Impact of Surgical Delay on Two-Stage Breast Reconstruction During the COVID-19 Pandemic: A Retrospective Analysis
Abstract
1. Introduction
2. Patients and Methods
2.1. Study Design
- underwent autologous reconstruction at the second stage,
- received direct-to-implant reconstruction or alternative reconstructive approaches,
- required early expander-to-implant exchange for oncological reasons (<6 months),
- had implant removal without reconstruction, or
- were lost to follow-up.
- Case group (pandemic cohort): patients scheduled for the second-stage reconstruction between February 2020 (declaration of the COVID-19 emergency in Italy) and December 2022.
- Control group (pre-pandemic cohort): patients who completed the second-stage reconstruction between December 2011 and February 2020, before the pandemic.
2.2. Variables Analysed
- Demographic variables: age, body mass index (BMI), menopausal status, smoking habits, comorbidities (diabetes, hypothyroidism, hypercholesterolemia, arterial hypertension), and lifestyle factors.
- Oncological variables: tumor histology and stage, BRCA mutation status, type of mastectomy (modified radical, skin-sparing, nipple-sparing), axillary management (sentinel node biopsy, axillary dissection), and the need for neoadjuvant or adjuvant therapies (chemotherapy, radiotherapy).
- Perioperative variables (first stage): pre- and postoperative hemoglobin and hematocrit, use of acellular dermal matrix (ADM), number and type of drains, length of hospital stay, time to drain removal, expansion protocol (time to first expansion, expansion duration, final expansion volume), and type of expander used.
- Reconstructive variables (second stage): plane of implant placement, type and size of definitive implant, use of contralateral symmetrization procedures, and length of hospital stay at exchange.
- Outcomes:
- ○
- Early complications (within 30 postoperative days): hematoma, seroma, infection, wound dehiscence, need for reoperation, implant loss.
- ○
- Late complications (beyond 30 days until expander replacement): rupture, capsular contracture, infection, seroma, wound dehiscence, implant exposure, reoperation.
- ○
- Capsular contracture after definitive implant exchange (minimum 18 months follow-up).
2.3. Surgical Protocols
2.4. Perioperative Management and Follow-Up
- Antibiotic prophylaxis: intravenous cefazolin (or clindamycin in allergic patients) administered perioperatively, followed by extended prophylaxis with oral amoxicillin–clavulanic acid (or ciprofloxacin in allergic patients) until drains were removed.
- Analgesia: scheduled paracetamol 1000 mg three times daily; rescue analgesics included ketorolac 30 mg IV, ibuprofen 600 mg, or morphine 5 mg SC. Antiemetics were administered as needed, and proton pump inhibitors (pantoprazole or lansoprazole) were routinely prescribed.
- Anticoagulation: enoxaparin sodium 4000 IU daily for six days postoperatively.
2.5. Discomfort Assessment for Delays
- Physical discomfort (e.g., pain, restrictions in daily activities, sleep quality),
- Psychosocial impact (e.g., body image, limitations in social or occupational activities),
- Satisfaction with final reconstruction (perceived adaptation to the implant, willingness to undergo the procedure again).
