Drug-Induced Hyponatremia: Insights into Pharmacological Mechanisms and Clinical Practice Management
Abstract
1. Introduction
2. Methods
3. Hyponatremia: Definition and Classifications
4. Drug-Induced Hyponatremia
4.1. Main Mechanistic Pathways
4.2. Cardiovascular System Drugs
4.2.1. Thiazides and Thiazide-like Agents
4.2.2. Loop Diuretics
4.2.3. Potassium-Sparing Diuretics
4.2.4. Calcium-Channel Blockers (CCBs)
4.2.5. Beta-Receptor Blockers (BBs)
4.2.6. Angiotensin-Converting Enzyme Inhibitors (ACEIs)
4.2.7. Angiotensin Receptor Blockers (ARBs)
4.2.8. Combination Sacubitril/Valsartan
4.2.9. Antiarrhythmic Drugs
4.3. Central Nervous System Drugs
4.3.1. Antidepressants
4.3.2. Antipsychotics
4.3.3. Anticonvulsants
4.3.4. Anxiolytics, Sedatives and Hypnotics
4.3.5. Central Nervous System Stimulants
4.3.6. Narcotic Analgesics
4.3.7. Dopaminergic Agents
4.4. Antineoplastic and Immunomodulating Agents
4.4.1. Alkylating Agents
4.4.2. Vinca Alkaloids
4.4.3. Monoclonal Antibodies
4.4.4. Tyrosine Kinase Inhibitors
4.4.5. Antimetabolites
4.5. Digestive System Drugs
4.5.1. Proton Pump Inhibitors
4.5.2. Laxatives
4.6. Locomotor System Drugs
Non-Steroidal Anti-Inflammatory Drugs
4.7. Anti-Infective Drugs
4.7.1. Sulfonamides
4.7.2. Fluoroquinolones
4.7.3. Oxazolidinones
4.7.4. Other Anti-Infective Drugs
4.8. Hormones and Endocrine Diseases Drugs
4.8.1. Vasopressin and Analogs
4.8.2. Oxytocin
4.8.3. Antidiabetics
4.9. Other Pharmacological Classes and Drugs
Comparative Overview of Drug Classes
5. Hyponatremia Management
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACEI | Angiotensin-Converting Enzyme Inhibitor |
ACTH | Adrenocorticotropic Hormone |
ADH | Antidiuretic Hormone |
ANP | Atrial Natriuretic Peptide |
AQP2 | Aquaporin 2 |
ARB | Angiotensin II Receptor Blocker |
ARNI | Angiotensin Receptor Neprilysin Inhibitor |
AT1 | Angiotensin II Receptor Type 1 |
BB | Beta-receptor Blockers |
CBP | Cleansing Bowel Preparations |
CBZ | Carbamazepine |
CCB | Calcium-channel Blocker |
CTLA-4 | Cytotoxic T Lymphocyte Associated Protein-4 |
CYC | Cyclophosphamide |
CYP2D6 | Cytochrome P450 2D6 |
EGFR | Epidermal Growth Factor Receptor |
ENaC | Epithelial Sodium Channel |
GABA | γ-Aminobutyric Acid |
GFR | Glomerular Filtration Rate |
IGF-1R | Type 1 Human Insulin-like Growth Factor Receptor |
MDMA | 3,4-Methylenedioxymethamphetamine (ecstasy) |
MPH | Methylphenidate |
NCC | NaCl Co-transporter |
NKCC2 | Na-K-2Cl Co-transporter 2 |
NSAID | Non-steroidal Anti-inflammatory Drug |
NSIAD | Nephrogenic Syndrome of Inappropriate Antidiuresis |
OXC | Oxcarbazepine |
PD-1 | Programmed Cell Death Protein 1 |
PD-L1 | Programmed Death Ligand 1 |
PGE2 | Prostaglandin E2 |
PGT | Prostaglandin Transporter |
PPI | Proton Pump Inhibitor |
RAAS | Renin–Angiotensin–Aldosterone System |
SAI | Secondary Adrenal Insufficiency |
SGLT-2 | Sodium-glucose Co-transporter-2 |
SIAD | Syndrome of Inappropriate Antidiuresis |
SIADH | Syndrome of Inappropriate Antidiuretic Hormone Secretion |
SNRI | Serotonin and Norepinephrine Reuptake Inhibitor |
SSRI | Selective Serotonin Reuptake Inhibitor |
TCA | Tricyclic Antidepressant |
TMP–SMX | Trimethoprim–Sulfamethoxazole (cotrimoxazole) |
VEGF | Vascular Endothelial Growth Factor |
References
- Shrimanker, I.; Bhattarai, S. Electrolytes; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2023. [Google Scholar]
- Bernal, A.; Zafra, M.A.; Simón, M.J.; Mahía, J. Sodium Homeostasis, a Balance Necessary for Life. Nutrients 2023, 15, 395. [Google Scholar] [CrossRef] [PubMed]
- Spasovski, G.; Vanholder, R.; Allolio, B.; Annane, D.; Ball, S.; Bichet, D.; Decaux, G.; Fenske, W.; Hoorn, E.J.; Ichai, C.; et al. Clinical Practice Guideline on Diagnosis and Treatment of Hyponatraemia. Eur. J. Endocrinol. 2014, 170, G1–G47. [Google Scholar] [CrossRef] [PubMed]
- Dineen, R.; Christopher, A.; Thompson, J.; Sherlock, M. Hyponatraemia–Presentations and Management. Clin. Med. 2017, 17, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Rondon, H.; Badireddy, M. Hyponatremia; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2023. [Google Scholar]
- Hoorn, E.J.; Zietse, R. Diagnosis and Treatment of Hyponatremia: Compilation of the Guidelines. J. Am. Soc. Nephrol. 2017, 28, 1340–1349. [Google Scholar] [CrossRef]
- Filippatos, T.D.; Makri, A.; Elisaf, M.S.; Liamis, G. Hyponatremia in the Elderly: Challenges and Solutions. Clin. Interv. Aging 2017, 12, 1957–1965. [Google Scholar] [CrossRef]
- Liamis, G.; Rodenburg, E.M.; Hofman, A.; Zietse, R.; Stricker, B.H.; Hoorn, E.J. Electrolyte Disorders in Community Subjects: Prevalence and Risk Factors. Am. J. Med. 2013, 126, 256–263. [Google Scholar] [CrossRef]
- Corona, G.; Giuliani, C.; Parenti, G.; Colombo, G.L.; Sforza, A.; Maggi, M.; Forti, G.; Peri, A. The Economic Burden of Hyponatremia: Systematic Review and Meta-Analysis. Am. J. Med. 2016, 129, 823–835.e4. [Google Scholar] [CrossRef]
- Upadhyay, A.; Jaber, B.L.; Madias, N.E. Incidence and Prevalence of Hyponatremia. Am. J. Med. 2006, 119, S30–S35. [Google Scholar] [CrossRef]
- Rasheed, A.H.A.; Vellanki, K.; Woo, F.; Leehey, D.J. Hyponatremia in a Patient with Vasodilatory Shock Due to Overdose of Antihypertensive Medications: A Case Report. Cureus 2023, 15, e45053. [Google Scholar] [CrossRef]
- Damanti, S.; Pasina, L.; Consonni, D.; Azzolino, D.; Cesari, M. Drug-Induced Hyponatremia: NSAIDs, a Neglected Cause That Should Be Considered. J. Frailty Aging 2019, 8, 222–223. [Google Scholar] [CrossRef]
- Mannheimer, B.; Lindh, J.D.; Fahlén, C.B.; Issa, I.; Falhammar, H.; Skov, J. Drug-Induced Hyponatremia in Clinical Care. Eur. J. Intern. Med. 2025, 137, 11–20. [Google Scholar] [CrossRef]
- Kim, G.H. Pathophysiology of Drug-Induced Hyponatremia. J. Clin. Med. 2022, 11, 5810. [Google Scholar] [CrossRef] [PubMed]
- Liamis, G.; Megapanou, E.; Elisaf, M.; Milionis, H. Hyponatremia-Inducing Drugs. In Frontiers of Hormone Research; Karger Publishers: Basel, Switzerland, 2019; Volume 52, pp. 167–177. [Google Scholar] [CrossRef]
- Liamis, G.; Milionis, H.; Elisaf, M. A Review of Drug-Induced Hyponatremia. Am. J. Kidney Dis. 2008, 52, 144–153. [Google Scholar] [CrossRef] [PubMed]
- Nadal, J.; Channavajjhala, S.K.; Jia, W.; Clayton, J.; Hall, I.P.; Glover, M. Clinical and Molecular Features of Thiazide-Induced Hyponatremia. Curr. Hypertens. Rep. 2018, 20, 31. [Google Scholar] [CrossRef]
- Pinkhasov, A.; Xiong, G.; Bourgeois, J.A.; Heinrich, T.W.; Huang, H.; Coriolan, S.; Annamalai, A.; Mangal, J.P.; Frankel, S.; Lang, M.; et al. Management of SIADH-Related Hyponatremia Due to Psychotropic Medications–An Expert Consensus from the Association of Medicine and Psychiatry. J. Psychosom. Res. 2021, 151, 110654. [Google Scholar] [CrossRef] [PubMed]
