Assessment of Postural Stability in Semi-Open Prisoners: A Pilot Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Participants: Key Characteristics
Characteristics of the Addicted Inmates
2.2. Measurement Procedures
2.3. Linear and Nonlinear Measures
2.3.1. Sample Entropy (SampEn)
2.3.2. Fractal Dimension (FD) Estimation Using the Higuchi Algorithm
2.3.3. The Lyapunov Exponent (LyE)
2.4. Data Analysis
3. Results
3.1. Linear Parameters
3.2. Nonlinear Parameters
3.3. Accelerometer Characteristics
3.4. Correlation Between Linear and Nonlinear Parameters and IMU Data
4. Discussion
4.1. Impairments in Postural Stability Among Addicted Individuals
4.2. Impairments in Postural Stability Among Non-Addicted Individuals
4.3. Linear vs. Nonlinear Analysis: Complementary Perspectives
4.4. Kinematic Correlations Reveal Diverging Postural Strategies
4.5. Comparative Summary of Findings
4.6. Clinical and Rehabilitation Implications
4.7. Sociodemographic Considerations
4.8. Study Limitation
5. Conclusions
5.1. Main Findings
5.2. Clinical Considerations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boguszewski, D.; Stępień, M.; Adamczyk, J. The influence of core stability exercises programme on the functional limitations of the musculoskeletal system in girls practising volleyball. Phys. Act. Rev. 2023, 11, 24–30. [Google Scholar] [CrossRef]
- MacKinnon, C.D. Sensorimotor anatomy of gait, balance, and falls. Handb. Clin. Neurol. 2018, 159, 3–26. [Google Scholar] [CrossRef]
- Ahsan, M.; Ali, M.F.; Alzahrani, A. Impact of a pre-competition aerobic and anaerobic training on the maximal aerobic capacity, anaerobic power, dynamic balance, and visual-motor coordination of rugby and soccer players. Phys. Act. Rev. 2023, 11, 99–111. [Google Scholar] [CrossRef]
- Assländer, L.; Peterka, R.J. Sensory reweighting dynamics in human postural control. J. Neurophysiol. 2014, 111, 1852–1864. [Google Scholar] [CrossRef] [PubMed]
- Hadamus, A.; Gulatowska, M.; Ferenc, A.; Shahnazaryan, K.; Brzuszkiewicz-Kuźmicka, G.; Błażkiewicz, M. Influence of leg dominance on the symmetry in body balance measurements. Phys. Act. Rev. 2025, 13, 88–96. [Google Scholar] [CrossRef]
- Kimijanová, J.; Svoboda, Z.; Han, J. Editorial: Sensory control of posture and gait: Integration and mechanisms to maintain balance during different sensory conditions. Front. Hum. Neurosci. 2024, 18, 1378599. [Google Scholar] [CrossRef] [PubMed]
- Pšeničnik Sluga, S.; Kozinc, Z. Sensorimotor and proprioceptive exercise programs to improve balance in older adults: A systematic review with meta-analysis. Eur. J. Transl. Myol. 2024, 34, 12010. [Google Scholar] [CrossRef]
- Sullivan, E.V.; Rose, J.; Pfefferbaum, A. Physiological and focal cerebellar substrates of abnormal postural sway and tremor in alcoholic women. Biol. Psychiatry 2010, 67, 44–51. [Google Scholar] [CrossRef]
- Sullivan, E.V.; Rose, J.; Pfefferbaum, A. Effect of vision, touch and stance on cerebellar vermian-related sway and tremor: A quantitative physiological and MRI study. Cereb. Cortex 2006, 16, 1077–1086. [Google Scholar] [CrossRef]
- Zahr, N.M.; Pitel, A.L.; Chanraud, S.; Sullivan, E.V. Contributions of studies on alcohol use disorders to understanding cerebellar function. Neuropsychol. Rev. 2010, 20, 280–289. [Google Scholar] [CrossRef]
