Prognostic Value of FasL, BDNF, and IL-1β as Predictors of Therapeutic Response in Schizophrenia
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Group
2.2. Plasma IL-1β, FasL, and BDNF Concentration Measurements
2.3. Mental Status Assessment
2.4. Statistical Analysis
3. Results
3.1. Group Characteristics
3.2. Clinical Schizophrenia Scale Scores and IL-1β, BDNF, and FasL Levels
3.3. Correlations Between IL-1β Levels and PANSS, SAPS, and SANS Scores
3.4. Correlations Between FasL Levels and PANSS, SAPS, and SANS Scores
3.5. Correlations Between BDNF Levels and PANSS, SAPS, and SANS Scores
3.6. Correlations Between IL-1β and FasL/BDNF
3.7. Correlations Between IL-1β, FasL, and BDNF Levels and Clinical Schizophrenia Scores in Patients with Early-Phase Schizophrenia
3.8. Correlations Between IL-1β, FasL, and BDNF Levels and Clinical Schizophrenia Scores in Patients with Chronic Schizophrenia
4. Discussion
5. Conclusions
6. Limitations and Future Directions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BDNF | brain-derived neurotrophic factor |
BMI | body mass index |
BPRS | Brief Psychiatric Rating Scale/Brief Psychopathology Rating Scale |
CSF | cerebrospinal fluid |
CLO | clozapine-treated patients |
ELISA | enzyme-linked immunosorbent assay |
FADD | Fas-associated death domain |
Fas | cluster of differentiation (CD) 95 |
FasL | Fas ligand |
FASLG | Fas ligand gene |
ICD | International Classification of Diseases |
IFNα | interferon α |
IL | interleukin |
mBDNF | mature form of BDNF |
MMP-2 | metalloproteinase 2 |
NO-CLO | clozapine-naïve patients |
NT-4 | neurotrophin-4 |
p75NTR | p75 neurotrophin receptor |
PANSS G | PANSS—general symptoms |
PANSS N | PANSS—negative symptoms |
PANSS P | PANSS—positive symptoms |
PANSS T | PANSS total score |
PANSS | Positive and Negative Symptom Scale for Schizophrenia |
proBDNF | precursor form of BDNF |
SANS | Scale for Assessment of Negative Symptoms |
SAPS | Scale for Assessment of Positive Symptoms |
TNF-α | tumor necrosis factor-α |
Trk | tropomyosin receptor kinase |
TrkB | tropomyosin receptor kinase B |
References
- Moran, P.M.; Granger, K.T. IUPHAR review: Moving beyond dopamine-based therapeutic strategies for schizophrenia. Pharmacol. Res. 2025, 216, 107727. [Google Scholar] [CrossRef] [PubMed]
- WHO. International Classification of Diseases; Eleventh Revision (ICD-11); WHO: Geneva, Switzerland, 2021. [Google Scholar]
- Nakamura, T.; Takata, A. The molecular pathology of schizophrenia: An overview of existing knowledge and new directions for future research. Mol. Psychiatry 2023, 28, 1868–1889. [Google Scholar] [CrossRef] [PubMed]
- Bitanihirwe, B.K.; Woo, T.U. Oxidative stress in schizophrenia: An integrated approach. Neurosci. Biobehav. Rev. 2011, 35, 878–893. [Google Scholar] [CrossRef]
- Wu, X.L.; Yan, Q.J.; Zhu, F. Abnormal synaptic plasticity and impaired cognition in schizophrenia. World J. Psychiatry 2022, 12, 541–557. [Google Scholar] [CrossRef] [PubMed]
