miR-197, miR-101, and miR-143 and Pro-Inflammatory Cytokines in Migraine
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Participant Selection
2.2. Population Criteria
2.3. Plasma and Serum Collection
2.4. Headache Impact Test 6
2.5. Extraction and Reverse Transcription of microRNAs from Blood Plasma
2.6. Expressions of microRNAs hsa-miR-197-3p, hsa-miR-101-3p, and hsa-miR-143-3p
2.7. Quantification of Serum Levels of IL-17A, IL-6, and TNFα
2.8. Network Analysis
2.9. Statistical Analysis
3. Results
3.1. Demographic and Clinical Characteristics in Patients and Controls
3.2. miR-143 Is Highly Expressed in Patients with Migraine
3.3. In Chronic Migraine, There Are Higher Levels of Pro-Inflammatory Cytokines and Association with miR-101-3p
3.4. miR-197, miR-101, and miR-143 Are Related to Pain and Inflammation Genes
3.5. Biological Pathways Modulated by miR-197, miR-101, and miR-143 in Patients with Migraine
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ICDH-3 | International Classification of Headache Disorders |
CM | chronic migraine |
EM | episodic migraine |
HIT-6 | Headache Impact Test 6 |
miRs | microRNAs |
CNS | central nervous system |
ESR | erythrocyte sedimentation rate |
IL1R1 | interleukin 1 receptor 1 |
References
- Zobdeh, F.; Eremenko, I.I.; Akan, M.A.; Tarasov, V.V.; Chubarev, V.N.; Schioth, H.B.; Mwinyi, J. The Epigenetics of Migraine. Int. J. Mol. Sci. 2023, 24, 9127. [Google Scholar] [CrossRef]
- Headache Classification Committee of the International Headache Society (IHS) The International Classification of Headache Disorders, 3rd edition. Cephalalgia 2018, 38, 1–211. [CrossRef] [PubMed]
- Shin, H.E.; Park, J.W.; Kim, Y.I.; Lee, K.S. Headache Impact Test-6 (HIT-6) scores for migraine patients: Their relation to disability as measured from a headache diary. J. Clin. Neurol. 2008, 4, 158–163. [Google Scholar] [CrossRef]
- Greco, R.; De Icco, R.; Demartini, C.; Zanaboni, A.M.; Tumelero, E.; Sances, G.; Allena, M.; Tassorelli, C. Plasma levels of CGRP and expression of specific microRNAs in blood cells of episodic and chronic migraine subjects: Towards the identification of a panel of peripheral biomarkers of migraine? J. Headache Pain 2020, 21, 122. [Google Scholar] [CrossRef]
- Grodzka, O.; Slyk, S.; Domitrz, I. The Role of MicroRNA in Migraine: A Systemic Literature Review. Cell. Mol. Neurobiol. 2023, 43, 3315–3327. [Google Scholar] [CrossRef]
- Gallardo, V.J.; Vila-Pueyo, M.; Pozo-Rosich, P. The impact of epigenetic mechanisms in migraine: Current knowledge and future directions. Cephalalgia 2023, 43, 3331024221145916. [Google Scholar] [CrossRef]
- Tafuri, E.; Santovito, D.; de Nardis, V.; Marcantonio, P.; Paganelli, C.; Affaitati, G.; Bucci, M.; Mezzetti, A.; Giamberardino, M.A.; Cipollone, F. MicroRNA profiling in migraine without aura: Pilot study. Ann. Med. 2015, 47, 468–473. [Google Scholar] [CrossRef]