- Zandonai, T.; Peiró, A.M.; Fusina, F.; Lugoboni, F.; Zamboni, L. Benzodiazepines in sport, an underestimated problem: Recommendations for sports medicine physicians’ practice. Front. Psychiatry 2022, 13, 1066330. [Google Scholar] [CrossRef]
- Wakaizumi, K.; Vigotsky, A.D.; Jabakhanji, R.; Abdallah, M.; Barroso, J.; Schnitzer, T.J.; Apkarian, A.V.; Baliki, M.N. Psychosocial, Functional, and Emotional Correlates of Long-Term Opioid Use in Patients with Chronic Back Pain: A Cross-Sectional Case-Control Study. Pain Ther. 2021, 10, 691–709. [Google Scholar] [CrossRef]
- Seid, A.K.; Thylstrup, B.; Henriksen, S.H.; Hesse, M. Met and unmet prison-based treatment needs for people who are incarcerated with a history of substance use disorder: A nationwide cohort study. J. Subst. Use Addict. Treat. 2024, 159, 209264. [Google Scholar] [CrossRef]
- Crewe, B. Depth, weight, tightness: Revisiting the pains of imprisonment. Punishm. Soc. 2011, 13, 509–529. [Google Scholar] [CrossRef]
- Meek, R.; Lewis, G. The role of sport in promoting prisoner health. Int. J. Prison. Health 2012, 8, 117–130. [Google Scholar] [CrossRef]
- Favril, L.; Rich, J.D.; Hard, J.; Fazel, S. Mental and physical health morbidity among people in prisons: An umbrella review. Lancet Public Health 2024, 9, e250–e260. [Google Scholar] [CrossRef] [PubMed]
- Strong, J.D.; Reiter, K.; Gonzalez, G.; Tublitz, R.; Augustine, D.; Barragan, M.; Chesnut, K.; Dashtgard, P.; Pifer, N.; Blair, T.R. The body in isolation: The physical health impacts of incarceration in solitary confinement. PLoS ONE 2020, 15, e0238510. [Google Scholar] [CrossRef]
- Wilper, A.P.; Woolhandler, S.; Boyd, J.W.; Lasser, K.E.; McCormick, D.; Bor, D.H.; Himmelstein, D.U. The health and health care of US prisoners: Results of a nationwide survey. Am. J. Public Health 2009, 99, 666–672. [Google Scholar] [CrossRef] [PubMed]
- Fazel, S.; Ramesh, T.; Hawton, K. Suicide in prisons: An international study of prevalence and contributory factors. Lancet Psychiatry 2017, 4, 946–952. [Google Scholar] [CrossRef]
- Kerner, L.; Bálint, Z.K.; Suszter, L.; Barthalos, I.; Ihász, F.; Podstawski, R. Anthropometric and Physiological Characteristics of Young Elite Hungarian Motocross Riders in Motocross Competitions. Phys. Act. Rev. 2024, 12, 47–58. [Google Scholar] [CrossRef]
- Jandová, S.; Bartizalova, B. Compensatory exercises for young cyclists in the pubescents. Phys. Act. Rev. 2024, 12, 100–111. [Google Scholar] [CrossRef]
- Miller, N.A.; Najavits, L.M. Creating trauma-informed correctional care: A balance of goals and environment. Eur. J. Psychotraumatology 2012, 3, 17246. [Google Scholar] [CrossRef] [PubMed]
- Łapiński, P.; Truszczyńska-Baszak, A.; Drzał-Grabiec, J.; Tarnowski, A. Postural stability disorders-early signs of aging-in physically non-active prisoners. PeerJ 2022, 10, e12489. [Google Scholar] [CrossRef] [PubMed]
- Gandolfi, M.; Geroin, C.; Picelli, A.; Smania, N.; Bartolo, M. Advanced Technologies for the Rehabilitation of Gait and Balance Disorders; Biosystems & Biorobotics; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Kędziorek, J.; Błażkiewicz, M. Nonlinear Measures to Evaluate Upright Postural Stability: A Systematic Review. Entropy 2020, 22, 1357. [Google Scholar] [CrossRef]