- Iannitelli, A.; Quartini, A.; Tirassa, P.; Bersani, G. Schizophrenia and neurogenesis: A stem cell approach. Neurosci. Biobehav. Rev. 2017, 80, 414–442. [Google Scholar] [CrossRef]
- Warren, N.; O’Gorman, C.; Horgan, I.; Weeratunga, M.; Halstead, S.; Moussiopoulou, J.; Campana, M.; Yakimov, V.; Wagner, E.; Siskind, D. Inflammatory cerebrospinal fluid markers in schizophrenia spectrum disorders: A systematic review and meta-analysis of 69 studies with 5710 participants. Schizophr. Res. 2024, 266, 24–31. [Google Scholar] [CrossRef]
- Dunleavy, C.; Elsworthy, R.J.; Upthegrove, R.; Wood, S.J.; Aldred, S. Inflammation in first-episode psychosis: The contribution of inflammatory biomarkers to the emergence of negative symptoms, a systematic review and meta-analysis. Acta Psychiatr. Scand. 2022, 146, 6–20. [Google Scholar] [CrossRef]
- Miller, B.J.; Buckley, P.; Seabolt, W.; Mellor, A.; Kirkpatrick, B. Meta-analysis of cytokine alterations in schizophrenia: Clinical status and antipsychotic effects. Biol. Psychiatry 2011, 70, 663–671. [Google Scholar] [CrossRef]
- Al-Hakeim, H.K.; Al-Musawi, A.F.; Al-Mulla, A.; Al-Dujaili, A.H.; Debnath, M.; Maes, M. The interleukin-6/interleukin-23/T helper 17-axis as a driver of neuro-immune toxicity in the major neurocognitive psychosis or deficit schizophrenia: A precision nomothetic psychiatry analysis. PLoS ONE 2022, 17, e0275839. [Google Scholar] [CrossRef]
- Noto, M.N.; Maes, M.; Nunes, S.O.V.; Ota, V.K.; Rossaneis, A.C.; Verri, W.A., Jr.; Cordeiro, Q.; Belangero, S.I.; Gadelha, A.; Bressan, R.A.; et al. Activation of the immune-inflammatory response system and the compensatory immune-regulatory system in antipsychotic naive first episode psychosis. Eur. Neuropsychopharmacol. 2019, 29, 416–431. [Google Scholar] [CrossRef]
- Frydecka, D.; Krzystek-Korpacka, M.; Lubeiro, A.; Stramecki, F.; Stańczykiewicz, B.; Beszłej, J.A.; Piotrowski, P.; Kotowicz, K.; Szewczuk-Bogusławska, M.; Pawlak-Adamska, E.; et al. Profiling inflammatory signatures of schizophrenia: A cross-sectional and meta-analysis study. Brain Behav. Immun. 2018, 71, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Ramsey, J.M.; Schwarz, E.; Guest, P.C.; van Beveren, N.J.; Leweke, F.M.; Rothermundt, M.; Bogerts, B.; Steiner, J.; Bahn, S. Distinct molecular phenotypes in male and female schizophrenia patients. PLoS ONE 2013, 8, e78729. [Google Scholar] [CrossRef] [PubMed]
- Szymona, K.; Zdzisińska, B.; Karakuła-Juchnowicz, H.; Kocki, T.; Kandefer-Szerszeń, M.; Flis, M.; Rosa, W.; Urbańska, E.M. Correlations of Kynurenic Acid, 3-Hydroxykynurenine, sIL-2R, IFN-α, and IL-4 with Clinical Symptoms During Acute Relapse of Schizophrenia. Neurotox. Res. 2017, 32, 17–26. [Google Scholar] [CrossRef]
- Numakawa, T.; Kajihara, R. The Role of Brain-Derived Neurotrophic Factor as an Essential Mediator in Neuronal Functions and the Therapeutic Potential of Its Mimetics for Neuroprotection in Neurologic and Psychiatric Disorders. Molecules 2025, 30, 848. [Google Scholar] [CrossRef]