- Verzicco, I.; Regolisti, G.; Quaini, F.; Bocchi, P.; Brusasco, I.; Ferrari, M.; Passeri, G.; Cannone, V.; Coghi, P.; Fiaccadori, E.; et al. Electrolyte Disorders Induced by Antineoplastic Drugs. Front. Oncol. 2020, 10, 779. [Google Scholar] [CrossRef]
- Adrogué, H.J.; Tucker, B.M.; Madias, N.E. Diagnosis and Management of Hyponatremia: A Review. JAMA 2022, 328, 280–291. [Google Scholar] [CrossRef]
- Theis, S.R.; Khandhar, P.B. Pseudohyponatremia; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2024. [Google Scholar]
- Pliquett, R.U.; Obermüller, N. Endocrine Testing for the Syndrome of Inappropriate Antidiuretic Hormone Secretion (SIADH); Endotext [Internet]: South Dartmouth, MA, USA, 2022. [Google Scholar]
- Ghosal, A.; Qadeer, H.A.; Nekkanti, S.K.; Pradhan, P.; Okoye, C.; Waqar, D. A Conspectus of Euvolemic Hyponatremia, Its Various Etiologies, and Treatment Modalities: A Comprehensive Review of the Literature. Cureus 2023, 15, e43390. [Google Scholar] [CrossRef]
- Ramírez, E.; Rodríguez, A.; Queiruga, J.; García, I.; Díaz, L.; Martínez, L.; Muñoz, R.; Muñoz, M.; Tong, H.Y.; Martínez, J.C.; et al. Severe Hyponatremia Is Often Drug Induced: 10-Year Results of a Prospective Pharmacovigilance Program. Clin. Pharmacol. Ther. 2019, 106, 1362–1379. [Google Scholar] [CrossRef]
- Olsson, K.; Öhlin, B.; Melander, O. Epidemiology and Characteristics of Hyponatremia in the Emergency Department. Eur. J. Intern. Med. 2013, 24, 110–116. [Google Scholar] [CrossRef]
- Baumann, S.; Becher, T.; Frambach, D.; Wenz, H.; Kirschning, T.; Borggrefe, M.; Rapp, S.; Akin, I. Hyponatremia-Induced Life-Threatening Cerebral Edema after Ecstasy Use. Med. Klin. Intensivmed. Notfallmedizin 2016, 111, 547–550. [Google Scholar] [CrossRef] [PubMed]
- Faria, A.C.; Carmo, H.; Carvalho, F.; Silva, J.P.; Bastos, M.d.L.; Dias da Silva, D. Drinking to Death: Hyponatraemia Induced by Synthetic Phenethylamines. Drug Alcohol Depend. 2020, 212, 108045. [Google Scholar] [CrossRef]
- Sato, A.; Yasui-Furukori, N.; Oda, Y.; Yang, M.; Suzuki, Y.; Shinozaki, M.; Shimizu, T.; Shimoda, K. Asymptomatic Syndrome of Inappropriate Secretion of Antidiuretic Hormone (SIADH) Following Duloxetine Treatment for Pain with Depression: Two Case Reports. Neuropsychopharmacol. Rep. 2022, 42, 387–390. [Google Scholar] [CrossRef]
- de Picker, L.; van Den Eede, F.; Dumont, G.; Moorkens, G.; Sabbe, B.G.C. Antidepressants and the Risk of Hyponatremia: A Class-by-Class Review of Literature. Psychosomatics 2014, 55, 536–547. [Google Scholar] [CrossRef] [PubMed]
- Krishnamurthy, A.; Bhattacharya, S.; Lathia, T.; Kantroo, V.; Kalra, S.; Dutta, D. Anticancer Medications and Sodium Dysmetabolism. Rev. Endocr. Oncol. J. Publ. Date 2020, 16, 122–152. [Google Scholar] [CrossRef] [PubMed]
- Kohen, I.; Voelker, S.; Manu, P. Antipsychotic-Induced Hyponatremia: Case Report and Literature Review. Am. J. Ther. 2008, 15, 492–494. [Google Scholar] [CrossRef]
- Takayama, A.; Nagamine, T.; Matsumoto, Y.; Nakamura, M. Duloxetine and Angiotensin II Receptor Blocker Combination Potentially Induce Severe Hyponatremia in an Elderly Woman. Intern. Med. 2019, 58, 1791–1794. [Google Scholar] [CrossRef]
- Şahan, E.; Yildiz, F.B.P. Duloxetine Induced Hyponatremia. Turk. Psikiyatr. Derg. 2019, 30, 287–289. [Google Scholar]
- Falhammar, H.; Skov, J.; Calissendorff, J.; Nathanson, D.; Lindh, J.D.; Mannheimer, B. Associations between antihypertensive medications and severe hyponatremia: A Swedish Population–Based Case–Control study. J. Clin. Endocrinol. Metab. 2020, 105, e3696–e3705. [Google Scholar] [CrossRef]
- Nakayama, T.; Fujisaki, H.; Hirai, S.; Kawauchi, R.; Ogawa, K.; Mitsui, A.; Hirano, K.; Isozumi, K.; Takahashi, T.; Komatsumoto, S. Syndrome of Inappropriate Secretion of Antidiuretic Hormone Associated with Angiotensin-Converting Enzyme Inhibitor Therapy in the Perioperative Period. J. Renin-Angiotensin-Aldosterone Syst. 2019, 20, 1470320319834409. [Google Scholar] [CrossRef]
- Lei, H.; Liu, X.; Zeng, J.; Fan, Z.; He, Y.; Li, Z.; Wang, C. Analysis of the Clinical Characteristics of Hyponatremia Induced by Trimethoprim/Sulfamethoxazole. Pharmacology 2022, 107, 351–358. [Google Scholar] [CrossRef]
- Morales-Olivas, F.J. Diuretics Use in the Management of Hypertension. Hipertens. Riesgo Vasc. 2024, 41, 186–193. [Google Scholar] [CrossRef]
- Ntemka, A.; Martika, A.; Pozoukidou, K.; Spaia, S. A Case of Flecainide-Induced Hyponatremia. Indian J. Nephrol. 2023, 33, 225–227. [Google Scholar] [CrossRef]
- Han, J.; Arasu, A. A Curious Case of Amlodipine Induced Hyponatremia. Proc. UCLA Healthc. 2017, 21, 1–2. [Google Scholar]
- Tamargo, J.; Segura, J.; Ruilope, L.M. Diuretics in the Treatment of Hypertension. Part 2: Loop Diuretics and Potassium-Sparing Agents. Expert Opin. Pharmacother. 2014, 15, 605–621. [Google Scholar] [CrossRef]
- Cuzzo, B.; Padala, S.A.; Lappin, S.L. Physiology, Vasopressin; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2023. [Google Scholar]
- Barham, W.; Zeayter, S.; Safadi, A.; Thakur, R. Amiodarone-Induced Hyponatremia: A Case Report and a Review of the Literature. J. Innov. Card. Rhythm. Manag. 2018, 9, 3071–3076. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Mahadevappa, M.; Jodiya, A.; Chalasani, S.H.; Syed, J.M.; Ramesh, M.; Pereira, P. Amiodarone-Induced Hyponatremia in An Elderly Patient: A Rare Case Report. J. Pharm. Pract. 2023, 36, 695–698. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, M.; Sunagawa, O.; Kugai, T.; Kinugawa, K. Amiodarone-Induced Hyponatremia Masked by Tolvaptan in a Patient with an Implantable Left Ventricular Assist Device. Int. Heart J. 2017, 58, 1004–1007. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Jo, C.H.; Kim, G.H. The Role of Vasopressin V2 Receptor in Drug-Induced Hyponatremia. Front. Physiol. 2021, 12, 797039. [Google Scholar] [CrossRef]
- Li, Y.; Wei, Y.; Zheng, F.; Guan, Y.; Zhang, X. Prostaglandin E2 in the Regulation of Water Transport in Renal Collecting Ducts. Int. J. Mol. Sci. 2017, 18, 2539. [Google Scholar] [CrossRef]
- Filippone, E.J.; Ruzieh, M.; Foy, A. Thiazide-Associated Hyponatremia: Clinical Manifestations and Pathophysiology. Am. J. Kidney Dis. 2020, 75, 256–264. [Google Scholar] [CrossRef]
- Das, S.; Bandyopadhyay, S.; Ramasamy, A.; Prabhu, V.V.; Pachiappan, S. A Case of Losartan-Induced Severe Hyponatremia. J. Pharmacol. Pharmacother. 2015, 6, 219–221. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Sánchez, J.G.; Calle-Pascual, A.L.; Rubio-Herrera, M.Á.; De Miguel Novoa, M.P.; Gómez-Hoyos, E.; Runkle, I. Isolated Hypoaldosteronism Is a Cause of Hypovolemic but Not Euvolemic Hyponatremia. Endocr. Connect. 2024, 13, e230430. [Google Scholar] [CrossRef] [PubMed]