- Gallardo, V.J.; Gomez-Galvan, J.B.; Asskour, L.; Torres-Ferrus, M.; Alpuente, A.; Caronna, E.; Pozo-Rosich, P. A study of differential microRNA expression profile in migraine: The microMIG exploratory study. J. Headache Pain 2023, 24, 11. [Google Scholar] [CrossRef]
- Akkaya-Ulum, Y.Z.; Akbaba, T.H.; Tavukcuoglu, Z.; Chae, J.J.; Yilmaz, E.; Ozen, S.; Balci-Peynircioglu, B. Familial Mediterranean fever-related miR-197-3p targets IL1R1 gene and modulates inflammation in monocytes and synovial fibroblasts. Sci. Rep. 2021, 11, 685. [Google Scholar] [CrossRef] [PubMed]
- Tovar-Cuevas, A.J.; Rosales Gomez, R.C.; Martin-Marquez, B.T.; Pena Duenas, N.A.; Sandoval-Garcia, F.; Guzman Ornelas, M.O.; Chavez Tostado, M.; Hernandez Corona, D.M.; Corona Meraz, F.I. Bioinformatic Analysis from a Descriptive Profile of miRNAs in Chronic Migraine. Int. J. Mol. Sci. 2024, 25, 491. [Google Scholar] [CrossRef] [PubMed]
- Aczel, T.; Benczik, B.; Agg, B.; Kortesi, T.; Urban, P.; Bauer, W.; Gyenesei, A.; Tuka, B.; Tajti, J.; Ferdinandy, P.; et al. Disease- and headache-specific microRNA signatures and their predicted mRNA targets in peripheral blood mononuclear cells in migraineurs: Role of inflammatory signalling and oxidative stress. J. Headache Pain 2022, 23, 113. [Google Scholar] [CrossRef]
- Zhang, J.; Li, A.; Gu, R.; Tong, Y.; Cheng, J. Role and regulatory mechanism of microRNA mediated neuroinflammation in neuronal system diseases. Front. Immunol. 2023, 14, 1238930. [Google Scholar] [CrossRef]
- Sudershan, A.; Younis, M.; Sudershan, S.; Kumar, P. Migraine as an inflammatory disorder with microglial activation as a prime candidate. Neurol. Res. 2023, 45, 200–215. [Google Scholar] [CrossRef]
- Barbato, C. MicroRNA-Mediated Silencing Pathways in the Nervous System and Neurological Diseases. Cells 2022, 11, 2375. [Google Scholar] [CrossRef]
- Hassan, M.; Shahzadi, S.; Yasir, M.; Chun, W.; Kloczkowski, A. Therapeutic Implication of miRNAs as an Active Regulatory Player in the Management of Pain: A Review. Genes 2024, 15, 1003. [Google Scholar] [CrossRef]
- Ornello, R.; Zelli, V.; Compagnoni, C.; Caponnetto, V.; De Matteis, E.; Tiseo, C.; Tessitore, A.; Sacco, S. MicroRNA profiling in women with migraine: Effects of CGRP-targeting treatment. J. Headache Pain 2024, 25, 80. [Google Scholar] [CrossRef]
- Fu, C.; Chen, Y.; Xu, W.; Zhang, Y. Exploring the causal relationship between inflammatory cytokines and migraine: A bidirectional, two-sample Mendelian randomization study. Sci. Rep. 2023, 13, 19394. [Google Scholar] [CrossRef]
- Chen, J.; Liu, X.; Zhong, Y. Interleukin-17A: The Key Cytokine in Neurodegenerative Diseases. Front. Aging Neurosci. 2020, 12, 566922. [Google Scholar] [CrossRef] [PubMed]
