M.E.; Zepeda-Zepeda, M.A.; Ribas-Perez, D.; Castaño-Seiquer, A.L. Evaluating the Preventive and Therapeutic Roles of Active Irrigation Systems in Root Canal Treatment: A Narrative Review and Critical Appraisal of Theory and Methodology. Dent. J. 2025, 13, 9. [Google Scholar] [CrossRef]
- Singla, M.G.; Garg, A.; Gupta, S. MTAD in endodontics: An update review. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2011, 112, e70–e76. [Google Scholar] [CrossRef] [PubMed]
- Ferreira-Reguera, A.; Ferreira, I.; Pina-Vaz, I.; Martín-Biedma, B.; Martín-Cruces, J. Chitosan’s Ability to Remove the Smear Layer-A Systematic Review of Ex Vivo Studies. Medicina 2025, 61, 114. [Google Scholar] [CrossRef] [PubMed]
- Çiçek, E.; Keskin, Ö. The effect of the temperature changes of EDTA and MTAD on the removal of the smear layer: A scanning electron microscopy study. Scanning 2015, 37, 193–196. [Google Scholar] [CrossRef] [PubMed]
- Jaju, S.; Jaju, P.P. Newer root canal irrigants in horizon: A review. Int. J. Dent. 2011, 2011, 851359. [Google Scholar] [CrossRef]
- Pappen, F.G.; Shen, Y.; Qian, W.; Leonardo, M.R.; Giardino, L.; Haapasalo, M. In vitro antibacterial action of Tetraclean, MTAD and five experimental irrigation solutions. Int. Endod. J. 2010, 43, 528–535. [Google Scholar] [CrossRef]
- Giardino, L.; Ambu, E.; Savoldi, E.; Rimondini, R.; Cassanelli, C.; Debbia, E.A. Comparative evaluation of antimicrobial efficacy of sodium hypochlorite, MTAD, and Tetraclean against Enterococcus faecalis biofilm. J. Endod. 2007, 33, 852–855. [Google Scholar] [CrossRef]
- Priyanka, S.R. Tooth discolouration due to endodontic materials and Procedures. IOSR J. Dent. Med. Sci. 2013, 9, 32–36. [Google Scholar]
- Haapasalo, M.; Endal, U.; Zandi, H.; Coil, J.M. Eradication of endodontic infection by instrumentation and irrigation solutions. Endod. Top. 2005, 10, 77–102. [Google Scholar] [CrossRef]
- Palazzi, F.; Del Fabbro, M.; Taschieri, F.; Mohammadi, Z.; Asgary, S.; Bukiet, F. Comparison of Antimicrobial Substantivity of Six Root Canal Irrigants against Enterococcus faecalis. Iran Endod. J. 2018, 13, 446–452. [Google Scholar]
- Bansal, R.; Jain, A. Overview on the current antibiotic containing agents used in endodontics. N. Am. J. Med. Sci. 2014, 6, 351–358. [Google Scholar] [PubMed]
- Haapasalo, M.; Shen, Y.; Qian, W.; Gao, Y. Irrigation in endodontics. Dent. Clin. N. Am. 2010, 54, 291–312. [Google Scholar] [CrossRef] [PubMed]
- Khudhur, H.A.; Bakr, D.K.; Hamasaeed, N.H.; Saleem, S.S.; Mahdi, S.F.; Tawfiq, H.F. Unveiling SmearOFF Efficacy in Smear Layer Removal through Ultrasonic Activation Examined by Scanning Electron Microscopy. Int. J. Biomater. 2024, 21, 8188413. [Google Scholar] [CrossRef] [PubMed]
- Kot, K.; Nowicka, A.; Reszka, P.; Droździk, A.; Lipski, M. Comparison of Effectiveness of Endoxal and Endosal in Removal of Smear Layer from Root Canal Dentine Surface: A SEM Study. Dent. Med. Probl. 2016, 53, 483–489. [Google Scholar] [CrossRef]
- De Lucena, J.M.; Decker, E.M.; Walter, C.; Boeira, L.S.; Löst, C.; Weiger, R. Antimicrobial effectiveness of intracanal medicaments on Enterococcus faecalis: Chlorhexidine versus octenidine. Int. Endod. J. 2013, 46, 53–61. [Google Scholar] [CrossRef]