- Moritz, M.L. Syndrome of Inappropriate Antidiuresis. Pediatr. Clin. N. Am. 2019, 66, 209–226. [Google Scholar] [CrossRef] [PubMed]
- Shanthosh Kumar, S.; Nagesh, V.K.; Hunter, J.; Sange, I. A Case of Severe Hyponatremia in a Patient with Primary Adrenal Insufficiency. Cureus 2021, 13, e17946. [Google Scholar] [CrossRef]
- Mohottige, D.; Lehrich, R.W.; Greenberg, A. Hypovolemic Hyponatremia. In Frontiers of Hormone Research; Karger Publishers: Basel, Switzerland, 2019; Volume 52, pp. 93–103. [Google Scholar] [CrossRef]
- Martin-Grace, J.; Dineen, R.; Sherlock, M.; Thompson, C.J. Adrenal Insufficiency: Physiology, Clinical Presentation and Diagnostic Challenges. Clin. Chim. Acta 2020, 505, 78–91. [Google Scholar] [CrossRef]
- Chen, J. Is There a Causal Relationship between Hypothyroidism and Hyponatremia? Ther. Adv. Endocrinol. Metab. 2023, 14, 20420188231180983. [Google Scholar] [CrossRef]
- Prete, A.; Salvatori, R. Hypophysitis; Endotext [Internet]: South Dartmouth, MA, USA, 2021. [Google Scholar]
- Anisman, S.D.; Erickson, S.B.; Fodor, K.M. Thiazide Diuretics. BMJ 2024, 384, e075174. [Google Scholar] [CrossRef]
- Vilke, G.M.; Akeely, Y.; Lin, L.C. Sequential Drug-Induced Severe Hyponatremia in a Minimally Symptomatic, 81-Year-Old Patient. J. Emerg. Med. 2020, 58, e137–e140. [Google Scholar] [CrossRef]
- Andersson, N.W.; Wohlfahrt, J.; Feenstra, B.; Hviid, A.; Melbye, M.; Lund, M. Cumulative Incidence of Thiazide-Induced Hyponatremia. Ann. Intern. Med. 2024, 177, 1–11. [Google Scholar] [CrossRef]
- Mannheimer, B.; Bergh, C.F.; Falhammar, H.; Calissendorff, J.; Skov, J.; Lindh, J.D. Association between Newly Initiated Thiazide Diuretics and Hospitalization Due to Hyponatremia. Eur. J. Clin. Pharmacol. 2021, 77, 1049–1055. [Google Scholar] [CrossRef]
- Liamis, G.; Filippatos, T.D.; Elisaf, M.S. Thiazide-Associated Hyponatremia in the Elderly: What the Clinician Needs to Know. J. Geriatr. Cardiol. 2016, 13, 175–182. [Google Scholar] [CrossRef]
- Mann, S.J. The Silent Epidemic of Thiazide-Induced Hyponatremia. J. Clin. Hypertens. 2008, 10, 477–484. [Google Scholar] [CrossRef]
- Reddy, P. Clinical Approach to Euvolemic Hyponatremia. Cureus 2023, 15, e35574. [Google Scholar] [CrossRef]
- Fan, M.; Zhang, J.; Lee, C.L.; Zhang, J.; Feng, L. Structure and Thiazide Inhibition Mechanism of the Human Na–Cl Cotransporter. Nature 2023, 614, 788–793. [Google Scholar] [CrossRef] [PubMed]
- Yamazoe, M.; Mizuno, A.; Kohsaka, S.; Shiraishi, Y.; Kohno, T.; Goda, A.; Higuchi, S.; Yagawa, M.; Nagatomo, Y.; Yoshikawa, T. Incidence of Hospital-Acquired Hyponatremia by the Dose and Type of Diuretics among Patients with Acute Heart Failure and Its Association with Long-Term Outcomes. J. Cardiol. 2018, 71, 550–556. [Google Scholar] [CrossRef] [PubMed]
- Mannheimer, B.; Falhammar, H.; Calissendorff, J.; Lindh, J.D.; Skov, J. Non-Thiazide Diuretics and Hospitalization Due to Hyponatraemia: A Population-Based Case-Control Study. Clin. Endocrinol. 2021, 95, 520–526. [Google Scholar] [CrossRef] [PubMed]
- Hurwit, A.A.; Parker, J.M.; Uhlyar, S. Treatment of Psychogenic Polydipsia and Hyponatremia: A Case Report. Cureus 2023, 15, e47719. [Google Scholar] [CrossRef]
- Dean, J.H.L.; Patel, M.P.; Corpuz, E.; Cahill, M.S.; Fentanes, E. Acute Asymptomatic Hyponatraemia Following Inpatient Initiation of Angiotensin Receptor-Neprilysin Inhibitor: A Case Report. Eur. Heart J. Case Rep. 2023, 7, ytad060. [Google Scholar] [CrossRef]
- Salazar Adum, J.P.; Arora, R. Role of Neprilysin Inhibitors in Heart Failure. Am. J. Ther. 2017, 24, e737–e743. [Google Scholar] [CrossRef]
- Fuzaylova, I.; Lam, C.; Talreja, O.; Makaryus, A.N.; Ahern, D.; Cassagnol, M. Sacubitril/Valsartan (Entresto®)-Induced Hyponatremia. J. Pharm. Pract. 2020, 33, 696–699. [Google Scholar] [CrossRef]
- Arunachalam, K.; Alzahrani, T. Flecainide; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2023. [Google Scholar]
- Gheysens, T.; Van Den Eede, F.; De Picker, L. The Risk of Antidepressant-Induced Hyponatremia: A Meta-Analysis of Antidepressant Classes and Compounds. Eur. Psychiatry 2024, 67, e20. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Du, X.; Wu, H. The Risk of Hyponatremia Induced by SSRIs and SNRIs Antidepressants: A Systematic Review and Meta-Analysis. BMC Pharmacol. Toxicol. 2025, 26, 144. [Google Scholar] [CrossRef] [PubMed]
- Mo, H.; Channa, Y.; Ferrara, T.M.; Waxse, B.J.; Schlueter, D.J.; Tran, T.C.; Awan, A.H.; Goleva, S.B.; Williams, A.; Babbar, A.; et al. Hyponatremia Associated with the Use of Common Antidepressants in the All of Us Research Program. Clin. Pharmacol. Ther. 2025, 117, 534–543. [Google Scholar] [CrossRef] [PubMed]
- Viramontes, T.S.; Truong, H.; Linnebur, S.A. Antidepressant-Induced Hyponatremia in Older Adults. Consult Pharm. 2016, 31, 139–150. [Google Scholar] [CrossRef]
- Mannheimer, B.; Falhammar, H.; Calissendorff, J.; Skov, J.; Lindh, J.D. Time-Dependent Association between Selective Serotonin Reuptake Inhibitors and Hospitalization Due to Hyponatremia. J. Psychopharmacol. 2021, 35, 928–933. [Google Scholar] [CrossRef]
- Kim, S.; Jo, C.H.; Kim, G.H. Psychotropic Drugs Upregulate Aquaporin-2 via Vasopressin-2 Receptor/CAMP/ Protein Kinase A Signaling in Inner Medullary Collecting Duct Cells. Am. J. Physiol. Ren. Physiol. 2021, 320, F963–F971. [Google Scholar] [CrossRef]
- Issa, I.; Skov, J.; Falhammar, H.; Roos, M.; Lindh, J.D.; Mannheimer, B. The Association of Selective Serotonin Reuptake Inhibitors and Venlafaxine with Profound Hyponatremia. Eur. J. Endocrinol. 2025, 193, 179–187. [Google Scholar] [CrossRef]
- Yoshida, K.; Aburakawa, Y.; Suzuki, Y.; Kuroda, K.; Kimura, T. Acute Hyponatremia Resulting from Duloxetine-Induced Syndrome of Inappropriate Antidiuretic Hormone Secretion. Intern. Med. 2019, 58, 1939–1942. [Google Scholar] [CrossRef]
- Šakić, B.; Greš, A.; Gajić, Z. Mirtazapine-Induced Hyponatremia in a Patient with Systemic Mastocytosis and Generalized Anxiety Disorder. Psychiatr. Danub. 2023, 35, 126–127. [Google Scholar] [CrossRef]
- Farmand, S.; Lindh, J.D.; Calissendorff, J.; Skov, J.; Falhammar, H.; Nathanson, D.; Mannheimer, B. Differences in Associations of Antidepressants and Hospitalization Due to Hyponatremia. Am. J. Med. 2018, 131, 56–63. [Google Scholar] [CrossRef]