2.6. Statistical Analysis
3. Results
3.1. Demographic Analysis (Supplementary Table S1)
3.2. Treatment Delays (Table 2)
3.3. Complication Analysis (Table 3, Supplementary Figures S2 and S3)
| Group 1 (Cases) | Group 2 (Controls) | p Value * | |
|---|---|---|---|
| Total complications | 29% (43) | 18% (43) | 0.0333 |
| Early complications (<30 days) | |||
| Hematoma | 4% (6) | 2% (5) | 0.3592 |
| RTOR | 0% (0) | 0.5% (1) | |
| Seroma | 10% (14) | 5% (12) | 0.1499 |
| RTOR | 0% (0) | 0% (0) | |
| Infection | 5% (7) | 3% (6) | 0.3892 |
| RTOR | 2% (3) | 1% (2) | |
| Wound dehiscence | 8% (12) | 10% (21) | 0.0715 |
| RTOR | 2% (3) | 1% (3) | |
| Implant explant | 1% (2) | 2% (5) | 0.7068 |
| Late complications (>30 days) | |||
| Implant rupture | 2% (3) | 0.5% (1) | 0.3055 |
| Contracture | 7% (10) | 1% (3) | 0.0077 ** |
| Hematoma | 0% (0) | 0% (0) | 1 |
| RTOR | 0% (0) | 0% (0) | |
| Seroma | 1% (1) | 0.5% (1) | 1 |
| RTOR | 0% (0) | 0% (0) | |
| Infection | 0% (0) | 1% (2) | 0.5196 |
| RTOR | 0% (0) | 0.5% (1) | |
| Wound dehiscence | 3% (4) | 0.5% (1) | 0.0839 |
| RTOR | 1% (2) | 0% (0) | |
| Implant exposure | 0% (0) | 0% (0) | 1 |
| RTOR | 0% (0) | 0% (0) | |
| Implant explant | 2% (3) | 1% (3) | 0.6856 |
Multivariate Analysis (Table 4)
| Outcome | Predictor | OR | 95% CI | p-Value |
|---|---|---|---|---|
| Capsular contracture (Model A) | Pandemic group (vs. pre-pandemic) | 33.4 | 0.68–63.4 | 0.015 |
| Age | 1.01 | - | 0.18 (ns) | |
| Smoking | 1.08 | - | 0.81 (ns) | |
| Comorbidities | 0.99 | - | ≈1.0 (ns) | |
| Radiotherapy during expansion | - | - | ns | |
| Follow-up (months) | 1.05 | - | 0.078 (trend) | |
| Capsular contracture (Model B) | Expander duration (per day) | 1.006 | 1.002–1.009 | 0.002 |
| (other covariates) | - | - | ns | |
| Any complication (Model C) | Pandemic group (vs. pre-pandemic) | 1.54 | 0.82–4.04 | 0.167 |
| Age | 1.02 | - | 0.12 (ns) | |
| Comorbidities | 0.58 | - | 0.12 (ns) | |
| Follow-up (months) | 1.014 | 1.000–1.027 | 0.047 | |
| Smoking, Radiotherapy | - | - | ns | |
| Any complication (Model D) | Expander duration (per day) | 1.0003 | 0.999–1.002 | 0.66 |
| Follow-up (months) | 1.012 | - | 0.076 (trend) | |
| (other covariates) | - | - | ns |
3.4. Reoperation Rates
3.5. Classification of Complications Using the Clavien-Dindo System [17,18]
3.6. Patient Questionnaire (Supplementary Figure S1)
4. Discussion
4.1. Significance of Data
4.2. Patient Questionnaire Analysis (Supplementary Figure S1)
4.3. Comparison with Literature
4.4. Decision-Making Impact
4.5. Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- COVIDSurg Collaborative. Global guidance for surgical care during the COVID-19 pandemic. Br. J. Surg. 2020, 107, 1097–1103. [Google Scholar] [CrossRef]
- Rusch, V.W.; Wexner, S.D.; American College of Surgeons COVID-19 Communications Committee, Board of Regents, and Officers. The American College of Surgeons Responds to COVID-19. J. Am. Coll. Surg. 2020, 231, 490–496. [Google Scholar] [CrossRef]
- Bartlett, D.L.; Howe, J.R.; Chang, G.; Crago, A.; Hogg, M.; Karakousis, G.; Levine, E.; Maker, A.; Mamounas, E.; McGuire, K.; et al. Management of Cancer Surgery Cases During the COVID-19 Pandemic: Considerations. Ann. Surg. Oncol. 2020, 27, 1717–1720. [Google Scholar] [CrossRef]