- Chen, S.D.; Wu, C.L.; Hwang, W.C.; Yang, D.I. More Insight into BDNF against Neurodegeneration: Anti-Apoptosis, Anti-Oxidation, and Suppression of Autophagy. Int. J. Mol. Sci. 2017, 18, 545. [Google Scholar] [CrossRef]
- Zou, Y.; Zhang, Y.; Tu, M.; Ye, Y.; Li, M.; Ran, R.; Zou, Z. Brain-derived neurotrophic factor levels across psychiatric disorders: A systemic review and network meta-analysis. Prog. Neuropsychopharmacol. Biol. Psychiatry 2024, 131, 110954. [Google Scholar] [CrossRef]
- Klein, R.; Nanduri, V.; Jing, S.A.; Lamballe, F.; Tapley, P.; Bryant, S.; Cordon-Cardo, C.; Jones, K.R.; Reichardt, L.F.; Barbacid, M. The trkB tyrosine protein kinase is a receptor for brain-derived neurotrophic factor and neurotrophin-3. Cell 1991, 66, 395–403. [Google Scholar] [CrossRef]
- Schecterson, L.C.; Bothwell, M. Neurotrophin receptors: Old friends with new partners. Dev. Neurobiol. 2010, 70, 332–338. [Google Scholar] [CrossRef]
- Hempstead, B.L. The many faces of p75NTR. Curr. Opin. Neurobiol. 2002, 12, 260–267. [Google Scholar] [CrossRef]
- Teng, H.K.; Teng, K.K.; Lee, R.; Wright, S.; Tevar, S.; Almeida, R.D.; Kermani, P.; Torkin, R.; Chen, Z.Y.; Lee, F.S.; et al. ProBDNF induces neuronal apoptosis via activation of a receptor complex of p75NTR and sortilin. J. Neurosci. 2005, 25, 5455–5463. [Google Scholar] [CrossRef]
- Chen, R.; Chen, W.; Li, P.; Zhao, Y.; Zeng, Q.; Chen, W.; Cao, D. Function and application of brain-derived neurotrophic factor precursors (Review). Int. J. Mol. Med. 2025, 56, 105. [Google Scholar] [CrossRef]
- Chen, Y.; Li, S.; Zhang, T.; Yang, F.; Lu, B. Corticosterone antagonist or TrkB agonist attenuates schizophrenia-like behavior in a mouse model combining Bdnf-e6 deficiency and developmental stress. iScience 2022, 25, 104609. [Google Scholar] [CrossRef] [PubMed]
- Glantz, L.A.; Gilmore, J.H.; Lieberman, J.A.; Jarskog, L.F. Apoptotic mechanisms and the synaptic pathology of schizophrenia. Schizophr. Res. 2006, 81, 47–63. [Google Scholar] [CrossRef] [PubMed]
- Stepień, A.; Izdebska, M.; Grzanka, A. The types of cell death. Postepy Hig. Med. Dosw. 2007, 61, 420–428. [Google Scholar]
- Waring, P.; Müllbacher, A. Cell death induced by the Fas/Fas ligand pathway and its role in pathology. Immunol. Cell Biol. 1999, 77, 312–317. [Google Scholar] [CrossRef]
- Djordjević, V.V.; Ristić, T.; Lazarević, D.; Cosić, V.; Vlahović, P.; Djordjević, V.B. Schizophrenia is associated with increased levels of serum Fas and FasL. Clin. Chem. Lab. Med. 2012, 50, 1049–1054. [Google Scholar] [CrossRef]
- Gerasimou, C.; Tsoporis, J.N.; Siafakas, N.; Hatziagelaki, E.; Kallergi, M.; Chatziioannou, S.N.; Parker, T.G.; Parissis, J.; Salpeas, V.; Papageorgiou, C.; et al. A Longitudinal Study of Alterations of S100B, sRAGE and Fas Ligand in Association to Olanzapine Medication in a Sample of First Episode Patients with Schizophrenia. CNS Neurol. Disord. Drug Targets 2018, 17, 383–388. [Google Scholar] [CrossRef]