- Ghofrani, M.; Olyaei, G.; Talebian, S.; Bagheri, H.; Malmir, K. Test-retest reliability of linear and nonlinear measures of postural stability during visual deprivation in healthy subjects. J. Phys. Ther. Sci. 2017, 29, 1766–1771. [Google Scholar] [CrossRef]
- Potvin-Desrochers, A.; Richer, N.; Lajoie, Y. Cognitive task promote automatization of postural control in young and older adults. Gait Posture 2017, 57, 40–45. [Google Scholar] [CrossRef]
- Omid Khayat, M.S. Complex Feature Analysis of Center of Pressure Signal for Age-Related Subject Classification. Ann. Mi. Health Sci. Res. 2014, 12, 2–7. [Google Scholar]
- Sullivan, E.V.; Rosenbloom, M.J.; Pfefferbaum, A. Pattern of motor and cognitive deficits in detoxified alcoholic men. Alcohol. Clin. Exp. Res. 2000, 24, 611–621. [Google Scholar] [CrossRef]
- Costa, M.; Peng, C.K.; Goldberger, A.L.; Hausdorff, J.M. Multiscale entropy analysis of human gait dynamics. Phys. A 2003, 330, 53–60. [Google Scholar] [CrossRef]
- Vaillancourt, D.E.; Newell, K.M. Changing complexity in human behavior and physiology through aging and disease. Neurobiol. Aging 2002, 23, 1–11. [Google Scholar] [CrossRef]
- Manor, B.; Costa, M.D.; Hu, K.; Newton, E.; Starobinets, O.; Kang, H.G.; Peng, C.K.; Novak, V.; Lipsitz, L.A. Physiological complexity and system adaptability: Evidence from postural control dynamics of older adults. J. Appl. Physiol. 2010, 109, 1786–1791. [Google Scholar] [CrossRef] [PubMed]
- Andreasen, S.C.; Wright, T.R.; Crenshaw, J.R.; Reisman, D.S.; Knarr, B.A. Relationships of Linear and Non-linear Measurements of Post-stroke Walking Activity and Their Relationship to Weather. Front. Sports Act. Living 2020, 2, 551542. [Google Scholar] [CrossRef]
- Hufford, M.R.; Witkiewitz, K.; Shields, A.L.; Kodya, S.; Caruso, J.C. Relapse as a nonlinear dynamic system: Application to patients with alcohol use disorders. J. Abnorm. Psychol. 2003, 112, 219. [Google Scholar] [CrossRef]
- Goldberger, A.L.; Amaral, L.A.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.K.; Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation 2000, 101, E215–E220. [Google Scholar] [CrossRef]
- Richman, J.S.; Moorman, J.R. Physiological time-series analysis using approximate entropy and sample entropy. American journal of physiology. Heart Circ. Physiol. 2000, 278, H2039–H2049. [Google Scholar] [CrossRef]
- Higuchi, T. Approach to an irregular time series on the basis of the fractal theory. Phys. D Nonlinear Phenom. 1988, 31, 277–283. [Google Scholar] [CrossRef]
- Doyle, T.L.A.; Dugan, E.L.; Humphries, B.; Newton, R.U. Discriminating between elderly and young using a fractal dimension analysis of centre of pressure. Int. J. Med. Sci. 2004, 1, 11–20. [Google Scholar] [CrossRef]
- Wolf, A.; Swift, J.B.; Swinney, H.L.; Vastano, J.A. Determining Lyapunov exponents from a time series. Physica 1985, 16D, 285–317. [Google Scholar] [CrossRef]
- Rosnow, R.L. Effect sizes for experimenting psychologists. Can. J. Exp. Psychol. Rev. Can. Psychol. Exp. 2003, 57, 221–237. [Google Scholar] [CrossRef] [PubMed]
- Mukaka, M.M. Statistics corner: A guide to appropriate use of correlation coefficient in medical research. Malawi Med. J. Med. Assoc. Malawi 2012, 24, 69–71. [Google Scholar]