- Uroskie, T.W.; Colen, L.B. History of breast reconstruction. Semin. Plast. Surg. 2004, 18, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Muntean, M.V.; Oradan, A.V.; Corpodean, A.A.; Lazar, G.L.; Gata, V.A.; Vlad, C.; Puscas, E.; Lisencu, I.C.; Achimas-Cadariu, P.A. Immediate breast reconstruction in large ptotic breasts using the inferior based dermal Flap. Indications and Technique. Chirurgia 2021, 116, 127–135. [Google Scholar] [CrossRef]
- Xie, J.; Yan, W.; Zhu, Z.; Wang, M.; Shi, J. Advances in Prepectoral Breast Reconstruction. Ther. Clin. Risk Manag. 2023, 19, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Chetta, M.D.; Aliu, O.; Zhong, L.; Sears, E.D.; Waljee, J.F.; Chung, K.C.; Momoh, A.O. Reconstruction of the Irradiated Breast: A National Claims-Based Assessment of Postoperative Morbidity. Plast. Reconstr. Surg. 2017, 139, 783–792. [Google Scholar] [CrossRef]
- Tellarini, A.; Bascialla, E.; Paganini, F.; Fasoli, V.; Buttarelli, F.; Marra, E.P.; Tamborini, F.; Corno, M.; Di Giovanna, D.; Baraziol, R.; et al. Breast reconstruction with TiLOOP® Bra: Another arrow in plastic surgeons’ quiver? J. Plast. Reconstr. Aesthetic Surg. 2024, 97, 89–114. [Google Scholar] [CrossRef] [PubMed]
- Paganini, F.; Bascialla, E.; Corno, M.; Garutti, L.; Tellarini, A.; Cozzi, S.; Buttarelli, F.; Fasoli, V.; Valdatta, L.; Tamborini, F. Meshed Dermal Sling for Prepectoral Breast Reconstruction. Plast. Reconstr. Surg. Glob. Open 2024, 12, e5534. [Google Scholar] [CrossRef]
- Tellarini, A.; Garutti, L.; Corno, M.; Tamborini, F.; Paganini, F.; Fasoli, V.; Di Giovanna, D.; Valdatta, L. Immediate post-mastectomy prepectoral breast reconstruction with animal derived acellular dermal matrices: A systematic review. J. Plast. Reconstr. Aesthetic Surg. 2023, 86, 94–108. [Google Scholar] [CrossRef]
- Fatima, H.; Abbas, P.; Alshehri, S.M. Balancing Innovation and Patient Care in Breast Cancer: Integrating Hypofractionated Proton Therapy With Breast Reconstruction Outcomes. Cureus 2024, 16, e58056. [Google Scholar] [CrossRef]
- Al-Benna, S.; Gohritz, A. Breast reconstruction during the COVID-19 pandemic in resource-limited settings. GMS Interdiscip. Plast. Reconstr. Surg. DGPW 2021, 10, Doc10. [Google Scholar]
- Ko, G.; Li, Q.; Liu, N.; Amir, E.; Covelli, A.; Eskander, A.; Freitas, V.; Koch, C.A.; Ramruthan, J.; Reel, E.; et al. Impact of the COVID-19 pandemic on breast cancer surgeries in a Canadian population. Breast Cancer Res. Treat. 2024, 210, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Lo Torto, F.; Turriziani, G.; Carella, S.; Pagnotta, A.; Ribuffo, D. Impact of the Prepectoral Breast Reconstruction Assessment Score on Expander-Based Reconstruction Success. J. Clin. Med. 2024, 13, 6466. [Google Scholar] [CrossRef]
- Riggio, E.; Toffoli, E.; Tartaglione, C.; Marano, G.; Biganzoli, E. Local safety of immediate reconstruction during primary treatment of breast cancer. Direct-to-implant versus expander-based surgery. J. Plast. Reconstr. Aesthetic Surg. 2019, 72, 232–242. [Google Scholar] [CrossRef]
- Cuschieri, S. The STROBE guidelines. Saudi J. Anaesth. 2019, 13 (Suppl. S1), S31–S34. [Google Scholar] [CrossRef]
- Dindo, D.; Demartines, N.; Clavien, P.A. Classification of surgical complications: A new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann. Surg. 2004, 240, 205–213. [Google Scholar] [CrossRef]
