A Competing-Risks Approach to the Progression, Regression and Persistence of High-Grade Cervical Dysplasia in Patients over 30 Years Old—A Prospective Study
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence. |
ANOVA | Analysis of Variance. |
ASC-H | Atypical Squamous Cells That Cannot Exclude High-Grade Squamous Intraepithelial Lesion. |
ASC-US | Atypical Squamous Cells of Undetermined Significance. |
ASCCP | American Society for Colposcopy and Cervical Pathology. |
CDC | Centers for Disease Control and Prevention. |
CI | Confidence Interval. |
CIN | Cervical Intraepithelial Neoplasia. |
CIN2+ | Cervical Intraepithelial Neoplasia grade 2 or worse. |
CIN3+ | Cervical Intraepithelial Neoplasia grade 3 or carcinoma in situ. |
CIS | Carcinoma in Situ. |
COC | Combined Oral Contraceptives. |
EU/EEA | European Union / European Economic Area. |
HGSIL | High-Grade Squamous Intraepithelial Lesion. |
HPV | Human Papillomavirus. |
hrHPV | High-Risk Human Papillomavirus. |
HSIL | High-Grade Squamous Intraepithelial Lesion. |
HTN | Hypertension. |
KPNC | Kaiser Permanente Northern California. |
LGSIL | Low-Grade Squamous Intraepithelial Lesion. |
LLETZ | Large Loop Excision of the Transformation Zone. |
LSIL | Low-Grade Squamous Intraepithelial Lesion. |
NBCCEDP | National Breast and Cervical Cancer Early Detection Program. |
NILM | Negative for Intraepithelial Lesion or Malignancy. |
PB | Punch Biopsy. |
p16/Ki67 | (Dual immunohistochemical) p16 and Ki-67 proteins. |
SCC | Squamous Cell Carcinoma. |
SD | Standard Deviation. |
SHR | Subdistribution Hazard Ratio. |
STI | Sexually Transmitted Infection. |
WHO | World Health Organization. |
References
- Dobrovolskaya, D.; Asaturova, A.; Badlaeva, A.; Tregubova, A.; Mogirevskaya, O.; Dzharullaeva, Z.; Davydova, Y.; Palicelli, A.; Bayramova, G.; Sukhikh, G. Role of L1 HPV Protein Expression in the Cytological Diagnosis of Precancerous Cervical Lesions. J. Clin. Med. 2025, 14, 3376. [Google Scholar] [CrossRef]
- Mello, V.; Sundstrom, R.K. Cervical Intraepithelial Neoplasia. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Ehlers, U.; Hoischen, L.; Stalp, J.L.; Hachenberg, J.; Ramachandran, D.; Brüning, B.; Jentschke, M.; Hillemanns, P.; Denecke, A. The treatment of cervical intraepithelial neoplasia grade 2 (HSIL): Between active surveillance and surgery-a 10-year monocentric data analysis. Arch. Gynecol. Obstet. 2025. [Google Scholar] [CrossRef]
- Wang, S.; Ma, Z.; Dong, J.; Zhang, N.; Zhang, X.; Li, H.B.; Chen, L. Development of a nomogram for predicting positive margins after cold knife conization in patients with high-grade squamous intraepithelial lesions. Medicine 2025, 104, e42759. [Google Scholar] [CrossRef]
- Loopik, D.L.; Bentley, H.A.; Eijgenraam, M.N.; IntHout, J.; Bekkers, R.L.M.; Bentley, J.R. The Natural History of Cervical Intraepithelial Neoplasia Grades 1, 2, and 3: A Systematic Review and Meta-analysis. J Low. Genit. Tract Dis. 2021, 25, 221–231. [Google Scholar] [CrossRef]
- Sellors, J.; Sankaranarayanan, R. An introduction to cervical intraepithelial neoplasia (CIN). In Colposcopy and Treatment of Cervical Intraepithelial Neoplasia: A Beginner’s Manual; International Agency for Research on Cancer: Lyon, France, 2003. [Google Scholar]
- Richart, R.M. A modified terminology for cervical intraepithelial neoplasia. Obstet. Gynecol. 1990, 75, 131–133. [Google Scholar] [PubMed]
- European Centre for Disease Prevention and Control. Guidance on HPV Vaccination in EU COUNTRIES: Focus on Boys, People Living with HIV and 9-Valent HPV Vaccine Introduction; European Centre for Disease Prevention and Control: Stockholm, Sweden, 2020. [Google Scholar]