- Mazhar, F.; Battini, V.; Pozzi, M.; Invernizzi, E.; Mosini, G.; Gringeri, M.; Capuano, A.; Scavone, C.; Radice, S.; Clementi, E.; et al. Hyponatremia Following Antipsychotic Treatment: In Silico Pharmacodynamics Analysis of Spontaneous Reports from the US Food and Drug Administration Adverse Event Reporting System Database and an Updated Systematic Review. Int. J. Neuropsychopharmacol. 2021, 24, 477–489. [Google Scholar] [CrossRef] [PubMed]
- Falhammar, H.; Lindh, J.D.; Calissendorff, J.; Skov, J.; Nathanson, D.; Mannheimer, B. Antipsychotics and Severe Hyponatremia: A Swedish Population–Based Case–Control Study. Eur. J. Intern. Med. 2019, 60, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.J.; Cheng, W.J. Antipsychotic Use Is a Risk Factor for Hyponatremia in Patients with Schizophrenia: A 15-Year Follow-up Study. Psychopharmacology 2017, 234, 869–876. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, Y.; Ohta, A.; Usui, N.; Imai, K.; Kagawa, Y.; Takahashi, Y. Incidence Trends and Risk Factors for Hyponatremia in Epilepsy Patients: A Large-Scale Real-World Data Study. Heliyon 2023, 9, e18721. [Google Scholar] [CrossRef]
- McNally, M.A.; Camkurt, M.; Shahani, L.R.; Elkhatib, R. Olanzapine-Induced Hyponatremia Presenting with Seizure Requiring Intensive Care Unit Admission. Cureus 2020, 12, e8212. [Google Scholar] [CrossRef]
- Kirino, S.; Sakuma, M.; Misawa, F.; Fujii, Y.; Uchida, H.; Mimura, M.; Takeuchi, H. Relationship between Polydipsia and Antipsychotics: A Systematic Review of Clinical Studies and Case Reports. Prog. Neuropsychopharmacol. Biol. Psychiatry 2020, 96, 109756. [Google Scholar] [CrossRef]
- Seifert, J.; Letmaier, M.; Greiner, T.; Schneider, M.; Deest, M.; Eberlein, C.K.; Bleich, S.; Grohmann, R.; Toto, S. Psychotropic Drug-Induced Hyponatremia: Results from a Drug Surveillance Program–an Update. J. Neural Transm. 2021, 128, 1249–1264. [Google Scholar] [CrossRef]
- Bembenick, K.N.; Mathew, J.; Heisler, M.; Siddaiah, H.; Moore, P.; Robinson, C.L.; Kaye, A.M.; Shekoohi, S.; Kaye, A.D.; Varrassi, G. Hyponatremia with Anticonvulsant Medications: A Narrative Review. Cureus 2024, 16, e57535. [Google Scholar] [CrossRef]
- Gandhi, S.; McArthur, E.; Mamdani, M.M.; Hackam, D.G.; McLachlan, R.S.; Weir, M.A.; Burneo, J.G.; Garg, A.X. Antiepileptic Drugs and Hyponatremia in Older Adults: Two Population-based Cohort Studies. Epilepsia 2016, 57, 2067–2079. [Google Scholar] [CrossRef]
- Kim, Y.-S.; Kim, D.W.; Jung, K.-H.; Lee, S.-T.; Kang, B.S.; Byun, J.-I.; Yeom, J.S.; Chu, K.; Lee, S.K. Frequency of and Risk Factors for Oxcarbazepine-Induced Severe and Symptomatic Hyponatremia. Seizure 2014, 23, 208–212. [Google Scholar] [CrossRef]
- Čiauškaitė, J.; Gelžinienė, G.; Jurkevičienė, G. Oxcarbazepine and Hyponatremia. Medicina 2022, 58, 559. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, Y.; Takahashi, Y.; Imai, K.; Ohta, A.; Kagawa, Y.; Inoue, Y. Prevalence and Risk Factors for Hyponatremia in Adult Epilepsy Patients: Large-Scale Cross-Sectional Cohort Study. Seizure 2019, 73, 26–30. [Google Scholar] [CrossRef]
- Kaeley, N.; Kabi, A.; Bhatia, R.; Mohanty, A. Carbamazepine-Induced Hyponatremia–A Wakeup Call. J. Fam. Med. Prim. Care 2019, 8, 1786–1788. [Google Scholar] [CrossRef]
- Diemar, S.S.; Sejling, A.S.; Eiken, P.; Suetta, C.; Jørgensen, N.R.; Andersen, N.B. Hyponatremia and Metabolic Bone Disease in Patients with Epilepsy: A Cross-Sectional Study. Bone 2019, 123, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, J.A.; Qureshi, S.F.; Zaharani, A.A. Psychotropic Induced Hyponatremia-A Review. Psychiatry Behav. Sci. 2018, 8, 213–221. [Google Scholar] [CrossRef]
- Priya, S.S. Zolpidem Induced Hyponatremia: A Case Report. J. Clin. Diagn. Res. 2014, 8, HD03–HD04. [Google Scholar] [CrossRef]
- Heal, D.J.; Smith, S.L.; Gosden, J.; Nutt, D.J. Amphetamine, Past and Present-A Pharmacological and Clinical Perspective. J. Psychopharmacol. 2013, 27, 479–496. [Google Scholar] [CrossRef] [PubMed]
- Shellenberg, T.P.; Stoops, W.W.; Lile, J.A.; Rush, C.R. An Update on the Clinical Pharmacology of Methylphenidate: Therapeutic Efficacy, Abuse Potential and Future Considerations. Expert. Rev. Clin. Pharmacol. 2020, 13, 825–833. [Google Scholar] [CrossRef]
- Patel, V.; Krishna, A.S.; Lefevre, C.; Kaagaza, M.; Wittkamp, M. Methylphenidate Overdose Causing Secondary Polydipsia and Severe Hyponatremia in an 8-Year-Old Boy. Pediatr. Emerg. Care 2017, 33, e55–e57. [Google Scholar] [CrossRef][Green Version]
- Elkattawy, S.; Mowafy, A.; Younes, I.; Tucktuck, M.; Agresti, J. Methylenedioxymethamphetamine (MDMA)-Induced Hyponatremia: Case Report and Literature Review. Cureus 2021, 13, e15223. [Google Scholar] [CrossRef] [PubMed]
- Falhammar, H.; Calissendorff, J.; Skov, J.; Nathanson, D.; Lindh, J.D.; Mannheimer, B. Tramadol- and Codeine-Induced Severe Hyponatremia: A Swedish Population-Based Case-Control Study. Eur. J. Intern. Med. 2019, 69, 20–24. [Google Scholar] [CrossRef] [PubMed]
- Subedi, M.; Bajaj, S.; Kumar, M.S.; Yc, M. An Overview of Tramadol and Its Usage in Pain Management and Future Perspective. Biomed. Pharmacother. 2019, 111, 443–451. [Google Scholar] [CrossRef]
- Fournier, J.P.; Yin, H.; Nessim, S.J.; Montastruc, J.L.; Azoulay, L. Tramadol for Noncancer Pain and the Risk of Hyponatremia. Am. J. Med. 2015, 128, 418–425.e5. [Google Scholar] [CrossRef]
- Picillo, M.; Canoro, V.; Cicarelli, G.; Erro, R.; Barone, P. Levodopa-Carbidopa Intestinal Gel Is an Option in Parkinson’s Disease with Hyponatremia Induced by Dopamine Agonists. Neurol. Sci. 2020, 41, 3361–3363. [Google Scholar] [CrossRef]
- Choi, Y.; Park, J.J.; Ryoo, N.Y.; Kim, S.-H.; Song, C.; Han, I.-T.; Hong, C.-G.; Ha, C.K.; Choi, S.H. Syndrome of Inappropriate Antidiuretic Hormone Secretion Associated with Pramipexole in a Patient with Parkinson’s Disease. J. Mov. Disord. 2010, 3, 54–56. [Google Scholar] [CrossRef]
- Shihabudheen, P.; Anver, P.; Uvais, N.; Mohammed, T. Dose-Dependent L-Dopa/Carbidopa-Induced Hyponatremia Presenting with Hiccups. J. Fam. Med. Prim. Care 2020, 9, 1749. [Google Scholar] [CrossRef]
- Alonso Navarro, H.; Sánz-Aiz, A.; Izquierdo, L.; Jiménez Jiménez, F.J. Syndrome of Inappropriate Antidiuretic Hormone Secretion Possibly Associated with Amantadine Therapy in Parkinson Disease. Clin. Neuropharmacol. 2009, 32, 167–168. [Google Scholar] [CrossRef]
- George, T.B.; Kuriakose, K.; Pillai, A.C.; Powell, T.; Kleyman, T.R. Profound Hyponatremia and Dehydration: A Case of Cisplatin Induced Renal Salt Wasting Syndrome. Physiol. Rep. 2023, 11, e15617. [Google Scholar] [CrossRef]
- Meena, D.S.; Kumar, D.; Bohra, G.K.; Midha, N. Gefitinib Induced Severe Hyponatremia: A Case Report. J. Oncol. Pharm. Pract. 2021, 27, 711–715. [Google Scholar] [CrossRef]