- Clavien, P.A.; Barkun, J.; De Oliveira, M.L.; Vauthey, J.N.; Dindo, D.; Schulick, R.D.; de Santibañes, E.; Pekolj, J.; Slankamenac, K.; Bassi, C.; et al. The clavien-dindo classification of surgical complications: Five-year experience. Ann. Surg. 2009, 250, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Morrison, K.A.; Ascherman, B.M.; Ascherman, J.A. Evolving approaches to tissue expander design and application. Plast. Reconstr. Surg. 2017, 140, 23S–29S. [Google Scholar] [CrossRef] [PubMed]
- Cordeiro, P.G.; Albornoz, C.R.; McCormick, B.; Hudis, C.A.; Hu, Q.; Heerdt, A.; Matros, E. What Is the Optimum Timing of Postmastectomy Radiotherapy in Two-Stage Prosthetic Reconstruction: Radiation to the Tissue Expander or Permanent Implant? Plast. Reconstr. Surg. 2015, 135, 1509–1517. [Google Scholar] [CrossRef]
- Campbell, A.R.; Didier, A.J.; Sheikh, T.M.; Ansari, S.; Watkins, D.E.; Fahoury, A.M.; Nandwani, S.V.; Rashid, M. The Effects of Radiotherapy on the Sequence and Eligibility of Breast Reconstruction: Current Evidence and Controversy. Cancers 2024, 16, 2939. [Google Scholar] [CrossRef]
- Gunnarsson, G.L.; Salzberg, C.A. Current status of pre- and retropectoral breast reconstructions worldwide: A narrative review. Gland Surg. 2024, 13, 1305–1314. [Google Scholar] [CrossRef] [PubMed]
- Colwell, A.S.; Taylor, E.M. Recent Advances in Implant-Based Breast Reconstruction. Plast. Reconstr. Surg. 2020, 145, 421e–432e. [Google Scholar] [CrossRef]
- Sinha, I.; Pusic, A.L.; Wilkins, E.G.; Hamill, J.B.; Chen, X.; Kim, H.M.; Guldbrandsen, G.B.; Chun, Y.S. Late Surgical-Site Infection in Immediate Implant-Based Breast Reconstruction. Plast. Reconstr. Surg. 2017, 139, 20–28. [Google Scholar] [CrossRef]
- Lam, T.C.; Hsieh, F.; Boyages, J. The effects of postmastectomy adjuvant radiotherapy on immediate two-stage prosthetic breast reconstruction: A systematic review. Plast. Reconstr. Surg. 2013, 132, 511–518. [Google Scholar] [CrossRef]
- Spear, S.L.; Murphy, D.K.; Slicton, A.; Walker, P.S. Inamed silicone breast implant core study results at 6 years. Plast. Reconstr. Surg. 2007, 120, 8S–16S. [Google Scholar] [CrossRef]
- Johnson, A.C.; Colakoglu, S.; Reddy, A.; Kerwin, C.M.; Flores, R.A.; Iorio, M.L.; Mathes, D.W. Perioperative blocks for decreasing postoperative narcotics in breast reconstruction. Anesth. Pain. Med. 2020, 10, e105686. [Google Scholar] [CrossRef]
- Negrescu, A.M.; Nistorescu, S.; Bonciu, A.F.; Rusen, L.; Dumitrescu, L.N.; Urzica, I.; Cimpean, A.; Dinca, V. Macrophage Immunomodulation and Suppression of Bacterial Growth by Polydimethylsiloxane Surface-Interrupted Microlines’ Topography Targeting Breast Implant Applications. Polymers 2024, 16, 3046. [Google Scholar] [CrossRef]
- Bryan, J.L.; Ockerman, K.M.; Spiguel, L.R.; Cox, E.A.; Han, S.H.; Trieu, N.; Fernandez, M.B.; Heath, F.; Sorice-Virk, S. Postoperative Complications of Direct-to-Implant and Two-Staged Breast Reconstruction: A Stratified Analysis. Plast. Surg. 2024, 33, 574–581. [Google Scholar] [CrossRef] [PubMed]
- Min, K.; Min, J.C.; Han, H.H.; Kim, E.K.; Eom, J.S. Comparing outcomes of prepectoral, partial muscle-splitting subpectoral, and dual-plane subpectoral direct-to-implant reconstruction: Implant upward migration and the pectoralis muscle. Gland Surg. 2024, 13, 852–863. [Google Scholar] [CrossRef] [PubMed]
- Spear, S.L.; Schwartz, J.; Dayan, J.H.; Clemens, M.W. Outcome assessment of breast distortion following submuscular breast augmentation. Aesthetic Plast. Surg. 2009, 33, 44–48. [Google Scholar] [CrossRef]