- Tirali, R.E.; Bodur, H.; Sipahi, B.; Sungurtekin, E. Evaluation of the antimicrobial activities of chlorhexidine gluconate, sodium hypochlorite and octenidine hydrochloride in vitro. Aust. Endod. J. 2013, 39, 15–18. [Google Scholar] [CrossRef]
- Hancock, H.H., 3rd; Sigurdsson, A.; Trope, M.; Moiseiwitsch, J. Bacteria isolated after unsuccessful endodontic treatment in a North American population. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2001, 91, 579–586. [Google Scholar] [CrossRef]
- Wu, B.; Zhou, Z.; Hong, X.; Xu, Z.; Xu, Y.; He, Y.; Chen, S. Novel approaches on root canal disinfection methods against E. faecalis. J. Oral Microbiol. 2025, 17, 2475947. [Google Scholar] [CrossRef]
- Forough Reyhani, M.; Rezagholizadeh, Y.; Narimani, M.R.; Rezagholizadeh, L.; Mazani, M.; Barhaghi, M.H.S.; Mahmoodzadeh, Y. Antibacterial effect of different concentrations of sodium hypochlorite on Enterococcus faecalis biofilms in root canals. J. Dent. Res. Dent. Clin. Dent. Prospect. 2017, 11, 215–221. [Google Scholar]
- Nascimento, C.A.; Tanomaru-Filho, M.; Faria-Junior, N.B.; Faria, G.; Guerreiro-Tanomaru, J.M. Antimicrobial activity of root canal irrigants associated with cetrimide against biofilm and planktonic Enterococcus faecalis. J. Contemp. Dent. Pract. 2014, 15, 603–607. [Google Scholar]
- Tirali, R.E.; Turan, Y.; Akal, N.; Karahan, Z.C. In vitro antimicrobial activity of several concentrations of NaOCl and octenisept in elimination of endodontic pathogens. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2009, 108, 117–120. [Google Scholar] [CrossRef]
- Tandjung, L.; Waltimo, T.; Heide, P.; Decker, E.M.; Weiger, R. Octenidine in root canal and dentine disinfection ex vivo. Int. Endod. J. 2007, 40, 845–851. [Google Scholar] [CrossRef] [PubMed]
- De Andrade, J.G.; Natali, A.F.F.; Loureiro, C.; Rodrigues, G.W.L.; Ribeiro, A.P.F.; de Freitas, R.N.; Barzotti, R.J.; Oliveira, L.C.; de Moraes, Y.G.C.; Gomes, N.A.; et al. Synergistic Effect of Sodium Hypochlorite and Carbon Dioxide Against Enterococcus faecalis Biofilm. Dent. J. 2025, 10, 417. [Google Scholar] [CrossRef] [PubMed]
- Foroughi, M.; Abolmaali, S.; Abedi, H.; Ravenel, T. Enhancing Endodontic Outcomes with the Synergistic Microbicidal and Activated Root-Cleansing Technique (SMART): A Novel Approach to Root Canal Irrigation. Medicina 2025, 61, 874. [Google Scholar] [CrossRef] [PubMed]
- Torabinejad, M.; Shabahang, S.; Aprecio, R.M.; Kettering, J.D. The antimicrobial effect of MTAD: An in vitro investigation. J. Endod. 2003, 29, 400–403. [Google Scholar] [CrossRef]
- Arias-Moliz, M.T.; Ferrer-Luque, C.M.; Espigares-García, M.; Baca, P. Enterococcus faecalis biofilms eradication by root canal irrigants. J. Endod. 2009, 35, 711–714. [Google Scholar] [CrossRef]
- Octenisept® Schulke. Product Information Wound and Mucous Membrane Antiseptic. Available online: https://www.schuelke.com/wMedia/docs/products/en-ZZ/P-910026/octenisept_910026-PIS_manual-IP-WORLD_en-SMDE.pdf (accessed on 30 June 2025).