- Tamura, N.; Ishida, T.; Kawada, K.; Jobu, K.; Morisawa, S.; Yoshioka, S.; Miyamura, M. Risk Factors for Anticancer Drug-Induced Hyponatremia: An Analysis Using the Japanese Adverse Drug Report (JADER) Database. Medicina 2023, 59, 166. [Google Scholar] [CrossRef] [PubMed]
- Trainer, H.; Hulse, P.; Higham, C.E.; Trainer, P.; Lorigan, P. Hyponatraemia Secondary to Nivolumab-Induced Primary Adrenal Failure. Endocrinol. Diabetes Metab. Case Rep. 2016, 2016, 16-0108. [Google Scholar] [CrossRef] [PubMed]
- Abid, H.; Siddiqui, N.; Gnanajothy, R. Severe Hyponatremia Due to Cisplatin-Induced Syndrome of Inappropriate Secretion of Antidiuretic Hormone. Cureus 2019, 11, e5458. [Google Scholar] [CrossRef] [PubMed]
- Garcia, J.; Hurwitz, H.I.; Sandler, A.B.; Miles, D.; Coleman, R.L.; Deurloo, R.; Chinot, O.L. Bevacizumab (Avastin®) in Cancer Treatment: A Review of 15 Years of Clinical Experience and Future Outlook. Cancer Treat. Rev. 2020, 86, 102017. [Google Scholar] [CrossRef]
- Wang, S.J.; Dougan, S.K.; Dougan, M. Immune Mechanisms of Toxicity from Checkpoint Inhibitors. Trends Cancer 2023, 9, 543–553. [Google Scholar] [CrossRef]
- Tao, C.; Liu, B.; Dai, Y.; Lv, J.; He, H.; Ding, Q.; Chen, K.; Wang, K.; Yang, L.; Ren, X.; et al. PD-1/PD-L1 Inhibitor-Induced Hyponatremia: A Real-World Pharmacovigilance Analysis Using FAERS Database. Front. Immunol. 2025, 16, 1561942. [Google Scholar] [CrossRef]
- Takao, T.; Tanaka, K.; Shiraishi, Y.; Ota, K.; Yoneshima, Y.; Iwama, E.; Okamoto, I. Osimertinib-Induced Syndrome of Inappropriate Secretion of Antidiuretic Hormone. Clin. Lung Cancer 2021, 22, e784–e785. [Google Scholar] [CrossRef]
- Van Der Zalm, I.J.B.; Tobé, T.J.M.; Logtenberg, S.J.J. Omeprazole-Induced and Pantoprazole-Induced Asymptomatic Hyponatremia: A Case Report. J. Med. Case Rep. 2020, 14, 83. [Google Scholar] [CrossRef]
- Falhammar, H.; Lindh, J.D.; Calissendorff, J.; Skov, J.; Nathanson, D.; Mannheimer, B. Associations of Proton Pump Inhibitors and Hospitalization Due to Hyponatremia: A Population–Based Case–Control Study. Eur. J. Intern. Med. 2019, 59, 65–69. [Google Scholar] [CrossRef]
- Souza, C.C.; Rigueto, L.G.; Santiago, H.C.; Seguro, A.C.; Girardi, A.C.C.; Luchi, W.M. Multiple Electrolyte Disorders Triggered by Proton Pump Inhibitor-Induced Hypomagnesemia: Case Reports with a Mini-Review of the Literature. Clin. Nephrol. Case Stud. 2024, 12, 6–11. [Google Scholar] [CrossRef]
- Kaplan, M.; Tanoǧlu, A.; Düzenli, T.; Güney, B.Ç.; Taştan, Y.Ö. A Very Uncommon Clinical Entity: Lansoprazole-Induced Symptomatic Hyponatremia in a Young Woman. Turk. J. Gastroenterol. 2020, 31, 957–959. [Google Scholar] [CrossRef]
- Aratani, S.; Matsunobu, T.; Kawai, T.; Suzuki, H.; Usukura, N.; Okubo, K.; Sakai, Y. Syndrome of Inappropriate Secretion of Antidiuretic Hormone Caused by Very Short-Term Use of Proton Pump Inhibitor. Keio J. Med. 2021, 70, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Issa, I.; Skov, J.; Falhammar, H.; Calissendorff, J.; Lindh, J.D.; Mannheimer, B. Time-Dependent Association between Omeprazole and Esomeprazole and Hospitalization Due to Hyponatremia. Eur. J. Clin. Pharmacol. 2023, 79, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Ko, S.H.; Lim, C.H.; Kim, J.Y.; Kang, S.H.; Baeg, M.K.; Oh, H.J. Case of Inappropriate ADH Syndrome: Hyponatremia Due to Polyethylene Glycol Bowel Preparation. World J. Gastroenterol. 2014, 20, 12350–12354. [Google Scholar] [CrossRef] [PubMed]
- Hassan, C.; East, J.; Radaelli, F.; Spada, C.; Benamouzig, R.; Bisschops, R.; Bretthauer, M.; Dekker, E.; Dinis-Ribeiro, M.; Ferlitsch, M.; et al. Bowel Preparation for Colonoscopy: European Society of Gastrointestinal Endoscopy (Esge) Guideline-Update 2019. Endoscopy 2019, 51, 775–794. [Google Scholar] [CrossRef]
- Pratap, K.; Jiwrajka, M.; Weber, L.; Richardson, A. Severe Symptomatic Hyponatraemia Secondary to Bowel Preparation. BMJ Case Rep. 2019, 12, e230385. [Google Scholar] [CrossRef]
- Más, A.; Chillarón, J.J.; Esteve, E.; Navalpotro, I.; Supervía, A. Severe Rhabdomyolysis and Hyponatremia Induced by Picosulfate and Bisacodyl during the Preparation of Colonoscopy. Rev. Española Enfermedades Dig. 2013, 105, 180–181. [Google Scholar] [CrossRef]
- Soga, K.; Suzuki, Y.; Hayakawa, F.; Fujiwara, T.; Ota, T.; Kobori, I.; Tamano, M. Recurrent Severe Hyponatremia Following Polyethylene Glycol Electrolyte Lavage Solution with Ascorbic Acid in a Patient with Undiagnosed Syndrome of Inappropriate Antidiuretic Hormone Secretion. Am. J. Case Rep. 2025, 26, e948355. [Google Scholar] [CrossRef]
- Bojdani, E.; Chen, A.; Buonocore, S.; Li, K.J.; Gurrera, R. Meloxicam-Desmopressin Drug-Drug Interaction Producing Hyponatremia. Psychiatry Res. 2019, 279, 284–286. [Google Scholar] [CrossRef]
- Tanaka, R.; Morinaga, Y.; Iwao, M.; Tatsuta, R.; Hashimoto, T.; Hiramatsu, K.; Itoh, H. Comparison of Incidence of Hyponatremia between Linezolid and Vancomycin by Propensity Score Matching Analysis. Biol. Pharm. Bull. 2023, 46, 1365–1370. [Google Scholar] [CrossRef]
- Stephens, K.; Miller, J.L.; Lewis, T.V.; Neely, S.; Johnson, P.N. Hyponatremia with Intravenous Sulfamethoxazole/Trimethoprim in Children. Ann. Pharmacother. 2020, 54, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Marak, C.; Nunley, M.; Guddati, A.K.; Kaushik, P.; Bannon, M.; Ashraf, A. Severe Hyponatremia Due to Trimethoprim-Sulfamethoxazole-Induced SIADH. SAGE Open Med. Case Rep. 2022, 10, 2050313X221132654. [Google Scholar] [CrossRef] [PubMed]
- Azeem, A.; Majeed, N.; Khuwaja, S. Hyponatremia Associated with Standard-Dose Trimethoprim-Sulfamethoxazole Use in an Immunocompetent Patient. WMJ 2022, 121, E57–E59. [Google Scholar] [PubMed]
- Ghali, M.G.Z.; Kim, M.J. Trimethoprim-Sulfamethoxazole-Induced Hyponatremia in an Elderly Lady with Achromobacter Xylosoxidans Pneumonia: Case Report and Insights into Mechanism. Medicine 2020, 99, E20746. [Google Scholar] [CrossRef]
- Švitek, L.; Grubišić, B.; Schonberger, E.; Zlosa, M.; Sabadi, D.; Lišnjić, D.; Canecki-Varžić, S.; Bilić-ćurčić, I.; Mandić, S. Syndrome of Inappropriate Antidiuretic Hormone Secretion as an Adverse Reaction of Ciprofloxacin: A Case Report and Literature Review. Biochem. Medica 2024, 34, 010803. [Google Scholar] [CrossRef]
- Scoglio, M.; Bronz, G.; Rinoldi, P.O.; Faré, P.B.; Betti, C.; Bianchetti, M.G.; Simonetti, G.D.; Gennaro, V.; Renzi, S.; Lava, S.A.G.; et al. Electrolyte and Acid-Base Disorders Triggered by Aminoglycoside or Colistin Therapy: A Systematic Review. Antibiotics 2021, 10, 140. [Google Scholar] [CrossRef]