- Ha, W.S.; Chu, M.K. Altered immunity in migraine: A comprehensive scoping review. J. Headache Pain 2024, 25, 95. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Liu, H.Z.; Liu, J.A.; Chen, Y.Y.; Sun, S.Z. Study on the correlation between IL-12p70, IL-17A and migraine in children. Front. Neurol. 2024, 15, 1347387. [Google Scholar] [CrossRef]
- Wijeratne, T.; Murphy, M.J.; Wijeratne, C.; Martelletti, P.; Karimi, L.; Apostolopoulos, V.; Sales, C.; Riddell, N.; Crewther, S.G. Serial systemic immune inflammation indices: Markers of acute migraine events or indicators of persistent inflammatory status? J. Headache Pain 2025, 26, 7. [Google Scholar] [CrossRef]
- Yang, M.; Rendas-Baum, R.; Varon, S.F.; Kosinski, M. Validation of the Headache Impact Test (HIT-6) across episodic and chronic migraine. Cephalalgia 2011, 31, 357–367. [Google Scholar] [CrossRef]
- Martin, M.; Blaisdell, B.; Kwong, J.W.; Bjorner, J.B. The Short-Form Headache Impact Test (HIT-6) was psychometrically equivalent in nine languages. J. Clin. Epidemiol. 2004, 57, 1271–1278. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Agarwal, V.; Bell, G.W.; Nam, J.W.; Bartel, D.P. Predicting effective microRNA target sites in mammalian mRNAs. eLife 2015, 4, e05005. [Google Scholar] [CrossRef] [PubMed]
- Tastsoglou, S.; Skoufos, G.; Miliotis, M.; Karagkouni, D.; Koutsoukos, I.; Karavangeli, A.; Kardaras, F.S.; Hatzigeorgiou, A.G. DIANA-miRPath v4.0: Expanding target-based miRNA functional analysis in cell-type and tissue contexts. Nucleic Acids Res. 2023, 51, W154–W159. [Google Scholar] [CrossRef]
- Asghar, M.S.; Hansen, A.E.; Amin, F.M.; van der Geest, R.J.; Koning, P.; Larsson, H.B.; Olesen, J.; Ashina, M. Evidence for a vascular factor in migraine. Ann. Neurol. 2011, 69, 635–645. [Google Scholar] [CrossRef]
- Chen, S.P.; Chang, Y.H.; Wang, Y.F.; Chen, H.Y.; Wang, S.J. Composite microRNA-genetic risk score model links to migraine and implicates its pathogenesis. Brain 2025, 148, 2178–2188. [Google Scholar] [CrossRef]
- Wen, Q.; Wang, Y.; Pan, Q.; Tian, R.; Zhang, D.; Qin, G.; Zhou, J.; Chen, L. MicroRNA-155-5p promotes neuroinflammation and central sensitization via inhibiting SIRT1 in a nitroglycerin-induced chronic migraine mouse model. J. Neuroinflamm. 2021, 18, 287. [Google Scholar] [CrossRef]
- Cavestro, C.; Ferrero, M.; Mandrino, S.; Di Tavi, M.; Rota, E. Novelty in Inflammation and Immunomodulation in Migraine. Curr. Pharm. Des. 2019, 25, 2919–2936. [Google Scholar] [CrossRef]
- Ren, K.; Dubner, R. Interactions between the immune and nervous systems in pain. Nat. Med. 2010, 16, 1267–1276. [Google Scholar] [CrossRef]
- Yamanaka, G.; Hayashi, K.; Morishita, N.; Takeshita, M.; Ishii, C.; Suzuki, S.; Ishimine, R.; Kasuga, A.; Nakazawa, H.; Takamatsu, T.; et al. Experimental and Clinical Investigation of Cytokines in Migraine: A Narrative Review. Int. J. Mol. Sci. 2023, 24, 8343. [Google Scholar] [CrossRef]