- Volkow, N.D.; Koob, G.F.; McLellan, A.T. Neurobiologic Advances from the Brain Disease Model of Addiction. N. Engl. J. Med. 2016, 374, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Wang, N.; Luo, X.; Lv, H.; Liu, H.; Li, Y.; Fan, G. Cerebellar atrophy and its contribution to motor and cognitive performance in multiple system atrophy. NeuroImage Clin. 2019, 23, 101891. [Google Scholar] [CrossRef] [PubMed]
- Jebeile, H.; Kelly, A.S.; O’Malley, G.; Baur, L.A. Obesity in children and adolescents: Epidemiology, causes, assessment, and management. Lancet Diabetes Endocrinol. 2022, 10, 351–365. [Google Scholar] [CrossRef]
- Rogers, M.W.; Mille, M.L. Balance perturbations. Handb. Clin. Neurol. 2018, 159, 85–105. [Google Scholar] [CrossRef]
- Kutlu, M.G.; Gould, T.J. Effects of drugs of abuse on hippocampal plasticity and hippocampus-dependent learning and memory: Contributions to development and maintenance of addiction. Learn. Mem. 2016, 23, 515–533. [Google Scholar] [CrossRef]
- Oliveira, M.R.; Vieira, E.R.; Gil, A.W.O.; Teixeira, D.C.; Amorim, C.F.; da Silva, R.A. How many balance task trials are needed to accurately assess postural control measures in older women? J. Bodyw. Mov. Ther. 2019, 23, 594–597. [Google Scholar] [CrossRef]
- Zaback, M.; Reiter, E.R.; Adkin, A.L.; Carpenter, M.G. Initial experience of balance assessment introduces ‘first trial’ effects on emotional state and postural control. Gait Posture 2021, 88, 116–121. [Google Scholar] [CrossRef]
- Urban, R. Physical activity of prisoners of war in Oflag VII A Murnau during The Second World War. Phys. Act. Rev. 2024, 12, 38–52. [Google Scholar] [CrossRef]
- Prończuk, M.; Skalski, D.; Zak, M.; Motowidło, J.; Markowski, J.; Pilch, J.; Kostrzewa, M.; Tsos, A.; Maszczyk, A. The influence of EEG-biofeedback training and Beta waves in normoxia and normobaric hypoxia on the bench press in judo athletes. Phys. Act. Rev. 2024, 12, 65–77. [Google Scholar] [CrossRef]
- Amisola, L.; Acosta, R.; Arao-Arao, H.; Benitez, V.; Chan, R.; Co, A.; Cortez, N.; Galina, P.; Virata, M.C. Gait analysis for Parkinson’s disease using multiscale entropy. Neurodegener. Dis. Manag. 2025, 26, 1–14. [Google Scholar] [CrossRef]
- Nam Nguyen, Q.D.; Liu, A.B.; Lin, C.W. Development of a Neurodegenerative Disease Gait Classification Algorithm Using Multiscale Sample Entropy and Machine Learning Classifiers. Entropy 2020, 22, 1340. [Google Scholar] [CrossRef] [PubMed]
- Trabassi, D.; Castiglia, S.F.; Bini, F.; Marinozzi, F.; Ajoudani, A.; Lorenzini, M.; Chini, G.; Varrecchia, T.; Ranavolo, A.; De Icco, R.; et al. Optimizing Rare Disease Gait Classification through Data Balancing and Generative AI: Insights from Hereditary Cerebellar Ataxia. Sensors 2024, 24, 3613. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Romijnders, R.; Hansen, C.; Campen, J.V.; Maetzler, W.; Hortobágyi, T.; Lamoth, C.J.C. The detection of age groups by dynamic gait outcomes using machine learning approaches. Sci. Rep. 2020, 10, 4426. [Google Scholar] [CrossRef] [PubMed]
Group | Age [Years] | Body Mass [kg] | Body Height [cm] | Time Spent in Prison [Months] | Time Spent in Semi-Open Prison [Months] |
---|---|---|---|---|---|
Addicted (N = 19) | 21.6 (19.6; 24.3) | 86.7 (78.7; 94.4) | 177 (173; 183) | 10 (5.5; 19) | 7 (1; 10) |
Non-Addicted (N = 28) | 26.5 (21.1; 30) | 81.5 (74.3; 91) | 178.5 (176; 185) | 8 (3.25; 17.25) | 3.5 (1.5; 6.5) |