- Levine, M.T.; Chandrasekar, P.H. Adverse Effects of Voriconazole: Over a Decade of Use. Clin. Transplant. 2016, 30, 1377–1386. [Google Scholar] [CrossRef]
- Kim, K.-H.; Lee, S.; Lee, S.; Yun, N.R.; Kim, N.J.; Yu, K.-S.; Jang, I.-J.; Park, W.B.; Oh, M.-D. Voriconazole-Associated Severe Hyponatremia. Med. Mycol. 2012, 50, 103–105. [Google Scholar] [CrossRef][Green Version]
- Benitez, L.L.; Carver, P.L. Adverse Effects Associated with Long-Term Administration of Azole Antifungal Agents. Drugs 2019, 79, 833–853. [Google Scholar] [CrossRef]
- Cheng, L.; Liu, Z.; Yu, M.; Lin, L.; Xiong, L.; Dai, Q. Hypokalemia and Hyponatremia in Adult Patients Receiving Voriconazole Therapeutic Drug Monitoring. J. Clin. Pharmacol. 2024, 64, 461–468. [Google Scholar] [CrossRef]
- Fralick, M.; Schneeweiss, S.; Wallis, C.J.D.; Jung, E.H.; Kesselheim, A.S. Desmopressin and the Risk of Hyponatremia: A Population-Based Cohort Study. PLoS Med. 2019, 16, e1002930. [Google Scholar] [CrossRef]
- Meng, Q.; Dang, X.; Li, L.; Liu, Z.; Li, L.; Wang, H. Severe Hyponatraemia with Neurological Manifestations in Patients Treated with Terlipressin: Two Case Reports. J. Clin. Pharm. Ther. 2019, 44, 981–984. [Google Scholar] [CrossRef] [PubMed]
- Szadok, P.; Bajorek, A.; Fluder, R. Water Intoxication in the Course of Stimulation of Labor with Oxytocin. Ginekol. Pol. 2021, 92, 534–535. [Google Scholar] [CrossRef] [PubMed]
- Falhammar, H.; Skov, J.; Calissendorff, J.; Lindh, J.D.; Mannheimer, B. Inverse Association between Glucose-Lowering Medications and Severe Hyponatremia: A Swedish Population-Based Case-Control Study. Endocrine 2020, 67, 579–586. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, M.-N.; Yang, G.-M.; Hou, X.-T.; Yang, D.; Han, M.-M.; Zhang, Y.; Liu, Y.-F. Effects of Water-Sodium Balance and Regulation of Electrolytes Associated with Antidiabetic Drugs. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 5784–5794. [Google Scholar] [CrossRef]
- Ejikeme, C.; Elkattawy, S.; Kayode-Ajala, F.; Abuaita, S.; Khazai, M. Oxcarbazepine-Induced Hyponatremia: A Case Report and Comprehensive Literature Review. Cureus 2021, 13, e15085. [Google Scholar] [CrossRef]
- Spasovski, G. Hyponatraemia—Treatment Standard 2024. Nephrol. Dial. Transplant. 2024, 39, 1583–1592. [Google Scholar] [CrossRef]
- Terashita, M.; Yazawa, M.; Murakami, N.; Nishiyama, A.; Fujimaru, T.; Fujita, Y.; Hirose, K.; Kawada, K.; Monkawa, T.; Nagahama, M.; et al. Water and Electrolyte Abnormalities in Novel Pharmacological Agents for Kidney Disease and Cancer. Clin. Exp. Nephrol. 2025, 29, 521–533. [Google Scholar] [CrossRef]
- Naveen, K.K.L.; Prashant, G.; Kedlaya; Jairam, A.; Renuka, S. Symptomatic Hyponatremia Due to Tacrolimus-Induced Salt-Losing Nephropathy in Kidney Transplant Recipient. Indian. J. Nephrol. 2024, 34, 178–180. [Google Scholar] [CrossRef]
- Alissa, D.A.; Alkortas, D.; Alsebayel, M.; Almasuood, R.A.; Aburas, W.; Altamimi, T.; Devol, E.B.; Al-Jedai, A.H. Tacrolimus-Induced Neurotoxicity in Early Post-Liver Transplant Saudi Patients: Incidence and Risk Factors. Ann. Transplant. 2022, 27, e935938-1–e935938-9. [Google Scholar] [CrossRef]
- Eymin, G. Hiponatremia e Hiperpotasemia Persistente Inducida Por Enoxaparina y Revertida Con Hidrocortisona En Paciente Con Metástasis Lumbares. Rev. Med. Chil. 2021, 149, 291–294. [Google Scholar] [CrossRef]
- Panda, R.; Singh, P.; Kodamanchili, S.; Anand, A. Heparin-Induced Hyponatremia in COVID-19: A Latent Culprit! Indian. J. Pharmacol. 2021, 53, 515–516. [Google Scholar] [CrossRef] [PubMed]
- Kovacs, J.; Talib, S.; Khashan, A.; Garsondiya, B.; Carson, M.P. A 77-Year-Old Man with Heparin-Induced Aldosterone Suppression Causing Hyperkalemia. Am. J. Case Rep. 2022, 23, e937017. [Google Scholar] [CrossRef] [PubMed]
- Skov, J.; Falhammar, H.; Calissendorff, J.; Lindh, J.D.; Mannheimer, B. Association between Lipid-Lowering Agents and Severe Hyponatremia: A Population-Based Case–Control Study. Eur. J. Clin. Pharmacol. 2021, 77, 747–755. [Google Scholar] [CrossRef] [PubMed]
- Yun, J.J.; Cheong, I. Mannitol-Induced Hyperosmolal Hyponatraemia. Intern. Med. J. 2008, 38, 73. [Google Scholar] [CrossRef]
- Beck, J.; Arshad, M.F.; Iqbal, A.; Christ-Crain, M. Severe Symptomatic Hyponatremia in Europe: Insights into Current Clinical Practice. Eur. J. Endocrinol. 2025, 192, 754–762. [Google Scholar] [CrossRef]
- Hallare, J.; Gerriets, V. Elimination Half-Life of Drugs; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2025. [Google Scholar]
- Reddy, P.; Mooradian, A.D. Diagnosis and Management of Hyponatraemia in Hospitalised Patients. Int. J. Clin. Pract. 2009, 63, 1494–1508. [Google Scholar] [CrossRef]
- Peri, A. Management of Hyponatremia: Causes, Clinical Aspects, Differential Diagnosis and Treatment. Expert. Rev. Endocrinol. Metab. 2019, 14, 13–21. [Google Scholar] [CrossRef]
- Khow, K.S.F.; Lau, S.Y.; Li, J.Y.; Yong, T.Y. Diuretic-Associated Electrolyte Disorders in the Elderly: Risk Factors, Impact, Management and Prevention. Curr. Drug Saf. 2014, 9, 2–15. [Google Scholar] [CrossRef]
- Sumi, H.; Tominaga, N.; Fujita, Y.; Verbalis, J.G.; Fujimaru, T.; Fujita, Y.; Hirose, K.; Kawada, K.; Monkawa, T.; Nagahama, M.; et al. Treatment of Hyponatremia: Comprehension and Best Clinical Practice. Clin. Exp. Nephrol. 2025, 29, 249–258. [Google Scholar] [CrossRef]
- Hix, J.K.; Silver, S.; Sterns, R.H. Diuretic-Associated Hyponatremia. Semin. Nephrol. 2011, 31, 553–566. [Google Scholar] [CrossRef]
- Clayton, J.A.; Rodgers, S.; Blakey, J.; Avery, A.; Hall, I.P. Thiazide Diuretic Prescription and Electrolyte Abnormalities in Primary Care. Br. J. Clin. Pharmacol. 2006, 61, 87–95. [Google Scholar] [CrossRef]
- Velat, I.; Bušić, Ž.; Jurić Paić, M.; Čulić, V. Furosemide and Spironolactone Doses and Hyponatremia in Patients with Heart Failure. BMC Pharmacol. Toxicol. 2020, 21, 57. [Google Scholar] [CrossRef] [PubMed]
- de la Barquera, J.A.O.S.; García, L.A.D.l.G.; Sánchez-Torres, G.; Gogeascoechea-Hernández, A.; Martinez, S.J.; Porras-Garza, G.A.; Garza, P.P.Z. Agomelatine as Antidepressant Treatment in Elderly Patients with Previous Hyponatremia Due To SSRI Use: Case Series. Human Psychopharmacol. Clin. Exp. 2025, 40, e2914. [Google Scholar] [CrossRef] [PubMed]
- Bokhari, S.A.; Al-Maktoum, D.; Alramahi, G.; Maallah, D.; Mukhtar, M.A. The Complexity of Managing Antipsychotic-Induced Hyponatremia: A Case Series. Cureus 2024, 16, e71038. [Google Scholar] [CrossRef] [PubMed]
- Cao, P.; Wang, Q.; Wang, Y.; Qiao, Q.; Yan, L. Safety Assessment of Tolvaptan: Real-World Adverse Event Analysis Using the FAERS Database. Front. Pharmacol. 2024, 15, 1509310. [Google Scholar] [CrossRef]