- Sarchielli, P.; Alberti, A.; Baldi, A.; Coppola, F.; Rossi, C.; Pierguidi, L.; Floridi, A.; Calabresi, P. Proinflammatory cytokines, adhesion molecules, and lymphocyte integrin expression in the internal jugular blood of migraine patients without aura assessed ictally. Headache 2006, 46, 200–207. [Google Scholar] [CrossRef]
- Togha, M.; Razeghi Jahromi, S.; Ghorbani, Z.; Ghaemi, A.; Rafiee, P. Evaluation of Inflammatory State in Migraineurs: A Case-control Study. Iran. J. Allergy Asthma Immunol. 2020, 19, 83–90. [Google Scholar] [CrossRef]
- Martami, F.; Razeghi Jahromi, S.; Togha, M.; Ghorbani, Z.; Seifishahpar, M.; Saidpour, A. The serum level of inflammatory markers in chronic and episodic migraine: A case-control study. Neurol. Sci. 2018, 39, 1741–1749. [Google Scholar] [CrossRef]
- Huangfu, L.; Li, R.; Huang, Y.; Wang, S. The IL-17 family in diseases: From bench to bedside. Signal Transduct. Target. Ther. 2023, 8, 402. [Google Scholar] [CrossRef]
- Chen, H.; Tang, X.; Li, J.; Hu, B.; Yang, W.; Zhan, M.; Ma, T.; Xu, S. IL-17 crosses the blood-brain barrier to trigger neuroinflammation: A novel mechanism in nitroglycerin-induced chronic migraine. J. Headache Pain 2022, 23, 1. [Google Scholar] [CrossRef]
- Singh Gautam, A.; Kumar Singh, R. Therapeutic potential of targeting IL-17 and its receptor signaling in neuroinflammation. Drug Discov. Today 2023, 28, 103517. [Google Scholar] [CrossRef]
- Djalali, M.; Abdolahi, M.; Hosseini, R.; Miraghajani, M.; Mohammadi, H.; Djalali, M. The effects of nano-curcumin supplementation on Th1/Th17 balance in migraine patients: A randomized controlled clinical trial. Complement. Ther. Clin. Pract. 2020, 41, 101256. [Google Scholar] [CrossRef] [PubMed]
- Ghorbani, Z.; Rafiee, P.; Haghighi, S.; Razeghi Jahromi, S.; Djalali, M.; Moradi-Tabriz, H.; Mahmoudi, M.; Togha, M. The effects of vitamin D3 supplementation on TGF-beta and IL-17 serum levels in migraineurs: Post hoc analysis of a randomized clinical trial. J. Pharm. Health Care Sci. 2021, 7, 9. [Google Scholar] [CrossRef]
- Zhu, Q.Y.; Liu, Q.; Chen, J.X.; Lan, K.; Ge, B.X. MicroRNA-101 targets MAPK phosphatase-1 to regulate the activation of MAPKs in macrophages. J. Immunol. 2010, 185, 7435–7442. [Google Scholar] [CrossRef]
- Chen, J.; Zhong, H.; Yu, H.; Sun, J.; Shen, B.; Xu, X.; Huang, S.; Huang, P.; Zhong, Y. Interleukin-17A modulates retinal inflammation by regulating microglial activation via the p38 MAPK pathway in experimental glaucoma neuropathy. FASEB J. 2023, 37, e22945. [Google Scholar] [CrossRef]
- Qiu, S.; Liu, B.; Mo, Y.; Wang, X.; Zhong, L.; Han, X.; Mi, F. MiR-101 promotes pain hypersensitivity in rats with chronic constriction injury via the MKP-1 mediated MAPK pathway. J. Cell. Mol. Med. 2020, 24, 8986–8997. [Google Scholar] [CrossRef]
- Chen, J.; Liao, M.Y.; Gao, X.L.; Zhong, Q.; Tang, T.T.; Yu, X.; Liao, Y.H.; Cheng, X. IL-17A induces pro-inflammatory cytokines production in macrophages via MAPKinases, NF-kappaB and AP-1. Cell. Physiol. Biochem. 2013, 32, 1265–1274. [Google Scholar] [CrossRef]
