Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = edetic acid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 5236 KiB  
Article
Magnetocaloric Effect in 3D Gd(III)-Oxalate Coordination Framework
by Fang-Wen Lv, Mei-Xin Hong, Xue-Ting Wang, Haiquan Tian, Chun-Chang Wang and Xiu-Ying Zheng
Nanomaterials 2025, 15(1), 32; https://doi.org/10.3390/nano15010032 - 28 Dec 2024
Cited by 1 | Viewed by 907
Abstract
Cryogenic magnetic refrigerants based on the magnetocaloric effect (MCE) hold significant potential as substitutes for the expensive and scarce He-3. Gd(III)-based complexes are considered excellent candidates for low-temperature magnetic refrigerants. We have synthesized a series of Ln(III)-based metal-organic framework (MOF) Ln-3D (Ln = [...] Read more.
Cryogenic magnetic refrigerants based on the magnetocaloric effect (MCE) hold significant potential as substitutes for the expensive and scarce He-3. Gd(III)-based complexes are considered excellent candidates for low-temperature magnetic refrigerants. We have synthesized a series of Ln(III)-based metal-organic framework (MOF) Ln-3D (Ln = Gd/Dy) by the slow release of oxalates in situ from organic ligands (disodium edetate dehydrate (EDTA-2Na) and thiodiglycolic acid). Structural analysis shows that the Ln-3D is a neutral 3D framework with one-dimensional channels connected by [Ln(H2O)3]3+ as nodes and C2O42− as linkers. Magnetic measurements show that Gd-3D exhibits very weak antiferromagnetic interactions with a maximum −ΔSm value of 36.6 J kg−1 K−1 (−ΔSv = 74.47 mJ cm−3 K−1) at 2 K and 7 T. The −ΔSm value is 28.4 J kg−1 K−1 at 2 K and 3 T, which is much larger than that of commercial Gd3Ga5O12 (GGG), indicating its potential as a low-temperature magnetic refrigerant. Full article
(This article belongs to the Special Issue Nanoelectronics: Materials, Devices and Applications (Second Edition))
Show Figures

Figure 1

18 pages, 2725 KiB  
Article
Inhibition of Microbial Growth and Biofilm Formation in Pure and Mixed Bacterial Samples
by John D. Cate, Young Z. Sullivan and Maria D. King
Microorganisms 2024, 12(7), 1500; https://doi.org/10.3390/microorganisms12071500 - 22 Jul 2024
Cited by 2 | Viewed by 2701
Abstract
Hydraulic fracturing, or fracking, requires large amounts of water to extract fossil fuel from rock formations. As a result of hydraulic fracturing, the briny wastewater, often termed back-produced fracturing or fracking water (FW), is pumped into holding ponds. One of the biggest challenges [...] Read more.
Hydraulic fracturing, or fracking, requires large amounts of water to extract fossil fuel from rock formations. As a result of hydraulic fracturing, the briny wastewater, often termed back-produced fracturing or fracking water (FW), is pumped into holding ponds. One of the biggest challenges with produced water management is controlling microbial activity that could reduce the pond water’s reusable layer and pose a significant environmental hazard. This study focuses on the characterization of back-produced water that has been hydraulically fractured using chemical and biological analysis and the development of a high-throughput screening method to evaluate and predict the antimicrobial effect of four naturally and commercially available acidic inhibitors (edetic acid, boric acid, tannic acid, and lactic acid) on the growth of the FW microbiome. Liquid cultures and biofilms of two laboratory model strains, the vegetative Escherichia coli MG1655, and the spore-forming Bacillus atrophaeus (also known as Bacillus globigii, BG) bacteria, were used as reference microorganisms. Planktonic bacteria in FW were more sensitive to antimicrobials than sessile bacteria in biofilms. Spore-forming BG bacteria exhibited more sensitivity to acidic inhibitors than the vegetative E. coli cells. Organic acids were the most effective bacterial growth inhibitors in liquid culture and biofilm. Full article
(This article belongs to the Special Issue Bacterial and Antibiotic Resistance in the Environment)
Show Figures

Graphical abstract

13 pages, 15273 KiB  
Article
Effect of EDTA Gel on Residual Subgingival Calculus and Biofilm: An In Vitro Pilot Study
by Charles M. Cobb, Stephen K. Harrel, Donggao Zhao and Paulette Spencer
Dent. J. 2023, 11(1), 22; https://doi.org/10.3390/dj11010022 - 9 Jan 2023
Cited by 5 | Viewed by 4092
Abstract
Background: Residual calculus, following scaling and root planing (SRP), is associated with persistent inflammation and the progression of periodontitis. This study examined the effects of a 24% neutral ethylenediaminetetraacetic acid (EDTA) gel on subgingival calculus and biofilms. Methods: Eleven single-rooted teeth extracted because [...] Read more.
Background: Residual calculus, following scaling and root planing (SRP), is associated with persistent inflammation and the progression of periodontitis. This study examined the effects of a 24% neutral ethylenediaminetetraacetic acid (EDTA) gel on subgingival calculus and biofilms. Methods: Eleven single-rooted teeth extracted because of severe periodontal disease were randomly assigned to the following treatment groups: (1) three teeth served as untreated controls; (2) three teeth were treated by scaling and root planing (SRP) only; and (3) three teeth were treated by SRP + EDTA. The remaining two teeth, one SRP only and the other SRP + EDTA were designated for energy-dispersive X-ray spectroscopy (EDS) analysis. EDTA gel was placed on the SRP surface for 2 min and then burnished with a sterile cotton pellet. Results: SRP + EDTA treated specimens exhibited severely damaged biofilm and the disruption of the extracellular polymeric matrix. EDS scans of the smear layer and calculus featured reductions in the Weight % and Atomic % for N, F, Na, and S and increases in Mg, P, and Ca. Conclusions: A 25% neutral EDTA gel was applied after SRP severely disrupted the residual biofilm and altered the character of dental calculus and the smear layer as shown by reductions in the Weight % and Atomic % for N, F, Na, and S and increases in Mg, P, and Ca. Full article
(This article belongs to the Special Issue Periodontal Health: Disease Prevention and Treatment)
Show Figures