Male (N = 47) | 24.3 (20.1; 29.4) | 82.9 (74.5; 93.3) | 178 (175; 184) | 9 (3.5; 18) | 4 (1.5; 9) |
Addiction Type | Duration of Use | Therapy Status | Facility | Engagement Level | Notes |
---|---|---|---|---|---|
Alcohol | ~11 years | Currently in therapy | OT Wojkowice | ND | |
~14 years | Completed | OT Wojkowice | High | ||
~16 years | Completed | OT Wojkowice | High | ||
Several years | Completed | OT Wojkowice | High | ||
~10 years | Completed | OT Wojkowice | High | ||
~20 years (2005–2025) | Completed | OT Wojkowice | Moderate | ||
~4 years | Completed | OT Jasło | Moderate | ||
~10 years + relapse | Completed | ND | Moderate | Abstinent for 10 years before relapse | |
~29 years | Abstinent (6 years) | ND | ND | No therapy during incarceration | |
~11 years | Completed | ND | Minimal | Limited behavioral change observed | |
~3 years | Outpatient therapy (2020) | ND | ND | Participated in reintegration program | |
~10 years | Completed | OT Wojkowice | ND | ||
Psychoactive substances | ~5 years | Completed | Unspecified | Moderate | |
~2 years | Awaiting therapy (Nov 2025) | OT Wojkowice | Court-mandated | ||
~3 years (estimated) | Abstinent | ND | No therapy during incarceration | ||
α-PVP | ~2 years | Completed | OT Suwałki | High | |
Amphetamine | ~5 years | Completed | OT Przemyśl | High | Post-relapse treatment |
Cannabinoids | ~5 years | Abstinent (1.5 years) | Participated in preventive program | ||
Alcohol + Drug | Various | Completed | OT Wojkowice | High | Co-occurring addiction |
Trial | Variable | Non-Addicted Group Median (Q1; Q3) | Addicted Group Median (Q1; Q3) | Z | p-Value | Effect Size (R) |
---|---|---|---|---|---|---|
2eo | CoP_total [mm] | 257 (222.5; 297.5) | 240 (223; 317) | 0.13 | 0.89 | 0.02 |
CoP_ML [mm] | 130.5 (112.5; 148.5) | 108 (91; 147) | 1.36 | 0.19 | 0.2 | |
CoP_AP [mm] | 190 (162; 230.5) | 187 (155; 270) | −0.36 | 0.71 | −0.05 | |
ellipse [mm2] | 476 (345.5; 672.5) | 411 (233; 526) | 1.32 | 0.18 | 0.19 | |
2ec | CoP_total [mm] | 364 (305; 434) | 459 (364; 601) | −2.40 | 0.01 * | −0.35 |
CoP_ML [mm] | 138 (117; 168) | 161 (129; 202) | −1.58 | 0.11 | −0.23 | |
CoP_AP [mm] | 314.5 (248.5; 372) | 399 (301; 494) | −2.46 | 0.01 * | −0.36 | |
ellipse [mm2] | 538 (368; 894.5) | 814 (619; 975) | −2.11 | 0.03 * | −0.31 | |
eoR | CoP_total [mm] | 1159 (918.5; 1280) | 1479 (1061; 2374) | −2.08 | 0.03 * | −0.3 |
CoP_ML [mm] | 718 (586.5; 900) | 925 (622; 1474) | −2.12 | 0.03 * | −0.31 | |
CoP_AP [mm] | 714.5 (630.5; 816) | 828 (668; 1489) | −2.35 | 0.01 * | −0.34 | |
ellipse [mm2] | 4997.5 (3784.5; 7325.5) | 9239 (4734; 14,427) | −1.83 | 0.06 | −0.27 | |
eoL | CoP_total [mm] | 1009 (803; 1186.5) | 1141 (983; 1702) | −2.35 | 0.01 * | −0.34 |
CoP_ML [mm] | 605 (531; 748) | 774 (671; 1249) | −2.69 | 0.01 * | −0.39 | |
CoP_AP [mm] | 632.5 (519.5; 777.5) | 763 (670; 979) | −2.07 | 0.03 * | −0.3 | |
ellipse [mm2] | 4054.5 (2925.5; 5453) | 5312 (3291; 7242) | −1.33 | 0.18 | −0.19 | |
ecR | CoP_total [mm] | 3064.5 (2335; 3701) | 4579 (3376; 5604) | −2.61 | 0.01 * | −0.38 |
CoP_ML [mm] | 2090 (1631; 2385.5) | 3089 (2058; 3774) | −2.33 | 0.01 * | −0.34 | |
CoP_AP [mm] | 1829 (1376.5; 2388.5) | 2463 (2135; 3808) | −2.66 | 0.01 * | −0.39 | |
ellipse [mm2] | 28,023.5 (16,486.5; 48,033) | 46,599 (34,925; 138,897) | −2.56 | 0.01 * | −0.37 | |