- Cherian, B.; Gehlot, P.M.; Manjunath, M.K. Comparison of the antimicrobial efficacy of octenidine dihydrochloride and chlorhexidine with and without Passive Ultrasonic Irrigation—An in vitro study. J. Clin. Diagn. Res. 2016, 10, 71–77. [Google Scholar]
- Ghivari, S.B.; Bhattacharya, H.; Bhat, K.G.; Pujar, M.A. Antimicrobial activity of root canal irrigants against biofilm forming pathogens—An in vitro study. J. Conserv. Dent. 2017, 20, 147–151. [Google Scholar] [CrossRef]
- Chum, J.D.; Lim, D.J.Z.; Sheriff, S.O.; Pulikkotil, S.J.; Suresh, A.; Davamani, F. In vitro evaluation of octenidine as an antimicrobial agent against Staphylococcus epidermidis in disinfecting the root canal system. Restor. Dent. 2019, 44, e8. [Google Scholar] [CrossRef]
- Bukhary, S.; Balto, H. Antibacterial efficacy of Octenisept, alexidine, chlorhexidine, and sodium hypochlorite against Enterococcus faecalis biofilms. J. Endod. 2017, 43, 643–647. [Google Scholar] [CrossRef] [PubMed]
- Taneja, S.; Kumari, M.; Anand, S. Effect of QMix, peracetic acid and ethylenediaminetetraacetic acid on calcium loss and microhardness of root dentine. J. Conserv. Dent. 2014, 17, 155–158. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekhar, V.; Amulya, V.; Rani, V.S.; Prakash, T.J.; Ranjani, A.S.; Gayathri, C. Evaluation of biocompatibility of a new root canal QMix 2in1—An in vivo study. J. Conserv. Dent. 2013, 16, 36–40. [Google Scholar] [PubMed]
- Giardino, L.; Ambu, E.; Becce, C.; Rimondini, L.; Morra, M. Surface tension comparison of four common root canal irrigants and two new irrigants containing antibiotic. J. Endod. 2006, 32, 1091–1093. [Google Scholar] [CrossRef]
- Stojicič, S.; Shen, Y.; Qian, W.; Johanson, B.; Haapasalo, M. Antibacterial and smear layer removal ability of novel irrigant, QMix. Int. Endod. J. 2012, 45, 363–371. [Google Scholar] [CrossRef]
- Wang, Z.; Shen, Y.; Haapasalo, M. Effectiveness of endodontic disinfecting solutions against young and old Enterococcus faecalis biofilms in dentin canals. J. Endod. 2012, 38, 1376–1379. [Google Scholar] [CrossRef]
- Gugliani, A.; Taneja, S.; Shetty, D.C.; Bhalla, V.K. Effect of Various Disinfection Protocols on Endodontic Biofilm and Growth Factors Release from Radicular Dentin: An In Vitro Study. Eur. Endod. J. 2025, 10, 1–10. [Google Scholar] [CrossRef]
- Sen, B.H.; Akdeniz, G.; Denizci, A.A.; Turkey, I. The effect of ethylenediamine-tetraacetic acid on Candida albicans. Oral Surg. Oral Med. Oral Pathol. 2000, 90, 651–655. [Google Scholar] [CrossRef]
- Alkhourbotly, D.; Altinawi, M.K.; Abou-Samra, R.; Alzoubi, H.M.; Ebrahim, A.K. Evaluation of the Antibacterial Efficacy of QMix and AgNP Solutions in Root Canals of Primary Molars: An In-Vitro Study. Cureus 2022, 14, e28877. [Google Scholar] [CrossRef]
- Orozco-Gallego, M.J.; Pineda-Vélez, E.L.; Rojas-Gutiérrez, W.J.; Rincón-Rodríguez, M.L.; Agudelo-Suárez, A.A. Effectiveness of Irrigation Protocols in Endodontic Therapy: An Umbrella Review. Dent. J. 2025, 13, 273. [Google Scholar] [CrossRef]