- Castillo, J.J.; Vincent, M.; Justice, E. Diagnosis and Management of Hyponatremia in Cancer Patients. Oncologist 2012, 17, 756–765. [Google Scholar] [CrossRef]
- Cohen, J.; Delaney, A.; Udy, A.; Andersen, C.; Anderson, C.S.; Bellapart, J.; Burrell, L.M.; Devaux, A.; Evans, D.M.; Fitzgerald, E.; et al. Fludrocortisone to Treat Patients with Aneurysmal Subarachnoid Haemorrhage: Protocol for an International, Phase 3, Randomised, Placebo-Controlled, Multicentre Trial. Crit. Care Resusc. 2025, 27, 100116. [Google Scholar] [CrossRef]
- Yoshioka, K.; Minami, M.; Fujimoto, S.; Yamaguchi, S.; Adachi, K.; Yamagami, K. Incremental Increases in Glucocorticoid Doses May Reduce the Risk of Osmotic Demyelination Syndrome in a Patient with Hyponatremia Due to Central Adrenal Insufficiency. Intern. Med. 2012, 51, 1069–1072. [Google Scholar] [CrossRef][Green Version]
- Marcelino, G.P.; Collantes, C.M.C.; Oommen, J.K.; Wang, S.; Baldassari, H.; Muralidharan, R.; Hanna, A. Amiodarone-Induced Syndrome of Inappropriate Antidiuretic Hormone: A Case Report and Review of the Literature. Pharm. Ther. 2019, 44, 416–423. [Google Scholar][Green Version]
- Karahan, S.; Karagöz, H.; Erden, A.; Avci, D.; Esmeray, K. Codeine-Induced Syndrome of Inappropriate Antidiuretic Hormone: Case Report. Balk. Med. J. 2014, 31, 107–109. [Google Scholar] [CrossRef]
- Mohamed, S.; Reda Mostafa, M.; Magdi Eid, M.; AbdelQadir, Y.H.; Abdelghafar, Y.A.; Swed, S.; Jahshan, B.; El-Radi, W.A. A Case Report of Severe Hyponatremia Secondary to Paxlovid-induced SIADH. Clin. Case Rep. 2023, 11, e7860. [Google Scholar] [CrossRef] [PubMed]
- Yokoyama, T.; Toda, R.; Kimura, Y.; Mikagi, M.; Aizawa, H. Addison’s Disease Induced by Miliary Tuberculosis and the Administration of Rifampicin. Intern. Med. 2009, 48, 1297–1300. [Google Scholar] [CrossRef] [PubMed]
- Lathiya, M.K.; Pepperl, E.; Schaefer, D.; Al-Sharif, H.; Zurob, A.; Cullinan, S.M.; Charokopos, A. Vasopressin-Induced Hyponatremia in an Adult Normotensive Trauma Patient: A Case Report. World J. Crit. Care Med. 2023, 12, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Liberopoulos, E.N.; Alexandridis, G.H.; Christidis, D.S.; Elisaf, M.S. SIADH and Hyponatremia with Theophylline. Ann. Pharmacother. 2002, 36, 1180–1182. [Google Scholar] [CrossRef]
- Izzedine, H.; Fardet, L.; Launay-Vacher, V.; Dorent, R.; Petitclerc, T.; Deray, G. Angiotensin-Converting Enzyme Inhibitor-Induced Syndrome of Inappropriate Secretion of Antidiuretic Hormone: Case Report and Review of the Literature. Clin. Pharmacol. Ther. 2002, 71, 503–507. [Google Scholar] [CrossRef]
- Jimmy, N.; Upadhya, M.; Jaison, J.M.; Sidheque, S.; Sundaramurthy, H.; Nemichandra, S.C.; Paneyala, S.; Ramesh, M.; Sri Harsha, C.; Syed, J.; et al. A Clinical Pharmacist-Led Approach on Reducing Drug Related Problems Among Patients with Neurological Disorders: An Interventional Study. Explor. Res. Clin. Social. Pharm. 2023, 11, 100302. [Google Scholar] [CrossRef]
- Lambeck, J.; Hieber, M.; Dreßing, A.; Niesen, W.-D. Central Pontine Myelinosis and Osmotic Demyelination Syndrome. Dtsch. Arztebl. Int. 2019, 116, 600–606. [Google Scholar] [CrossRef]
- Jeon, B.J.; Tae, B.S.; Park, J.Y.; Bae, J.H. Relationship between Use of Desmopressin in Male Patients with Lower Urinary Tract Symptoms and Occurrence of Hyponatremia: A Nationwide Population-Based Study Using the National Health Insurance Service Database. Investig. Clin. Urol. 2025, 66, 245. [Google Scholar] [CrossRef]
- Sorath, F. The Underutilization of Urea in the Treatment of SIADH–An Efficacious but Overlooked Solution. Cureus 2024, 16, e74265. [Google Scholar] [CrossRef]
- Pelouto, A.; Monnerat, S.; Refardt, J.; Zandbergen, A.A.M.; Christ-Crain, M.; Hoorn, E.J. Clinical Factors Associated with Hyponatremia Correction during Treatment with Oral Urea. Nephrol. Dial. Transplant. 2025, 40, 283–293. [Google Scholar] [CrossRef]
- Lewellyn, D.; Nuamek, T.; Ostarijas, E.; Logan Ellis, H.; Drakou, E.E.; Aylwin, S.J.B.; Dimitriadis, G.K. Low-Dose Tolvaptan for the Treatment of Syndrome of Inappropriate Antidiuretic Hormone–Associated Hyponatremia: A Systematic Review, Meta-Analysis, and Meta-Regression Analysis of Clinical Effectiveness and Safety. Endocr. Pract. 2025, 31, 956–964. [Google Scholar] [CrossRef]
- Suppadungsuk, S.; Krisanapan, P.; Kazeminia, S.; Nikravangolsefid, N.; Singh, W.; Prokop, L.J.; Kashani, K.B.; Domecq Garces, J.P. Hyponatremia Correction and Osmotic Demyelination Syndrome Risk: A Systematic Review and Meta-Analysis. Kidney Med. 2025, 7, 100953. [Google Scholar] [CrossRef]
Clinical Classification—According to symptomatology | ||||
Moderately severe | Nausea without vomiting; confusion; headache; cognition impairment; gait deficits; falls. | |||
Life threatening | Vomiting; cardiorespiratory distress; abnormal and deep somnolence; seizures; coma (Glasgow Coma Scale ≤ 8). | |||
Biochemical classification—According to serum sodium concentration | ||||
Mild | 130–135 mmol/L | |||
Moderate | 125–129 mmol/L | |||
Profound | <125 mmol/L | |||
Time-based classification—According to time of development | ||||
Acute | Development within <48 h (associated with higher risk of brain edema and neurological complications) | |||
Chronic | Development over ≥48 h (allowing partial cerebral adaptation to hypo-osmolality) | |||
Serum osmolality-based—According to serum osmolality | ||||
Non-hypotonic | Hypertonic | >290 mOsm/kg | ||
Isotonic | 275–290 mOsm/kg | |||
Hypotonic | According to volume status | Hypovolemic | ↓ H2O ↓↓ Na+ | <275 mOsm/kg |
Hypervolemic | ↑↑ H2O ↑ Na+ | |||
Euvolemic | ↑ H2O ↔ Na+ excretion | |||
Pseudo-hyponatremia | Laboratory artifact |
Hypovolemic | Hypervolemic | Euvolemic | ||
---|---|---|---|---|
Volume status | ↓ H2O ↓↓ Na+ (↓ effective arterial volume) | ↑↑ H2O ↑ Na+ (Ascites and edema) | ↑ H2O ↔ Na+ excretion | |
Urine osmolality | >100 mOsm/Kg | >100 mOsm/Kg | >100mOsm/Kg | |
Urine sodium concentration | >30 mmol/L | ≤30 mmol/L | ≤30 mmol/L | >30 mmol/L |
Associated diseases | Renal Causes
| Non-renal causes
|
|
|
Drug-induced | ++ | + | ++ |
Physiological System | Mechanism Overview | Mechanism Description | Drugs/Drug Classes | |
---|---|---|---|---|
Central action | SIADH (induced ADH release) |
|
|
|
Increase in water intake |
|
| ||
Other hormonal pathways |
|
| ||
Non-renal sodium losses |
|
| ||
Renal Action | Co-transporter suppressed activity |
|
| |
Aldosterone suppressed activity |
|
| ||
Induced pathologies |
|
| ||
Other mechanisms |
|
| ||
NSIAD |
|
| ||
PGE2 Pathway |
|
| ||
AQP2 |
|
| ||