ecL | CoP_total [mm] | 3085.5 (2549; 3805) | 4163 (3256; 5194) | −2.63 | 0.01 * | −0.38 |
CoP_ML [mm] | 2013.5 (1782; 2533.5) | 2516 (2180; 3621) | −2.31 | 0.02 * | −0.34 | |
CoP_AP [mm] | 1822.5 (1424.5; 2386) | 2374 (1949; 2996) | −2.54 | 0.01 * | −0.37 | |
ellipse [mm2] | 31,509.5 (22,541.5; 57,632) | 52,054 (28,035; 84,206) | −1.70 | 0.08 | −0.25 |
Trial | Variable | Non-Addicted Group Median (Q1; Q3) | Addicted Group Median (Q1; Q3) | Z | p-Value | Effect Size (r) |
---|---|---|---|---|---|---|
2eo | SampEn_ML [-] | 0.08 (0.06; 0.11) | 0.09 (0.06; 0.11) | −0.07 | 0.93 | −0.01 |
SampEn_AP [-] | 0.05 (0.04; 0.06) | 0.07 (0.05; 0.1) | −1.7 | 0.07 | −0.25 | |
FD_ML [-] | 1.32 (1.24; 1.39) | 1.29 (1.27; 1.36) | 0.53 | 0.59 | 0.08 | |
FD_AP [-] | 1.24 (1.2; 1.27) | 1.29 (1.23; 1.33) | −1.87 | 0.06 | −0.27 | |
LyE_ML [-] | 1.04 (0.89; 1.2) | 1.05 (0.81; 1.16) | 0.68 | 0.49 | 0.1 | |
LyE_AP [-] | 1.34 (1.29; 1.46) | 1.37 (1.28; 1.52) | −0.42 | 0.67 | −0.06 | |
2ec | SampEn_ML [-] | 0.12 (0.08; 0.15) | 0.12 (0.07; 0.16) | −0.05 | 0.95 | −0.01 |
SampEn_AP [-] | 0.08 (0.06; 0.09) | 0.1 (0.08; 0.12) | −2.04 | 0.04 * | −0.3 | |
FD_ML [-] | 1.35 (1.27; 1.41) | 1.34 (1.27; 1.36) | 0.70 | 0.48 | 0.1 | |
FD_AP [-] | 1.27 (1.24; 1.31) | 1.32 (1.25; 1.39) | −1.94 | 0.05 | −0.28 | |
LyE_ML [-] | 0.97 (0.88; 1.11) | 1.16 (0.89; 1.25) | −1.48 | 0.13 | −0.22 | |
LyE_AP [-] | 1.52 (1.41; 1.64) | 1.64 (1.5; 1.74) | −2.41 | 0.01 * | −0.35 | |
eoR | SampEn_ML [-] | 0.16 (0.11; 0.22) | 0.14 (0.12; 0.24) | −0.24 | 0.80 | −0.04 |
SampEn_AP [-] | 0.12 (0.09; 0.15) | 0.13 (0.11; 0.18) | −0.94 | 0.34 | −0.14 | |
FD_ML [-] | 1.44 (1.37; 1.49) | 1.44 (1.39; 1.49) | −0.20 | 0.83 | −0.03 | |
FD_AP [-] | 1.41 (1.37; 1.47) | 1.45 (1.39; 1.48) | −0.98 | 0.32 | −0.14 | |
LyE_ML [-] | 1.91 (1.74; 1.95) | 1.9 (1.78; 2.04) | −0.85 | 0.39 | −0.12 | |
LyE_AP [-] | 1.88 (1.83; 1.97) | 1.92 (1.79; 2.03) | −0.44 | 0.65 | −0.06 | |
eoL | SampEn_ML [-] | 0.15 (0.12; 0.18) | 0.19 (0.13; 0.24) | −1.72 | 0.08 | −0.25 |
SampEn_AP [-] | 0.11 (0.09; 0.14) | 0.12 (0.1; 0.16) | −0.83 | 0.40 | −0.12 | |
FD_ML [-] | 1.46 (1.38; 1.49) | 1.47 (1.4; 1.52) | −0.83 | 0.40 | −0.12 | |
FD_AP [-] | 1.42 (1.37; 1.46) | 1.43 (1.4; 1.47) | −1.33 | 0.18 | −0.19 | |
LyE_ML [-] | 1.87 (1.79; 2.01) | 1.88 (1.8; 1.99) | 0.05 | 0.95 | 0.01 | |
LyE_AP [-] | 1.86 (1.73; 1.96) | 1.94 (1.74; 2.03) | −0.79 | 0.42 | −0.12 | |
ecR | SampEn_ML [-] | 0.12 (0.09; 0.16) | 0.13 (0.07; 0.15) | 0.89 | 0.36 | 0.13 |
SampEn_AP [-] | 0.14 (0.12; 0.17) | 0.15 (0.12; 0.18) | 0.11 | 0.90 | 0.02 | |
FD_ML [-] | 1.38 (1.35; 1.43) | 1.36 (1.33; 1.4) | 1.48 | 0.13 | 0.22 | |
FD_AP [-] | 1.41 (1.35; 1.45) | 1.4 (1.36; 1.45) | −0.68 | 0.49 | −0.1 | |
LyE_ML [-] | 2.11 (2.04; 2.2) | 2.08 (2.06; 2.2) | 0.40 | 0.68 | 0.06 | |
LyE_AP [-] | 2.12 (2.03; 2.21) | 2.14 (2.07; 2.24) | −1.26 | 0.20 | −0.18 | |
ecL | SampEn_ML [-] | 0.13 (0.1; 0.16) | 0.12 (0.08; 0.16) | 0.44 | 0.65 | 0.06 |
SampEn_AP [-] | 0.14 (0.12; 0.16) | 0.15 (0.12; 0.17) | −0.22 | 0.81 | −0.03 | |
FD_ML [-] | 1.39 (1.37; 1.42) | 1.37 (1.32; 1.41) | 1.48 | 0.13 | 0.22 | |
FD_AP [-] | 1.42 (1.38; 1.48) | 1.4 (1.35; 1.43) | 1.68 | 0.09 | 0.25 | |
LyE_ML [-] | 2.16 (2.09; 2.23) | 2.15 (2.07; 2.23) | 0.59 | 0.55 | 0.09 | |
LyE_AP [-] | 2.17 (2.07; 2.2) | 2.15 (2.06; 2.22) | 0.20 | 0.83 | 0.03 |