- Kumaresan, K.; Govindaraju, L.; Rajendran, M.R. Effect of Continuous Chelation on Physicochemical Properties of Dentin: A Systematic Review. J. Contemp. Dent. Pract. 2025, 26, 321–330. [Google Scholar] [PubMed]
- Dembicka-Mączka, D.; Gryka-Deszczyńska, M.; Sitkiewicz, J.; Makara, A.; Fiegler-Rudol, J.; Wiench, R. Evaluation of the Disinfection Efficacy of Er-YAG Laser Light on Single-Species Candida Biofilms: Systematic Review. Microorganisms 2025, 13, 942. [Google Scholar] [CrossRef]
- Aucinaite, R.; Nedzinskiene, E.; Peciuliene, V.; Dumbryte, I. The Antimicrobial Efficacy of Sodium Hypochlorite and Chlorhexidine in Gutta-Percha Cone Decontamination: A Systematic Review. Materials 2025, 18, 1539. [Google Scholar] [CrossRef]
- Govindaraju, L.; Shruthi, S.T.; Gopal, R.; Jenarthanan, S.; Rajendran, M.R. Does increase in temperature of sodium hypochlorite have enhanced antimicrobial efficacy and tissue dissolution property?—A systematic review and meta-regression. J. Conserv. Dent. Endod. 2024, 27, 675–684. [Google Scholar] [CrossRef]
- Alharbi, A.M.; Alharbi, T.M.; Alqahtani, M.S.; Elfasakhany, F.M.; Afifi, I.K.; Rajeh, M.T.; Fattouh, M.; Kenawi, L.M.M. A Comparative Evaluation of Antibacterial Efficacy of Moringa oleifera Leaf Extract, Octenidine Dihydrochloride, and Sodium Hypochlorite as Intracanal Irrigants against Enterococcus faecalis: An In Vitro Study. Int. J. Dent. 2023, 2023, 7690497. [Google Scholar]
- Mukundan, D.; Jeevanandan, G. Cytotoxic Effect of Two Different Concentrations of Sodium Hypochlorite: An In-Vitro Study. Cureus 2024, 16, e66999. [Google Scholar] [CrossRef]
- Drews, D.J.; Nguyen, A.D.; Diederich, A.; Gernhardt, C.R. The Interaction of Two Widely Used Endodontic Irrigants, Chlorhexidine and Sodium Hypochlorite, and Its Impact on the Disinfection Protocol during Root Canal Treatment. Antibiotics 2023, 12, 589. [Google Scholar] [CrossRef]
Irrigating Solution | Neutralizing Substance |
---|---|
Endoxal | 3% detergent Tween 80 + 0.3% lecithin solution |
Octenisolv | 3% detergent Tween 80 + 0.3% lecithin solution + 0.1% cysteine solution |
Endosal | 3% detergent Tween 80 + 0.3% lecithin solution |
15% EDTA | 3% detergent Tween 80 + 0.3% lecithin solution |
2% NaOCl | 5% sodium thiosulfate solution |
Group | n | Mean | Median | Min | Max | 25Q | 75Q | IQR | SD | Normality Tests | |
---|---|---|---|---|---|---|---|---|---|---|---|
W | p | ||||||||||
1 (Endoxal) | 12 | 2.25 | 1 | 0 | 7 | 0 | 4.5 | 4.5 | 2.63 | 0.821164 | 0.016472 |
2 (Octenisolv) | 12 | 1.33 | 0 | 0 | 8 | 8 | 0.5 | 0.5 | 2.90 | 0.520059 | 2.49 × 10−5 |
3 (Endosal) | 12 | 3.42 | 1.5 | 0 | 9 | 0 | 7 | 7 | 3.87 | 0.776942 | 0.005184 |
4 (15% EDTA) | 12 | 167.5 | 180 | 0 | 320 | 135 | 205 | 70 | 78.75 | 0.94691 | 0.592346 |
5 (2% NaOCl) | 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
6 (0.9% NaCl) | 12 | 350.83 | 335 | 80 | 600 | 165 | 530 | 365 | 190 | 0.913577 | 0.237043 |
7 (positive control) | 12 | 409.17 | 390 | 100 | 590 | 335 | 565 | 230 | 162.79 | 0.901352 | 0.165119 |
Group | n | Mean | Median | Min | Max | 25Q | 75Q | IQR | SD | Normality Tests | |
---|---|---|---|---|---|---|---|---|---|---|---|
W | p | ||||||||||
1 (Endoxal) | 12 | 0.37 | 0.30 | 0 | 0.90 | 0 | 0.74 | 0.74 | 0.37 | 0.825273 | 0.018422 |