- Gao, S.; Liu, L.; Zhu, S.; Wang, D.; Wu, Q.; Ning, G.; Feng, S. MicroRNA-197 regulates chondrocyte proliferation, migration, and inflammation in pathogenesis of osteoarthritis by targeting EIF4G2. Biosci. Rep. 2020, 40, BSR20192095. [Google Scholar] [CrossRef]
- Xu, D.; Jiang, J.; He, G.; Zhou, H.; Ji, C. miR-143-3p represses leukemia cell proliferation by inhibiting KAT6A expression. Anti-Cancer Drugs 2022, 33, e662–e669. [Google Scholar] [CrossRef]
- Vacante, F.; Denby, L.; Sluimer, J.C.; Baker, A.H. The function of miR-143, miR-145 and the MiR-143 host gene in cardiovascular development and disease. Vasc. Pharmacol. 2019, 112, 24–30. [Google Scholar] [CrossRef]
- Cerda-Olmedo, G.; Mena-Duran, A.V.; Monsalve, V.; Oltra, E. Identification of a microRNA signature for the diagnosis of fibromyalgia. PLoS ONE 2015, 10, e0121903. [Google Scholar] [CrossRef]
- Wang, D.D.; Chen, X.; Yu, D.D.; Yang, S.J.; Shen, H.Y.; Sha, H.H.; Zhong, S.L.; Zhao, J.H.; Tang, J.H. miR-197: A novel biomarker for cancers. Gene 2016, 591, 313–319. [Google Scholar] [CrossRef]
- Liu, N.; Yang, C.; Gao, A.; Sun, M.; Lv, D. MiR-101: An Important Regulator of Gene Expression and Tumor Ecosystem. Cancers 2022, 14, 5861. [Google Scholar] [CrossRef]
- Polli, A.; Godderis, L.; Ghosh, M.; Ickmans, K.; Nijs, J. Epigenetic and miRNA Expression Changes in People with Pain: A Systematic Review. J. Pain 2020, 21, 763–780. [Google Scholar] [CrossRef]
- Liu, J.C.; Xue, D.F.; Wang, X.Q.; Ai, D.B.; Qin, P.J. MiR-101 relates to chronic peripheral neuropathic pain through targeting KPNB1 and regulating NF-kappaB signaling. Kaohsiung J. Med. Sci. 2019, 35, 139–145. [Google Scholar] [CrossRef]
- Pham, H.; Rodriguez, C.E.; Donald, G.W.; Hertzer, K.M.; Jung, X.S.; Chang, H.H.; Moro, A.; Reber, H.A.; Hines, O.J.; Eibl, G. miR-143 decreases COX-2 mRNA stability and expression in pancreatic cancer cells. Biochem. Biophys. Res. Commun. 2013, 439, 6–11. [Google Scholar] [CrossRef]
- Zhou, L.L.; Zhu, Y.M.; Qian, F.Y.; Yuan, C.C.; Yuan, D.P.; Zhou, X.P. MicroRNA-143-3p contributes to the regulation of pain responses in collagen-induced arthritis. Mol. Med. Rep. 2018, 18, 3219–3228. [Google Scholar] [CrossRef]
- Jhee, S.S.; Shiovitz, T.; Crawford, A.W.; Cutler, N.R. Pharmacokinetics and pharmacodynamics of the triptan antimigraine agents: A comparative review. Clin. Pharmacokinet. 2001, 40, 189–205. [Google Scholar] [CrossRef]
- Yan, Y.; Guo, T.M.; Zhu, C. Effects of nonsteroidal anti-inflammatory drugs on serum proinflammatory cytokines in the treatment of ankylosing spondylitis. Biochem. Cell Biol. 2018, 96, 450–456. [Google Scholar] [CrossRef]
- Raaijmakers, T.K.; van den Bijgaart, R.J.E.; Scheffer, G.J.; Ansems, M.; Adema, G.J. NSAIDs affect dendritic cell cytokine production. PLoS ONE 2022, 17, e0275906. [Google Scholar] [CrossRef]