- Organisation for Economic Co-operation and Development. EU Country Cancer Profile: Romania 2025; OECD Publishing: Paris, France, 2025. [Google Scholar]
- Scripcariu, I.-S.; Gisca, T.; Botezatu, A.; Socolov, D.; Vasilache, I.-A.; Diaconu, C.; Fudulu, A. Evaluating the Predictive Performance of miR-124-2 and FAM19A4 for Cervical Lesions in a Single Center from Romania: A Prospective Study. J. Clin. Medicine. 2025, 14, 3452. [Google Scholar] [CrossRef]
- Gisca, T.; Munteanu, I.V.; Vasilache, I.A.; Melinte-Popescu, A.S.; Volovat, S.; Scripcarium, I.S.; Balan, R.A.; Pavaleanu, I.; Socolov, R.; Carauleanu, A.; et al. A Prospective Study on the Progression, Recurrence, and Regression of Cervical Lesions: Assessing Various Screening Approaches. J. Clin. Med. 2024, 13, 1368. [Google Scholar] [CrossRef]
- Song, H.; Lee, H.Y.; Oh, S.A.; Seong, J.; Hur, S.Y.; Choi, Y.J. Application of Machine Learning Algorithms for Risk Stratification and Efficacy Evaluation in Cervical Cancer Screening among the ASCUS/LSIL Population: Evidence from the Korean HPV Cohort Study. Cancer Res. Treat. 2025, 57, 547–557. [Google Scholar] [CrossRef] [PubMed]
- Gong, L.; Tang, Y.; Xie, H.; Zhang, L.; Sun, Y. Predicting cervical intraepithelial neoplasia and determining the follow-up period in high-risk human papillomavirus patients. Front. Oncol. 2023, 13, 1289030. [Google Scholar] [CrossRef]
- Fine, J.P.; Gray, R.J. A proportional hazards model for the subdistribution of a competing risk. J. Am. Stat. association. 1999, 94, 496–509. [Google Scholar] [CrossRef]
- Perkins, R.B.; Guido, R.S.; Castle, P.E.; Chelmow, D.; Einstein, M.H.; Garcia, F.; Huh, W.K.; Kim, J.J.; Moscicki, A.B.; Nayar, R.; et al. 2019 ASCCP Risk-Based Management Consensus Guidelines for Abnormal Cervical Cancer Screening Tests and Cancer Precursors. J. Low. Genit. Tract. Dis. 2020, 24, 102–131. [Google Scholar] [CrossRef]
- Gui, T.; Chen, Z.; Chen, F. Validation of the indication for colposcopy proposed by the 2019 ASCCP risk-based management consensus guidelines: A single-center study in China. PLoS ONE 2021, 16, e0253493. [Google Scholar] [CrossRef] [PubMed]
- Gage, J.C.; Hunt, W.C.M.; Schiffman, M.; Katki, H.A.; Cheung, L.A.; Myers, O.; Cuzick, J.; Wentzensen, N.; Kinney, W.; Castle, P.E.; et al. Similar Risk Patterns After Cervical Screening in Two Large, U.S. Populations: Implications for Clinical Guidelines. Obstet. Gynecol. 2016, 128, 1248–1257. [Google Scholar] [CrossRef]
- Cheung, L.C.; Egemen, D.; Chen, X.; Katki, H.A.; Demarco, M.; Wiser, A.L.; Perkins, R.B.; Guido, R.S.; Wentzensen, N.; Schiffman, M. 2019 ASCCP Risk-Based Management Consensus Guidelines: Methods for Risk Estimation, Recommended Management, and Validation. J. Low. Genit. Tract. Dis. 2020, 24, 90–101. [Google Scholar] [CrossRef]
- Zhao, J.; Li, W.; Wang, Z.; Liu, W.; Sun, S.; Wu, L.; Du, S.; Li, G.; Pan, Z.; Chen, D.; et al. Risk assessment in a Chinese cohort of 96 318 females undergoing opportunistic cervical cancer screening. Oncologist 2025, 30, oyaf197. [Google Scholar] [CrossRef]
- Sabale, U.; Reuschenbach, M.; Takyar, J.; Dhawan, A.; Hall, A.; Vittal, D.; Saggu, G.; Ghelardi, A.; del Pino, M.; Nowakowski, A.; et al. Epidemiological, economic and humanistic burden of cervical intraepithelial neoplasia in Europe: A systematic literature review. Eur. J. Obstet. Gynecol. Reprod. Biol. X. 2025, 25, 100360. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.; Vignat, J.; Lorenzoni, V.; Eslahi, M.; Ginsburg, O.; Lauby-Secretan, B.; Arbyn, M.; Basu, P.; Bray, F.; Vaccarella, S. Global estimates of incidence and mortality of cervical cancer in 2020: A baseline analysis of the WHO Global Cervical Cancer Elimination Initiative. Lancet Glob. Health 2023, 11, e197–e206. [Google Scholar] [CrossRef] [PubMed]