Graphical abstract

11 pages, 588 KiB  
Article
Stability Study of Parenteral N-Acetylcysteine, and Chemical Inhibition of Its Dimerization
by Nicolas Primas, Guillaume Lano, Damien Brun, Christophe Curti, Marion Sallée, Emmanuelle Sampol-Manos, Edouard Lamy, Charleric Bornet, Stéphane Burtey and Patrice Vanelle
Pharmaceuticals 2023, 16(1), 72; https://doi.org/10.3390/ph16010072 - 3 Jan 2023
Cited by 5 | Viewed by 4677
Abstract
Parenteral N-acetylcysteine has a wide variety of clinical applications, but its use can be limited by a poor chemical stability. We managed to control parenteral N-acetylcysteine stability, and to study the influence of additives on the decrease of N-acetylcysteine degradation. First, an HPLC-UV [...] Read more.
Parenteral N-acetylcysteine has a wide variety of clinical applications, but its use can be limited by a poor chemical stability. We managed to control parenteral N-acetylcysteine stability, and to study the influence of additives on the decrease of N-acetylcysteine degradation. First, an HPLC-UV dosing method of N-acetylcysteine and its main degradation product, a dimer, was validated and the stability without additive was studied. Then, the influence of several additives (ascorbic acid, sodium edetate, tocopherol and zinc) and of temperature on N-acetylcysteine dimerization was evaluated. Finally, the influence of zinc gluconate at different concentrations (administrable to patients) was investigated. Zinc gluconate at 62.5 µg·mL−1 allows the stabilization of 25 mg·mL−1 N-acetylcysteine solution for at least 8 days when stored at 5 ± 3 °C. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Figure 1

22 pages, 2761 KiB  
Article
Biomedical Text Link Prediction for Drug Discovery: A Case Study with COVID-19
by Kevin McCoy, Sateesh Gudapati, Lawrence He, Elaina Horlander, David Kartchner, Soham Kulkarni, Nidhi Mehra, Jayant Prakash, Helena Thenot, Sri Vivek Vanga, Abigail Wagner, Brandon White and Cassie S. Mitchell
Pharmaceutics 2021, 13(6), 794; https://doi.org/10.3390/pharmaceutics13060794 - 26 May 2021
Cited by 26 | Viewed by 6554
Abstract
Link prediction in artificial intelligence is used to identify missing links or derive future relationships that can occur in complex networks. A link prediction model was developed using the complex heterogeneous biomedical knowledge graph, SemNet, to predict missing links in biomedical literature for [...] Read more.
Link prediction in artificial intelligence is used to identify missing links or derive future relationships that can occur in complex networks. A link prediction model was developed using the complex heterogeneous biomedical knowledge graph, SemNet, to predict missing links in biomedical literature for drug discovery. A web application visualized knowledge graph embeddings and link prediction results using TransE, CompleX, and RotatE based methods. The link prediction model achieved up to 0.44 hits@10 on the entity prediction tasks. The recent outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), also known as COVID-19, served as a case study to demonstrate the efficacy of link prediction modeling for drug discovery. The link prediction algorithm guided identification and ranking of repurposed drug candidates for SARS-CoV-2 primarily by text mining biomedical literature from previous coronaviruses, including SARS and middle east respiratory syndrome (MERS). Repurposed drugs included potential primary SARS-CoV-2 treatment, adjunctive therapies, or therapeutics to treat side effects. The link prediction accuracy for nodes ranked highly for SARS coronavirus was 0.875 as calculated by human in the loop validation on existing COVID-19 specific data sets. Drug classes predicted as highly ranked include anti-inflammatory, nucleoside analogs, protease inhibitors, antimalarials, envelope proteins, and glycoproteins. Examples of highly ranked predicted links to SARS-CoV-2: human leukocyte interferon, recombinant interferon-gamma, cyclosporine, antiviral therapy, zidovudine, chloroquine, vaccination, methotrexate, artemisinin, alkaloids, glycyrrhizic acid, quinine, flavonoids, amprenavir, suramin, complement system proteins, fluoroquinolones, bone marrow transplantation, albuterol, ciprofloxacin, quinolone antibacterial agents, and hydroxymethylglutaryl-CoA reductase inhibitors. Approximately 40% of identified drugs were not previously connected to SARS, such as edetic acid or biotin. In summary, link prediction can effectively suggest repurposed drugs for emergent diseases. Full article
(This article belongs to the Special Issue Computational Intelligence (CI) Tools in Drug Discovery and Design)
Show Figures

Figure 1

Back to TopTop