Trial | Variable | Non-Addicted Group Median (Q1; Q3) | Addicted Group Median (Q1; Q3) | Z | p-Value | Effect Size (r) |
---|---|---|---|---|---|---|
2eo | X [deg/s2] | 9.7 (9.64; 9.76) | 9.65 (7.57; 9.71) | 2.00 | 0.04 * | 0.29 |
Y [deg/s2] | −0.02 (−0.32; 0.26) | −0.38 (−0.59; −0.03) | 2.42 | 0.01 * | 0.35 | |
Z [deg/s2] | −0.24 (−0.87; 0.77) | 1.2 (0.24; 1.71) | −2.49 | 0.01 * | −0.36 | |
gyro X [deg/s] | 0 (0; 0) | 0 (0; 0) | 0.81 | 0.41 | 0.12 | |
gyro Y [deg/s] | 0 (0; 0) | 0 (−0.01; 0) | 0.29 | 0.76 | 0.04 | |
gyro Z [deg/s] | 0 (0; 0) | 0 (0; 0) | −0.40 | 0.68 | −0.06 | |
Roll [deg] | 2.6 (−84.1; 57.18) | −34.2 (−65.35; −6.3) | 1.76 | 0.07 | 0.26 | |
Pitch [deg] | −82.28 (−85.05; −79.13) | −79.3 (−82.85; −64.37) | −2.30 | 0.02 * | −0.34 | |
Yaw [deg] | −37.73 (−98.93; 30) | 15.12 (−40.4; 69.7) | −1.70 | 0.08 | −0.25 | |
2ec | X [deg/s2] | 9.69 (9.61; 9.78) | 9.66 (9.62; 9.73) | 1.10 | 0.26 | 0.16 |
Y [deg/s2] | −0.01 (−0.58; 0.67) | −0.22 (−0.48; 0.2) | 0.85 | 0.39 | 0.12 | |
Z [deg/s2] | 0.23 (−1.49; 1.26) | 0.3 (−0.15; 1.61) | −1.09 | 0.27 | −0.16 | |
gyro X [deg/s] | 0 (0; 0) | 0 (0; 0) | 0.10 | 0.91 | 0.01 | |
gyro Y [deg/s] | 0 (−0.06; 0) | −0.03 (−0.03; 0) | −0.33 | 0.74 | −0.05 | |
gyro Z [deg/s] | 0 (0; 0) | 0 (0; 0) | −0.29 | 0.77 | −0.04 | |
Roll [deg] | −0.3 (−128.6; 49.8) | −34.68 (−78; 3.8) | 0.48 | 0.62 | 0.07 | |
Pitch [deg] | −82.6 (−84.6; −77.5) | −80.48 (−83.04; −78.6) | −1.06 | 0.28 | −0.15 | |
Yaw [deg] | −35.7 (−127.3; 119.4) | 21.61 (−54.6; 58.6) | −0.43 | 0.66 | −0.06 | |
eoR | X [deg/s2] | 9.71 (9.63; 9.77) | 9.66 (9.61; 9.73) | 1.33 | 0.18 | 0.19 |
Y [deg/s2] | 0.01 (−0.4; 0.61) | 0.08 (−0.15; 0.4) | −0.30 | 0.76 | −0.04 | |
Z [deg/s2] | 0.23 (−1.44; 1.06) | 0.36 (−0.43; 1.67) | −1.28 | 0.20 | −0.19 | |
gyro X [deg/s] | 0 (0; 0) | 0.03 (0; 0.09) | −1.95 | 0.04 * | −0.28 | |
gyro Y [deg/s] | 0 (−0.06; 0.06) | −0.03 (−0.08; 0.06) | 0.25 | 0.80 | 0.04 | |
gyro Z [deg/s] | 0 (−0.06; 0.06) | 0 (0; 0.03) | −0.54 | 0.58 | −0.08 | |
Roll [deg] | 13 (−56.4; 154.9) | 25.11 (−5.45; 50.95) | −0.09 | 0.92 | −0.01 | |
Pitch [deg] | −81.2 (−85.8; −79.1) | −80.14 (−82.8; −78.15) | −1.24 | 0.21 | −0.18 | |
Yaw [deg] | 17.2 (−122.85; 62.7) | −23.05 (−59.3; 40.05) | −0.06 | 0.94 | −0.01 | |
eoL | X [deg/s2] | 9.69 (9.62; 9.74) | 9.66 (9.57; 9.71) | 0.80 | 0.42 | 0.12 |
Y [deg/s2] | 0.47 (−1.18; 1.07) | −0.52 (−0.96; −0.03) | 1.36 | 0.17 | 0.2 | |
Z [deg/s2] | 0.04 (−1.25; 1.02) | 0.4 (−0.19; 1.44) | −1.17 | 0.23 | −0.17 | |
gyro X [deg/s] | 0 (0; 0) | 0 (0; 0.06) | 0.29 | 0.77 | 0.04 | |
gyro Y [deg/s] | 0 (−0.12; 0.12) | 0 (−0.06; 0.06) | 0.29 | 0.77 | 0.04 | |
gyro Z [deg/s] | 0 (0; 0) | 0 (0; 0.03) | −0.33 | 0.74 | −0.05 | |
Roll [deg] | 25.3 (−128.4; 49.4) | −35.51 (−56.8; −5.48) | 0.54 | 0.58 | 0.08 | |
Pitch [deg] | −80.8 (−82.8; −80) | −80.26 (−81.6; −77.1) | −0.64 | 0.51 | −0.09 | |
Yaw [deg] | −43.5 (−109.5; 89.9) | −1.9 (−51.8; 58.68) | −0.30 | 0.76 | −0.04 | |
ecR | X [deg/s2] | 9.65 (9.55; 9.76) | 9.65 (9.59; 9.71) | 0.51 | 0.60 | 0.07 |
Y [deg/s2] | −0.02 (−0.42; 0.38) | −0.08 (−0.77; 0.45) | 0.39 | 0.69 | 0.06 | |
Z [deg/s2] | 0.32 (−1.13; 1.41) | 0.33 (−0.37; 1.25) | −0.77 | 0.43 | −0.11 | |
gyro X [deg/s] | −0.06 (−0.06; 0.06) | 0 (−0.05; 0.12) | −1.19 | 0.23 | −0.17 | |