- Ballance, L.; Wilson, R.L.; Kirwan, C.C.; Boundouki, G.; Taxiarchi, V.P.; Baker, B.G.; Rusius, V.; Rowland, M.; Henderson, J.R.; Marikakis, N.; et al. Return to Activities of Daily Living after Breast Cancer Surgery: An Observational Prospective Questionnaire-Based Study of Patients Undergoing Mastectomy with or without Immediate Reconstruction. Breast J. 2023, 2023, 9345780. [Google Scholar] [CrossRef]
- Shiraishi, M.; Sowa, Y.; Inafuku, N.; Sunaga, A.; Yoshimura, K.; Okazaki, M. Chronic Pain Following Breast Reconstruction. Ann. Plast. Surg. 2024, 93, 261–267. [Google Scholar] [CrossRef]
- De Groef, A.; Van Kampen, M.; Verlvoesem, N.; Dieltjens, E.; Vos, L.; De Vrieze, T.; Christiaens, M.-R.; Neven, P.; Geraerts, I.; Devoogdt, N. Effect of myofascial techniques for treatment of upper limb dysfunctions in breast cancer survivors: Randomized controlled trial. Support. Care Cancer 2017, 25, 2119–2127. [Google Scholar] [CrossRef]
- Safran, T.; Nepon, H.; Chu, C.K.; Winocour, S.; Murphy, A.M.; Davison, P.G.; Dionisopolos, T.; Vorstenbosch, J. Current Concepts in Capsular Contracture: Pathophysiology, Prevention, and Management. Semin. Plast. Surg. 2021, 35, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Hvilsom, G.B.; Hölmich, L.R.; Henriksen, T.F.; Lipworth, L.; McLaughlin, J.K.; Friis, S. Local complications after cosmetic breast augmentation: Results from the Danish Registry for Plastic Surgery of the breast. Plast. Reconstr. Surg. 2009, 124, 919–925. [Google Scholar] [CrossRef] [PubMed]
- Calobrace, M.B.; Stevens, W.G.; Capizzi, P.J.; Cohen, R.; Godinez, T.; Beckstrand, M. Risk factor analysis for capsular contracture: A 10-year sientra study using round, smooth, and textured implants for breast augmentation. Plast. Reconstr. Surg. 2018, 141, 20S–28S. [Google Scholar] [CrossRef]
- Cordeiro, P.G.; Albornoz, C.R.; McCormick, B.; Hu, Q.; Van Zee, K. The impact of postmastectomy radiotherapy on two-stage implant breast reconstruction: An analysis of long-term surgical outcomes, aesthetic results, and satisfaction over 13 years. Plast. Reconstr. Surg. 2014, 134, 588–595. [Google Scholar] [CrossRef]
- Ho, A.L.; Bovill, E.S.; Macadam, S.A.; Tyldesley, S.; Giang, J.; Lennox, P.A. Postmastectomy Radiation Therapy after Immediate Two-Stage Tissue Expander/Implant Breast Reconstruction. Plast. Reconstr. Surg. 2014, 134, 1e–10e. [Google Scholar] [CrossRef]
- Fujii, T.; Yajima, R.; Kuwano, H. Implications of Long-term Indwelling of Tissue Expander in Breast Reconstruction: Risk of Expander Rupturing. Anticancer Res. 2016, 36, 4337–4340. [Google Scholar] [PubMed]
- Vinsensia, M.; Schaub, R.; Meixner, E.; Hoegen, P.; Arians, N.; Forster, T.; Hoeltgen, L.; Köhler, C.; Uzun-Lang, K.; Batista, V.; et al. Incidence and Risk Assessment of Capsular Contracture in Breast Cancer Patients following Post-Mastectomy Radiotherapy and Implant-Based Reconstruction. Cancers 2024, 16, 265. [Google Scholar] [CrossRef] [PubMed]
- Overgaard, M.; Hansen, P.S.; Overgaard, J.; Rose, C.; Andersson, M.; Bach, F.; Kjaer, M.; Gadeberg, C.C.; Mouridsen, H.T.; Jensen, M.B.; et al. Postoperative radiotherapy in high-risk premenopausal women with breast cancer who receive adjuvant chemotherapy. Danish Breast Cancer Cooperative Group 82b Trial. N. Engl. J. Med. 1997, 337, 949–955. [Google Scholar] [CrossRef] [PubMed]