- Mizuno, Y.; McCutcheon, R.A.; Brugger, S.P.; Howes, O.D. Heterogeneity and efficacy of antipsychotic treatment for schizophrenia with or without treatment resistance: A meta-analysis. Neuropsychopharmacology 2020, 45, 622–631. [Google Scholar] [CrossRef]
- Murray, R.M.; Egerton, A.; Gao, Y.; Grace, A.A.; Howes, O.; Jauhar, S.; Leucht, S.; Chen, E.Y.H.; MacCabe, J.H.; McCutcheon, R.A.; et al. Why is Clozapine uniquely Effective in Treatment Resistant Schizophrenia? Biol. Psychiatry, 2025; in press. [Google Scholar] [CrossRef]
- Jiao, S.; Cao, T.; Cai, H. Peripheral biomarkers of treatment-resistant schizophrenia: Genetic, inflammation and stress perspectives. Front. Pharmacol. 2022, 13, 1005702. [Google Scholar] [CrossRef]
- Perkins, D.O.; Jeffries, C.D.; Clark, S.R.; Upthegrove, R.; Wannan, C.M.J.; Wray, N.R.; Li, Q.S.; Do, K.Q.; Walker, E.; Paul Amminger, G.; et al. Body fluid biomarkers and psychosis risk in The Accelerating Medicines Partnership® Schizophrenia Program: Design considerations. Schizophrenia 2025, 11, 78. [Google Scholar] [CrossRef]
- Szymona, K.; Karakula-Juchnowicz, H.; Zdzisińska, B.; Flis, M.; Kaławaj, K.; Rosa, W.; Kandefer-Szerszeń, M. Soluble Fas ligand (sFasL) as a predictor of reduction of general psychopathology in schizophrenia after antipsychotic treatment. Eur. Psychiatry 2016, 33, S108. [Google Scholar] [CrossRef]
- Kay, S.R.; Fiszbein, A.; Opler, L.A. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr. Bull. 1987, 13, 261–276. [Google Scholar] [CrossRef]
- Peralta, V.; Cuesta, M.J. Psychometric properties of the positive and negative syndrome scale (PANSS) in schizophrenia. Psychiatry Res. 1994, 53, 31–40. [Google Scholar] [CrossRef]
- Norman, R.M.; Malla, A.K.; Cortese, L.; Diaz, F. A study of the interrelationship between and comparative interrater reliability of the SAPS, SANS and PANSS. Schizophr. Res. 1996, 19, 73–85. [Google Scholar] [CrossRef]
- Andreasen, N.C. Methods for assessing positive and negative symptoms. Mod. Probl. Pharmacopsychiatry 1990, 24, 73–88. [Google Scholar] [CrossRef]
- Leucht, S.; Davis, J.M.; Engel, R.R.; Kissling, W.; Kane, J.M. Definitions of response and remission in schizophrenia: Recommendations for their use and their presentation. Acta Psychiatr. Scand. 2009, 119, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, J.; Ye, Y.; Zou, Y.; Chen, W.; Wang, Z.; Zou, Z. Peripheral cytokine levels across psychiatric disorders: A systematic review and network meta-analysis. Prog. Neuropsychopharmacol. Biol. Psychiatry 2023, 125, 110740. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Ping, J.; Wan, J.; Zhu, J.; Zhang, Y.; Zhang, J.; Jiang, T. Association of Serum SOCS3 and Inflammatory Marker Levels With Cognitive Function in First-Episode Schizophrenia. Int. J. Dev. Neurosci. 2025, 85, e70027. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Wu, Q.; Li, F.; Wang, Y.; Zeng, J.; Tang, B.; Bishop, J.R.; Xiao, L.; Lui, S. Free water alterations in different inflammatory subgroups in schizophrenia. Brain Behav. Immun. 2024, 115, 557–564. [Google Scholar] [CrossRef]