2 (Octenisolv) | 12 | 0.18 | 0 | 0 | 0.95 | 0 | 0.15 | 0.15 | 0.36 | 0.56 | 4.95 × 10−5 |
3 (Endosal) | 12 | 0.44 | 0.30 | 0 | 1 | 0 | 0.90 | 0.90 | 0.47 | 0.736432 | 0.001936 |
4 (15% EDTA) | 12 | 2.05 | 2.26 | 0 | 2.51 | 2.13 | 2.31 | 0.18 | 0.66 | 0.530203 | 2.98 × 10−5 |
5 (2% NaOCl) | 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
6 (0.9% NaCl) | 12 | 2.47 | 2.53 | 1.91 | 2.78 | 2.22 | 2.73 | 0.51 | 0.30 | 0.886323 | 0.105663 |
7 (positive control) | 12 | 2.57 | 2.59 | 2 | 2.77 | 2.52 | 2.75 | 0.23 | 0.24 | 0.814518 | 0.013767 |
Dependent: CFU | p-Value for Multiple Comparisons (Two-Sided): CFU | ||||||
---|---|---|---|---|---|---|---|
1 (Endoxal) | 2 (Octenisolv) | 3 (Endosal) | 4 (15% EDTA) | 5 (2% NaOCl) | 6 (0.9% NaCl) | 7 (Positive Control) | |
1 (Endoxal) | 1 | 1 | 0.35 | 1 | 0.01 | 0.002192 | |
2 (Octenisolv) | 1 | 1 | 0.03 | 1 | 0.0004 | 0.000074 | |
3 (Endosal) | 1 | 1 | 0.37 | 1 | 0.01 | 0.002439 | |
4 (15% EDTA) | 0.35 | 0.03 | 0.37 | 0.002 | 1 | 1 | |
5 (2% NaOCl) | 1 | 1 | 1 | 0.002 | 0.00001 | 0.000002 | |
6 (0.9% NaCl) | 0.01 | 0.0004 | 0.01 | 1 | 0.00001 | 1 | |
7 (positive control) | 0.002 | 0.0001 | 0.002 | 1 | 0.000002 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siemińska, A.; Kot, K.; Marek, E.; Chamarczuk, A.; Kaczała, M.; Rasławska-Socha, J.; Schuster, L.; Dammaschke, T.; Szyszka-Sommerfeld, L.; Lipski, M. In Vitro Evaluation of Antimicrobial Effects of Endodontic Irrigants Containing Disodium Edetate and Chlorhexidine Gluconate, Octenidine Dihydrochloride, and Benzalkonium Bromide Against Intracanal Enterococcus faecalis. J. Clin. Med. 2025, 14, 7100. https://doi.org/10.3390/jcm14197100
Siemińska A, Kot K, Marek E, Chamarczuk A, Kaczała M, Rasławska-Socha J, Schuster L, Dammaschke T, Szyszka-Sommerfeld L, Lipski M. In Vitro Evaluation of Antimicrobial Effects of Endodontic Irrigants Containing Disodium Edetate and Chlorhexidine Gluconate, Octenidine Dihydrochloride, and Benzalkonium Bromide Against Intracanal Enterococcus faecalis. Journal of Clinical Medicine. 2025; 14(19):7100. https://doi.org/10.3390/jcm14197100
Chicago/Turabian StyleSiemińska, Anna, Katarzyna Kot, Ewa Marek, Agnieszka Chamarczuk, Magdalena Kaczała, Joanna Rasławska-Socha, Laurentia Schuster, Till Dammaschke, Liliana Szyszka-Sommerfeld, and Mariusz Lipski. 2025. "In Vitro Evaluation of Antimicrobial Effects of Endodontic Irrigants Containing Disodium Edetate and Chlorhexidine Gluconate, Octenidine Dihydrochloride, and Benzalkonium Bromide Against Intracanal Enterococcus faecalis" Journal of Clinical Medicine 14, no. 19: 7100. https://doi.org/10.3390/jcm14197100
APA StyleSiemińska, A., Kot, K., Marek, E., Chamarczuk, A., Kaczała, M., Rasławska-Socha, J., Schuster, L., Dammaschke, T., Szyszka-Sommerfeld, L., & Lipski, M. (2025). In Vitro Evaluation of Antimicrobial Effects of Endodontic Irrigants Containing Disodium Edetate and Chlorhexidine Gluconate, Octenidine Dihydrochloride, and Benzalkonium Bromide Against Intracanal Enterococcus faecalis. Journal of Clinical Medicine, 14(19), 7100. https://doi.org/10.3390/jcm14197100