- Mericli, A.F.; Sharabi, S.E. Breast Implants and Radiation. Semin. Plast. Surg. 2019, 33, 240–246. [Google Scholar] [CrossRef] [PubMed]



| Group 1 (Cases) | Group 2 (Controls) | |
|---|---|---|
| Pre-mastectomy oncological treatment | ||
| Neo-adiuvant chemotherapy | 16% (24) | 19% (41) |
| Radiotherapy | 3% (5) | 6% (13) |
| Mastectomy type | ||
| Modified radical | 62% (91) | 64% (140) |
| Skin-sparing | 5% (7) | 4% (8) |
| Nipple-sparing | 33% (48) | 32% (69) |
| Nodes treatment | ||
| Sentinel node biopsy | 78% (115) | 67% (147) |
| Axillary dissection | 21% (31) | 32% (70) |
| Post-mastectomy oncological treatment | ||
| Adiuvant chemotherapy | 24% (35) | 32% (71) |
| Radiotherapy on breast expander | 3% (5) | 2% (4) |
| Group 1 (Cases) | Group 2 (Controls) | p Value | |
|---|---|---|---|
| Plane of breast expander positioning | |||
| Retro-pectoral | 98% (144) | 95% (208) | N.A. |
| Retro-pectoral with ADM | 1% (2) | 4% (9) | N.A. |
| Breast expander volume | |||
| 250 cc | 1% (1) | 1% (2) | N.A. |
| 275 cc | 1% (2) | 3% (7) | N.A. |
| 350 cc | 14% (21) | 18% (39) | N.A. |
| 450 cc | 33% (48) | 29% (63) | N.A. |
| 550 cc | 39% (57) | 29% (64) | N.A. |
| 650 cc | 12% (17) | 19% (42) | N.A. |
| Breast expander type | |||
| LH | 3% (4) | 3% (7) | N.A. |
| MH | 97% (142) | 96% (210) | N.A. |
| TH | 0% (0) | 0.5% (1) | N.A. |
| Mean hospital stay without complications (days) | 5 | 5 | 0.2502 |
| Mean total number of drains | 1 | 1 | 1 |
| Mean time active drains keeping (days) | 14 | 21 | 0.0146 * |
| Mean time from surgery to first expansion (days) | 22 | 25 | 0.0802 |
| Mean expansion time without complications (days) | 98 | 66 | 0.0012 * |
| Final expansion volume | |||
| Under size | 37% (54) | 33% (72) | N.A. |
| Right size | 38% (56) | 38% (84) | N.A. |
| Over size | 23% (34) | 24% (53) | N.A. |
| Mean time to second stage procedure (days) | 481 | 280 | <0.00001 * |
| Mean follow-up after second stage procedure (months) | 28 | 33 | 0.0129 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paganini, F.; Bascialla, E.; Corsini, B.; Truini, C.; Arcaini, M.; Fresta, L.; Lo Torto, F.; Marcasciano, M.; Matarazzo, S.; Ribuffo, D.; et al. Impact of Surgical Delay on Two-Stage Breast Reconstruction During the COVID-19 Pandemic: A Retrospective Analysis. J. Clin. Med. 2025, 14, 6684. https://doi.org/10.3390/jcm14186684
Paganini F, Bascialla E, Corsini B, Truini C, Arcaini M, Fresta L, Lo Torto F, Marcasciano M, Matarazzo S, Ribuffo D, et al. Impact of Surgical Delay on Two-Stage Breast Reconstruction During the COVID-19 Pandemic: A Retrospective Analysis. Journal of Clinical Medicine. 2025; 14(18):6684. https://doi.org/10.3390/jcm14186684
Chicago/Turabian StylePaganini, Ferruccio, Elisa Bascialla, Beatrice Corsini, Chiara Truini, Monica Arcaini, Lorenzo Fresta, Federico Lo Torto, Marco Marcasciano, Sara Matarazzo, Diego Ribuffo, and et al. 2025. "Impact of Surgical Delay on Two-Stage Breast Reconstruction During the COVID-19 Pandemic: A Retrospective Analysis" Journal of Clinical Medicine 14, no. 18: 6684. https://doi.org/10.3390/jcm14186684
APA StylePaganini, F., Bascialla, E., Corsini, B., Truini, C., Arcaini, M., Fresta, L., Lo Torto, F., Marcasciano, M., Matarazzo, S., Ribuffo, D., & Valdatta, L. (2025). Impact of Surgical Delay on Two-Stage Breast Reconstruction During the COVID-19 Pandemic: A Retrospective Analysis. Journal of Clinical Medicine, 14(18), 6684. https://doi.org/10.3390/jcm14186684