- McKernan, D.P.; Dennison, U.; Gaszner, G.; Cryan, J.F.; Dinan, T.G. Enhanced peripheral toll-like receptor responses in psychosis: Further evidence of a pro-inflammatory phenotype. Transl. Psychiatry 2011, 1, e36. [Google Scholar] [CrossRef]
- Jia, C.; Zhang, M.; Wu, X.; Zhang, X.; Lv, Z.; Zhao, K.; Zhang, J.; Su, Y.; Zhu, F. HERV-W Env Induces Neuron Pyroptosis via the NLRP3-CASP1-GSDMD Pathway in Recent-Onset Schizophrenia. Int. J. Mol. Sci. 2025, 26, 520. [Google Scholar] [CrossRef]
- Zhao, X.L.; Liu, Y.L.; Long, Q.; Zhang, Y.Q.; You, X.; Guo, Z.Y.; Cao, X.; Yu, L.; Qin, F.Y.; Teng, Z.W.; et al. Abnormal expression of miR-3653-3p, caspase 1, IL-1β in peripheral blood of schizophrenia. BMC Psychiatry 2023, 23, 822. [Google Scholar] [CrossRef]
- Kowalski, J.; Blada, P.; Kucia, K.; Madej, A.; Herman, Z.S. Neuroleptics normalize increased release of interleukin- 1 beta and tumor necrosis factor-alpha from monocytes in schizophrenia. Schizophr. Res. 2001, 50, 169–175. [Google Scholar] [CrossRef]
- Kozłowska, E.; Żelechowska, P.; Sobow, T.; Brzezinska-Blaszczyk, E. The reactivity of the immune system in some psychiatric disorders. Psychiatr. Psychol. Klin. 2015, 15, 182–188. [Google Scholar] [CrossRef]
- O’Connell, K.E.; Thakore, J.; Dev, K.K. Pro-inflammatory cytokine levels are raised in female schizophrenia patients treated with clozapine. Schizophr. Res. 2014, 156, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Potvin, S.; Stip, E.; Sepehry, A.A.; Gendron, A.; Bah, R.; Kouassi, E. Inflammatory cytokine alterations in schizophrenia: A systematic quantitative review. Biol. Psychiatry 2008, 63, 801–808. [Google Scholar] [CrossRef] [PubMed]
- Dimitrov, D.H.; Lee, S.; Yantis, J.; Valdez, C.; Paredes, R.M.; Braida, N.; Velligan, D.; Walss-Bass, C. Differential correlations between inflammatory cytokines and psychopathology in veterans with schizophrenia: Potential role for IL-17 pathway. Schizophr. Res. 2013, 151, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Miyano, T.; Hirouchi, M.; Yoshimura, N.; Hattori, K.; Mikkaichi, T.; Kiyosawa, N. Plasma microRNAs Associate Positive, Negative, and Cognitive Symptoms with Inflammation in Schizophrenia. Int. J. Mol. Sci. 2024, 25, 13522. [Google Scholar] [CrossRef]
- Corsi-Zuelli, F.; Quattrone, D.; Ragazzi, T.C.C.; Loureiro, C.M.; Shuhama, R.; Menezes, P.R.; Louzada-Junior, P.; Del-Ben, C.M. Transdiagnostic dimensions of symptoms and experiences associated with immune proteins in the continuity of psychosis. Psychol. Med. 2024, 54, 2099–2111. [Google Scholar] [CrossRef]
- Hänninen, K.; Katila, H.; Saarela, M.; Rontu, R.; Mattila, K.M.; Fan, M.; Hurme, M.; Lehtimäki, T. Interleukin-1 beta gene polymorphism and its interactions with neuregulin-1 gene polymorphism are associated with schizophrenia. Eur. Arch. Psychiatry Clin. Neurosci. 2008, 258, 10–15. [Google Scholar] [CrossRef]