gyro Y [deg/s] | 0 (−0.06; 0.12) | 0 (−0.06; 0.09) | 0.30 | 0.75 | 0.04 | |
gyro Z [deg/s] | 0 (−0.12; 0) | 0 (−0.09; 0.03) | −0.77 | 0.43 | −0.11 | |
Roll [deg] | −1.8 (−82.9; 80.2) | −18.77 (−51.45; 34.2) | 0.22 | 0.82 | 0.03 | |
Pitch [deg] | −79.6 (−83.3; −77.1) | −80.5 (−82.15; −77.03) | −0.35 | 0.72 | −0.05 | |
Yaw [deg] | −57.5 (−114.8; 34.05) | −47.83 (−56.7; −2.29) | −0.57 | 0.56 | −0.08 | |
ecL | X [deg/s2] | 9.69 (9.55; 9.71) | 9.68 (9.56; 9.71) | 0.51 | 0.60 | 0.07 |
Y [deg/s2] | −0.03 (−1.41; 0.35) | −0.64 (−0.96; −0.33) | 0.54 | 0.58 | 0.08 | |
Z [deg/s2] | −1.12 (−1.88; −0.06) | 0.02 (−0.97; 0.41) | −1.99 | 0.04 * | −0.29 | |
gyro X [deg/s] | 0 (−0.12; 0.06) | −0.05 (−0.12; 0.03) | 0.71 | 0.47 | 0.1 | |
gyro Y [deg/s] | 0.06 (0; 0.18) | 0.03 (−0.06; 0.15) | 0.52 | 0.59 | 0.08 | |
gyro Z [deg/s] | 0 (−0.06; 0.06) | 0 (−0.06; 0.03) | −0.11 | 0.90 | −0.02 | |
Roll [deg] | −74.5 (−140.2; 152.5) | −33.63 (−67.88; 12.6) | −0.33 | 0.74 | −0.05 | |
Pitch [deg] | −79.6 (−81.3; −75.7) | −80.4 (−82.4; −76.85) | 0.31 | 0.75 | 0.05 | |
Yaw [deg] | 15.5 (−70.7; 54.4) | 3.48 (−41.1; 68.95) | −0.05 | 0.95 | −0.01 |
Feature | Non-Addicted Group | Addicted Group |
---|---|---|
Linear parameters | Generally stable, minimal sway in simple tasks. | Increased sway (CoP_total, CoP_AP, ellipse) in challenging tasks (eyes closed and single-leg). |
Nonlinear measures | Predictable and selective sway complexity (high SampEn and FD) associated with specific motion dynamics. | Higher SampEn and LyE in the AP direction during eyes-closed bipedal stance, indicating more irregular and unstable control. |
IMU kinematics | More focused and consistent correlation patterns; stable rotational modulation of sway divergence. | Greater vertical and mediolateral movement (pitch angle and angular velocity) even in simple tasks, suggesting altered postural alignment and motor noise. |
Interpretation | Stable sensorimotor integration, and efficient and structured postural regulation. | Impaired sensory integration, reduced neuromuscular control, and altered postural dynamics, especially when visual input is absent or postural demands are high. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Błażkiewicz, M.; Wąsik, J.; Kędziorek, J.; Bandura, W.; Kacprzak, J.; Radecki, K.; Kowalewska, K.; Mosler, D. Assessment of Postural Stability in Semi-Open Prisoners: A Pilot Study. J. Clin. Med. 2025, 14, 6399. https://doi.org/10.3390/jcm14186399
Błażkiewicz M, Wąsik J, Kędziorek J, Bandura W, Kacprzak J, Radecki K, Kowalewska K, Mosler D. Assessment of Postural Stability in Semi-Open Prisoners: A Pilot Study. Journal of Clinical Medicine. 2025; 14(18):6399. https://doi.org/10.3390/jcm14186399
Chicago/Turabian StyleBłażkiewicz, Michalina, Jacek Wąsik, Justyna Kędziorek, Wiktoria Bandura, Jakub Kacprzak, Kamil Radecki, Karolina Kowalewska, and Dariusz Mosler. 2025. "Assessment of Postural Stability in Semi-Open Prisoners: A Pilot Study" Journal of Clinical Medicine 14, no. 18: 6399. https://doi.org/10.3390/jcm14186399
APA StyleBłażkiewicz, M., Wąsik, J., Kędziorek, J., Bandura, W., Kacprzak, J., Radecki, K., Kowalewska, K., & Mosler, D. (2025). Assessment of Postural Stability in Semi-Open Prisoners: A Pilot Study. Journal of Clinical Medicine, 14(18), 6399. https://doi.org/10.3390/jcm14186399