- van Dongen, R.M.; Zielman, R.; Noga, M.; Dekkers, O.M.; Hankemeier, T.; van den Maagdenberg, A.M.; Terwindt, G.M.; Ferrari, M.D. Migraine biomarkers in cerebrospinal fluid: A systematic review and meta-analysis. Cephalalgia 2017, 37, 49–63. [Google Scholar] [CrossRef]
Episodic Migraine (n = 20) | Chronic Migraine (n = 9) | Control (n = 24) | |
---|---|---|---|
Age (y) | 35 ± 11 | 36 ± 11 | 45 ± 9 |
Gender (women), n (%) | 20 (100%) | 3 (33%) | 17 (71%) |
BMI (kg/m2) | 25.7 ± 5.1 | 27.2 ± 5.2 | 23.1 ± 1.4 |
Aura, n (%) | 11 (55%) | 6 (66%) | NA |
Disease duration (y, min-max) | 2–35 | 1–7 | NA |
Frequency of migraine events (per month) | 1–12 | 15–26 | NA |
HIT-6 score | 65 ± 7 | 68 ± 2 | NA |
NSAIDs | Ketorolac, paracetamol, ibuprofen | - |
Interaction Pathways of miRs | Target Genes | p-Value |
---|---|---|
MAPK signaling pathway | 66 | 0.000108 |
PI3K–Akt signaling pathway | 71 | 0.000294 |
Alzheimer’s disease | 74 | 0.00337 |
Vascular smooth muscle contraction | 28 | 0.00845 |
TGF-beta signaling pathway | 22 | 0.0101 |
Nervous system development | 134 | 1.07 × 10−8 |
MAPK family signaling cascades | 78 | 0.0000068 |
Nervous system development | 103 | 5.05 × 10−7 |
Vasculogenesis | 19 | 0.0000567 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosales-Gómez, R.C.; Martín-Márquez, B.T.; Tovar-Cuevas, A.J.; Cárdenas-Saenz, O.; Orozco-Puga, P.; Guzmán-Ornelas, M.O.; Peña-Dueñas, N.A.; Sandoval-García, F.; Ortiz-Ríos, D.; Chávez-Tostado, M.; et al. miR-197, miR-101, and miR-143 and Pro-Inflammatory Cytokines in Migraine. J. Clin. Med. 2025, 14, 6410. https://doi.org/10.3390/jcm14186410
Rosales-Gómez RC, Martín-Márquez BT, Tovar-Cuevas AJ, Cárdenas-Saenz O, Orozco-Puga P, Guzmán-Ornelas MO, Peña-Dueñas NA, Sandoval-García F, Ortiz-Ríos D, Chávez-Tostado M, et al. miR-197, miR-101, and miR-143 and Pro-Inflammatory Cytokines in Migraine. Journal of Clinical Medicine. 2025; 14(18):6410. https://doi.org/10.3390/jcm14186410
Chicago/Turabian StyleRosales-Gómez, Roberto Carlos, Beatriz Teresita Martín-Márquez, Alvaro Jovanny Tovar-Cuevas, Omar Cárdenas-Saenz, Patricia Orozco-Puga, Milton Omar Guzmán-Ornelas, Nathan Alejandro Peña-Dueñas, Flavio Sandoval-García, Daniela Ortiz-Ríos, Mariana Chávez-Tostado, and et al. 2025. "miR-197, miR-101, and miR-143 and Pro-Inflammatory Cytokines in Migraine" Journal of Clinical Medicine 14, no. 18: 6410. https://doi.org/10.3390/jcm14186410
APA StyleRosales-Gómez, R. C., Martín-Márquez, B. T., Tovar-Cuevas, A. J., Cárdenas-Saenz, O., Orozco-Puga, P., Guzmán-Ornelas, M. O., Peña-Dueñas, N. A., Sandoval-García, F., Ortiz-Ríos, D., Chávez-Tostado, M., Hernández-Corona, D. M., Méndez-del Villar, M., & Corona-Meraz, F.-I. (2025). miR-197, miR-101, and miR-143 and Pro-Inflammatory Cytokines in Migraine. Journal of Clinical Medicine, 14(18), 6410. https://doi.org/10.3390/jcm14186410