- Kim, S.; Kim, Y.J.; Choe, B.K.; Lee, H.J.; Kim, J.W.; Park, J.D.; Kim, C.J.; Park, S.; Jung, J.C.; Chung, J.-H. Assessment of an Apo-1/Fas promoter polymorphism in Korean schizophrenia patients. Korean J. Physiol. Pharmacol. 2002, 6, 161–163. [Google Scholar]
- Urigüen, L.; Gil-Pisa, I.; Munarriz-Cuezva, E.; Berrocoso, E.; Pascau, J.; Soto-Montenegro, M.L.; Gutiérrez-Adán, A.; Pintado, B.; Madrigal, J.L.; Castro, E.; et al. Behavioral, neurochemical and morphological changes induced by the overexpression of munc18-1a in brain of mice: Relevance to schizophrenia. Transl. Psychiatry 2013, 3, e221. [Google Scholar] [CrossRef]
- García-Fuster, M.J.; Díez-Alarcia, R.; Ferrer-Alcón, M.; La Harpe, R.; Meana, J.J.; García-Sevilla, J.A. FADD adaptor and PEA-15/ERK1/2 partners in major depression and schizophrenia postmortem brains: Basal contents and effects of psychotropic treatments. Neuroscience 2014, 277, 541–551. [Google Scholar] [CrossRef]
- Gu, S.; Cui, F.; Yin, J.; Fang, C.; Liu, L. Altered mRNA expression levels of autophagy- and apoptosis-related genes in the FOXO pathway in schizophrenia patients treated with olanzapine. Neurosci. Lett. 2021, 746, 135669. [Google Scholar] [CrossRef] [PubMed]
- Bai, O.; Zhang, H.; Li, X.M. Antipsychotic drugs clozapine and olanzapine upregulate bcl-2 mRNA and protein in rat frontal cortex and hippocampus. Brain Res. 2004, 1010, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Jarskog, L.F.; Gilmore, J.H.; Selinger, E.S.; Lieberman, J.A. Cortical bcl-2 protein expression and apoptotic regulation in schizophrenia. Biol. Psychiatry 2000, 48, 641–650. [Google Scholar] [CrossRef] [PubMed]
- Liberona, A.; Jones, N.; Zúñiga, K.; Garrido, V.; Zelada, M.I.; Silva, H.; Nieto, R.R. Brain-Derived Neurotrophic Factor (BDNF) as a Predictor of Treatment Response in Schizophrenia and Bipolar Disorder: A Systematic Review. Int. J. Mol. Sci. 2024, 25, 11204. [Google Scholar] [CrossRef]
- Cui, L.J.; Cai, L.L.; Na, W.Q.; Jia, R.L.; Zhu, J.L.; Pan, X. Interaction between serum inflammatory cytokines and brain-derived neurotrophic factor in cognitive function among first-episode schizophrenia patients. World J. Psychiatry 2024, 14, 1804–1814. [Google Scholar] [CrossRef]
- Maes, M.; Plaimas, K.; Suratanee, A.; Noto, C.; Kanchanatawan, B. First Episode Psychosis and Schizophrenia Are Systemic Neuro-Immune Disorders Triggered by a Biotic Stimulus in Individuals with Reduced Immune Regulation and Neuroprotection. Cells 2021, 10, 2929. [Google Scholar] [CrossRef]
- Fillman, S.G.; Weickert, T.W.; Lenroot, R.K.; Catts, S.V.; Bruggemann, J.M.; Catts, V.S.; Weickert, C.S. Elevated peripheral cytokines characterize a subgroup of people with schizophrenia displaying poor verbal fluency and reduced Broca’s area volume. Mol. Psychiatry 2016, 21, 1090–1098. [Google Scholar] [CrossRef] [PubMed]