Peripherical action | RAAS |
|
| |
Other hormonal pathways |
|
| ||
Other mechanisms and associated factors | Tumoral-induced ADH release |
|
| |
Transcellular cation exchange |
|
| ||
Therapy concomitant fluid intake |
|
| ||
Drug pharmacokinetics |
|
|
Drug/Drug Class | Likelihood of Drug-Induced Hyponatremia | Notes |
---|---|---|
Thiazides or Thiazide-like agents | +++ | |
Loop diuretics | +/− | Therapeutic strategy for euvolemic and hypervolemic hyponatremia |
Potassium-sparing diuretics | + | |
Calcium-channel blockers | + | |
Beta-blockers | + | |
ACE inhibitors | + | |
Angiotensin II Receptor Blockers | + | |
Sacubitril/valsartan | + | |
Antiarrhythmic drugs | + | |
Selective Serotonin Reuptake Inhibitor | +++ | |
Serotonin–Norepinephrine Reuptake Inhibitor | +++ | |
Tricyclic antidepressants | + | |
Atypical antidepressants (mirtazapine, bupropion and trazodone) | + | |
Antipsychotics | ++ | |
Anticonvulsants | OXC/CBZ +++ Sodium valproate, eslicarbazepine, levetiracetam, gabapentin or topiramate + | |
Anxiolytics, sedatives, hypnotics | + | |
CNS stimulants | + MDMA ++ | |
Narcotic analgesics | + | Higher risk for tramadol when compared to codeine |
Dopaminergic agents | + | |
Alkylating agents | CYC +++ Other nitrogen mustards ++ Cisplatin ++ | |
Vinca alkaloids | ++ | |
Monoclonal antibodies | ++ | Hyponatremia is less prevalent than conventional chemotherapeutic classes |
Tyrosine kinase inhibitors | + | |
Antimetabolites (methotrexate) | + | |
Proton pump inhibitors | + | Reports of more prevalence with omeprazole |
Laxatives | ++ | |
Nonsteroidal Anti-Inflammatory Drugs | + | |
Trimethoprim–sulfamethoxazole | +++ | |
Fluoroquinolones | + | |
Oxazolidinones (linezolid) | ++ | |
Aminoglicosydes | + | |
Colistin | + | |
Pentamidine | + | |
Voriconazole | + | Higher risk for CYP2C19 polymorphism |
Nirmatrelvir–ritonavir | + | |
Vasopressin and analogs | Desmopressin +++ Terlipressin ++ | |
Oxytocin | ++ | |
Antidiabetics | +/− | Evidence remains ambiguous for some classes |
Tacrolimus | + | |
Theophylline | + | |
Heparin | + | |
Lipid lowering agents | +/− | Possible protective effect |
Mannitol | + | Hypertonic hyponatremia |
Severe Symptoms | Moderately Severe Symptoms | Without Severe/Moderately Severe Symptoms | ||
---|---|---|---|---|
Acute | Chronic | |||
|
|
|
| |
In case of improving symptoms after a 5 mmol/L increase in serum Na+ in the first hour (regardless of acute or chronic) | In case of NO improving symptoms after a 5 mmol/L increase in serum Na+ in the first hour, (regardless of acute or chronic) | |||
|
| |||
If expanded extracellular fluid | ||||
(Guidelines recommend against vasopressin receptor antagonists and demeclocycline) | ||||
If SIAD | ||||
| ||||
If reduced circulating volume | ||||
|
Class | Sub-Class/Recommendations | Clinical Presentation | Management Suggestions | References |
---|---|---|---|---|
Antihypertensives | Thiazide and thiazide like agents | Presence of neurological symptoms | If euvolemic or hypervolemic, or if symptoms are severe (regardless of extracellular fluid volume)
| [3,14,15,47,60,61,157,158,159] |
Absence of neurological symptoms (asymptomatic or mildly symptomatic) |
| [3,15,60,61,158,159,160] | ||
Measures to prevent recurrent hyponatremia and correct minimal degree |
| [13,60,61,159,161,162] | ||
Other Anti-Hypertensives |
| [34,157,163] | ||
Central Nervous System Drugs | General Recommendations | Symptomatic | Mild to moderate symptoms: If Na+ < 130 mmol/L:
| [18,95] |
Asymptomatic | Na+ 130–135 mmol/L:
| [18,95] | ||
Measures to prevent hyponatremia | If patient presents with risk score ≥ 2 predisposing risk factors ([2 points]: history of hyponatremia/SIADH, diuretic use, brain injury, malnutrition, BMI < 18.5; [1 point]: female sex, age ≥ 65 years, alcohol use disorder, methamphetamine use disorder, congestive heart failure, lung cancer, treatment with SSRIs/SNRIs, carbamazepine/oxcarbazepine, or antipsychotics):
| [18,85,87] | ||
Antidepressants | Mild cases of euvolemic hyponatremia:
| [13,29,71,74,87,95,164] | ||
Antipsychotics |
| [13,82,83,85,87,157,165,166] | ||
Anticonvulsants |
| [88] | ||
MDMA | Acute symptomatic hyponatremia:
| [27] | ||
Antineoplastics | General Recommendations | Asymptomatic patients:
| [19,30,108,167,168] | |
Alkalating Agents |
| [16,108,166,167] | ||
Immune Checkpoint Inhibitors |
| [30,169] | ||
Remaining Classes of Drugs | Evidence is limited mostly to case reports, and no standardized management protocol has been established. Besides general clinical management, the literature mainly highlights: | |||
Drug discontinuation or dose reduction.
Drug discontinuation and substitution by valsartan alone.
Drug discontinuation.
The clinical risk–benefit of opioid discontinuation or substitution should be assessed, particularly since pain exacerbation may worsen hyponatremia.
Drug discontinuation, substitution or dose reduction.
Drug discontinuation. |
Drug discontinuation.
Drug discontinuation. Combining with systemic corticosteroids with mineralocorticoid effects may compensate for TMP-related hyponatremia.
| [35,36,38,39,43,48,67,69,96,101,104,106,107,109,116,121,128,131,132,134,136,137,138,140,148,170,171,172,173,174,175,176] | ||
General Recommendations For Clinical Community | ||||
| [3,5,13,14,15,24,29,60,85,95,146,155,160,166,167,177,178,179,180,181,182,183] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Capinha, M.; Lavrador, M.; Liberato, J.; Pinheiro, A.; Aveiro, A.; Figueiredo, I.V.; Castel-Branco, M. Drug-Induced Hyponatremia: Insights into Pharmacological Mechanisms and Clinical Practice Management. J. Clin. Med. 2025, 14, 6584. https://doi.org/10.3390/jcm14186584
Capinha M, Lavrador M, Liberato J, Pinheiro A, Aveiro A, Figueiredo IV, Castel-Branco M. Drug-Induced Hyponatremia: Insights into Pharmacological Mechanisms and Clinical Practice Management. Journal of Clinical Medicine. 2025; 14(18):6584. https://doi.org/10.3390/jcm14186584
Chicago/Turabian StyleCapinha, Miguel, Marta Lavrador, Joana Liberato, Adriana Pinheiro, Ana Aveiro, Isabel Vitória Figueiredo, and Margarida Castel-Branco. 2025. "Drug-Induced Hyponatremia: Insights into Pharmacological Mechanisms and Clinical Practice Management" Journal of Clinical Medicine 14, no. 18: 6584. https://doi.org/10.3390/jcm14186584
APA StyleCapinha, M., Lavrador, M., Liberato, J., Pinheiro, A., Aveiro, A., Figueiredo, I. V., & Castel-Branco, M. (2025). Drug-Induced Hyponatremia: Insights into Pharmacological Mechanisms and Clinical Practice Management. Journal of Clinical Medicine, 14(18), 6584. https://doi.org/10.3390/jcm14186584