- Pedrini, M.; Chendo, I.; Grande, I.; Lobato, M.I.; Belmonte-de-Abreu, P.S.; Lersch, C.; Walz, J.; Kauer-Sant’anna, M.; Kapczinski, F.; Gama, C.S. Serum brain-derived neurotrophic factor and clozapine daily dose in patients with schizophrenia: A positive correlation. Neurosci. Lett. 2011, 491, 207–210. [Google Scholar] [CrossRef] [PubMed]
- Friedman, W.J.; Greene, L.A. Neurotrophin signaling via Trks and p75. Exp. Cell Res. 1999, 253, 131–142. [Google Scholar] [CrossRef] [PubMed]
- Loch, A.A.; Pinto, M.T.C.; Andrade, J.C.; de Jesus, L.P.; de Medeiros, M.W.; Haddad, N.M.; Bilt, M.T.V.; Talib, L.L.; Gattaz, W.F. Plasma levels of neurotrophin 4/5, NGF and pro-BDNF influence transition to mental disorders in a sample of individuals at ultra-high risk for psychosis. Psychiatry Res. 2023, 327, 115402. [Google Scholar] [CrossRef]
- Yesilkaya, U.H.; Gica, S.; Menekseoglu, P.O.; Tasdemir, B.G.; Cirakli, Z.; Karamustafalioglu, N. Can the Imbalance between Neurotrophic and Apoptotic Proteins Be the “Beware the Ides of March” for Unaffected Relatives of Schizophrenia Patients? Mol. Neurobiol. 2022, 59, 7413–7422. [Google Scholar] [CrossRef]
- Christou, A.I.; Wallis, Y.; Bair, H.; Crawford, H.; Frisson, S.; Zeegers, M.P.; McCleery, J.P. BDNF Val66Met and 5-HTTLPR Genotype are Each Associated with Visual Scanning Patterns of Faces in Young Children. Front. Behav. Neurosci. 2015, 9, 175. [Google Scholar] [CrossRef]
- Di Carlo, P.; Punzi, G.; Ursini, G. Brain-derived neurotrophic factor and schizophrenia. Psychiatr. Genet. 2019, 29, 200–210. [Google Scholar] [CrossRef]
- Keilhoff, G.; Grecksch, G.; Bernstein, H.G.; Roskoden, T.; Becker, A. Risperidone and haloperidol promote survival of stem cells in the rat hippocampus. Eur. Arch. Psychiatry Clin. Neurosci. 2010, 260, 151–162. [Google Scholar] [CrossRef]
Variable | Patient Group n (%) or Mean ± SD | Control Group n (%) or Mean ± SD | p-Value |
---|---|---|---|
Gender | |||
Male | 34 (64.15) | 21 (46.67) | 0.08 a |
Female | 19 (35.85) | 24 (53.33) | >0.05 |
Total | 53 (100.00) | 45 (100.00) | >0.05 |
Education | |||
Primary | 4 (7.55) | 0 (0.00) | >0.05 |
Lower secondary | 3 (5.66) | 6 (13.33) | >0.05 |
Higher secondary | 22 (41.51) | 17 (37.78) | >0.05 |
Vocational training | 4 (7.55) | 0 (0.00) | >0.05 |
Higher (university) | 17 (32.08) | 22 (48.89) | >0.05 |
Total | 53 (100.00) | 45 (100.00) | >0.05 |
Continuous variables | |||
Age (years) | 26.92 ± 8.18 | 24.17 ± 5.81 | 0.07 b |
Leukocytes (109/L) | 6.74 ± 1.92 | 6.03 ± 2.10 | 0.18 b |
BMI (kg/m2) | 25.24 ± 4.76 | 22.14 ± 5.66 | 0.09 b |
Analyzed Variable | M | Me | Min | Max | Q1 | Q3 | SD |
---|---|---|---|---|---|---|---|
Time to first contact with a psychiatrist (months) | 47.03 | 35 | 0 | 228 | 3 | 66 | 56.21 |
Prodromal period (months) | 13.57 | 9 | 2 | 60 | 2 | 12 | 16.55 |
Duration of untreated psychosis (months) | 11.42 | 6 | 1 | 48 | 2 | 12 | 13.86 |
Duration of the disease (months) | 70.04 | 48 | 1 | 276 | 12 | 120 | 73.75 |
Number of disease exacerbations | 2.94 | 2 | 1 | 11 | 1 | 4 | 2.51 |
Total number of hospitalizations | 2.63 | 1 | 1 | 14 | 1 | 3 | 2.84 |
Parameter | Admission | 4 Weeks | p Value | Remission | p Value | Control |
---|---|---|---|---|---|---|
Clinical Schizophrenia Scales | ||||||
PANSS T | 92.00 ± 21.7 | 75.0 ± 20.7 | <0.001 | 57.52 ± 20.6 | <0.001 | N/A |
PANSS P | 21.90 ± 6.6 | 17.2 ± 6.6 | <0.001 | 11.90 ± 5.9 | <0.001 | N/A |
PANSS N | 25.00 ± 7.3 | 21.7 ± 6.7 | <0.001 | 16.76 ± 6.6 | <0.001 | N/A |
PANSS G | 45.00 ± 12.43 | 36.7 ± 10.7 | <0.001 | 28.79 ± 10.3 | <0.001 | N/A |
SAPS | 42.90 ± 29.1 | 32.1 ± 25.2 | <0.001 | 15.40 ± 19.8 | <0.001 | N/A |
SANS | 62.30 ± 23.6 | 53.5 ± 21.4 | <0.001 | 38.50 ± 21.3 | <0.001 | N/A |
IL-1β (pg/mL) | ||||||
All | 1.75 ± 2.35 | 2.04 ± 3.71 | >0.05 | 1.8 ± 1.92 | >0.05 | 1.49 ± 1.16 |
Clozapine-treated | 1.52 ± 2.15 | 1.86 ± 2.99 | >0.05 | 1.5 ± 1.7 | >0.05 | N/A |
Non-clozapine treatment | 1.81 ± 2.42 | 3.21 ± 4.10 | >0.05 | 1.96 ± 2.05 | >0.05 | N/A |
FasL (pg/mL) | ||||||
All | 78.94 ± 27.63 | 78.85 ± 24.95 | >0.05 | 75.9 ± 23.52 | >0.05 | 81.94 ± 34.74 |
Clozapine-treated | 89.42 ± 34.98 | 82.10 ± 24.77 | >0.05 | 80.02 ± 31.71 | >0.05 | N/A |
Non-clozapine treatment | 76.16 ± 25.24 | 77.31 ± 25.56 | >0.05 | 73.95 ± 19.24 | >0.05 | N/A |
BDNF (ng/mL) | ||||||
All | 7.45 ± 5.22 | 6.74 ± 4.41 | >0.05 | 7.83 ± 4.47 | >0.05 | 5.85 ± 3.22 |
Clozapine-treated | 6.83 ± 4.16 | 5.47 ± 4.08 | >0.05 | 7.39 ± 3.98 | >0.05 | N/A |
Non-clozapine treatment | 7.62 ± 5.51 | 7.34 ± 4.54 | >0.05 | 8.04 ± 4.77 | >0.05 | N/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szymona-Kuciewicz, Z.; Owe-Larsson, M.; Flis, M.; Karakula-Juchnowicz, H.; Zdzisinska, B.; Dudzinska, E.; Urbanska, E.M.; Szymona, K. Prognostic Value of FasL, BDNF, and IL-1β as Predictors of Therapeutic Response in Schizophrenia. J. Clin. Med. 2025, 14, 6417. https://doi.org/10.3390/jcm14186417
Szymona-Kuciewicz Z, Owe-Larsson M, Flis M, Karakula-Juchnowicz H, Zdzisinska B, Dudzinska E, Urbanska EM, Szymona K. Prognostic Value of FasL, BDNF, and IL-1β as Predictors of Therapeutic Response in Schizophrenia. Journal of Clinical Medicine. 2025; 14(18):6417. https://doi.org/10.3390/jcm14186417
Chicago/Turabian StyleSzymona-Kuciewicz, Zofia, Maja Owe-Larsson, Marta Flis, Hanna Karakula-Juchnowicz, Barbara Zdzisinska, Ewa Dudzinska, Ewa M. Urbanska, and Kinga Szymona. 2025. "Prognostic Value of FasL, BDNF, and IL-1β as Predictors of Therapeutic Response in Schizophrenia" Journal of Clinical Medicine 14, no. 18: 6417. https://doi.org/10.3390/jcm14186417
APA StyleSzymona-Kuciewicz, Z., Owe-Larsson, M., Flis, M., Karakula-Juchnowicz, H., Zdzisinska, B., Dudzinska, E., Urbanska, E. M., & Szymona, K. (2025). Prognostic Value of FasL, BDNF, and IL-1β as Predictors of Therapeutic Response in Schizophrenia. Journal of Clinical Medicine, 14(18), 6417. https://doi.org/10.3390/jcm14186417