- Sustova, P.; Engesæter, B.; Øvestad, I.T.; Gudlaugsson, E.G.; Ghiasvand, R.; Skaland, I.; Baak, J.P.A.; Tropé, A.; Janssen, E.A.M.; Munk, A.C. The Predictive Impact of HPV Genotypes, Tumor Suppressors and Local Immune Response in the Regression of Cervical Intraepithelial Neoplasia 2-3: A Prospective Population-Based Cohort Study. Int. J. Mol. Sci. 2025, 26, 5205. [Google Scholar] [CrossRef]
- Karimi, P.; Hosseini, S.M.R.; Hiagh, Z.S.M.; Aboulhassanzadeh, S.; Asghari, N.; Aghazadeh, H. Exploring the Intricacies of Cervical Intraepithelial Neoplasia and Its Connection with HPV: A Narrative Review. Iran. J. Public Health 2024, 53, 2671–2682. [Google Scholar] [CrossRef]
- Schellekens, H.C.J.; Schmidt, L.M.S.; Morré, S.A.; van Esch, E.M.G.; Steenwijk, P.J. Vaginal Microbiota and Local Immunity in HPV-Induced High-Grade Cervical Dysplasia: A Narrative Review. Int. J. Mol. Sci. 2025, 26, 3954. [Google Scholar] [CrossRef]
- Rokita, W.; Kedzia, W.; Pruski, D.; Friebe, Z.; Nowak-Markwitz, E.; Spaczynski, R.; Karowicz-Bilińska, A.; Spaczyński, M. Comparison of the effectiveness of cytodiagnostics, molecular identification of HPV HR and CINtecPLUS test to identify LG SIL and HG SIL. Ginekol. Pol. 2012, 83, 894–898. [Google Scholar] [PubMed]
- Xue, P.; Seery, S.; Li, Q.; Jiang, Y.; Qiao, Y. Risk-Based Colposcopy for Cervical Precancer Detection: A Cross-Sectional Multicenter Study in China. Diagnostics 2022, 12, 2585. [Google Scholar] [CrossRef] [PubMed]
Variable | Censored (N = 124) | Progression (N = 46) | Regression (N = 25) | Persistence (N = 28) | Total (N = 223) | p-Value |
---|---|---|---|---|---|---|
Age, mean (SD) | 44.9 (10.7) | 44.1 (10.6) | 45.1 (10.5) | 41.3 (9.0) | 44.3 (10.4) | 0.402 |
Parity, mean (SD) | 2.02 (1.88) | 2.04 (1.98) | 1.92 (1.53) | 2.57 (2.27) | 2.09 (1.91) | 0.545 |
HTN (N, %) | 6 (4.8%) | 4 (8.7%) | 2 (8.0%) | 0 (0.0%) | 12 (5.4%) | 0.393 |
Diabetes (N, %) | 5 (4.0%) | 2 (4.4%) | 1 (4.0%) | 2 (7.1%) | 10 (4.5%) | 0.911 |
Smoker (N, %) | 22 (17.7%) | 15 (32.6%) | 11 (44.0%) | 9 (32.1%) | 57 (25.6%) | 0.016 * |
COC use (N, %) | 7 (5.6%) | 10 (21.7%) | 2 (8.0%) | 3 (10.7%) | 22 (9.9%) | 0.019 * |
Immunosuppression (N, %) | 3 (2.4%) | 7 (15.2%) | 2 (8.0%) | 3 (10.7%) | 15 (6.7%) | 0.021 * |
History of STI (N, %) | 4 (3.2%) | 6 (13.0%) | 2 (8.0%) | 1 (3.6%) | 13 (5.8%) | 0.095 |
Variable | Progression (N = 46) | Regression (N = 25) | Persistence (N = 28) | Censored (N = 124) | p-Value |
---|---|---|---|---|---|
HPV high risk (n/%) | 30 (65.2%) | 13 (52.0%) | 20 (71.4%) | 84 (37.7%) | <0.001 |
HPV low risk (n/%) | 8 (17.4%) | 12 (48.0%) | 7 (25.0%) | 33 (14.8%) | <0.001 |
Multiple HPV strains (n/%) | 15 (32.6%) | 3 (12.0%) | 8 (28.6%) | 39 (17.5%) | 0.002 |
Test | Category | Censored (N = 124) | Progression (N = 46) | Regression (N = 25) | Persistence (N = 28) | p-Value |
---|---|---|---|---|---|---|
Histology | CIN1 | 2 (1.61) | 0 (0.0) | 8 (32) | 1 (3.5) | <0.001 |
CIN2 | 6 (4.8) | 2 (4.3) | 9 (36) | 15 (53.5) | ||
CIN2+ | 10 (8.06) | 19 (41.3) | 11 (44) | 19 (67.8) | ||
CIN3 | 3 (2.4) | 16 (34.78) | 2 (8) | 4 (14.2) | ||
CIN3+ | 4 (3.2) | 17 (36.9) | 2 (8) | 4 (14.2) | ||
Cytology | NILM | 103 (83) | 13 (28.2) | 2 (8.0) | 9 (32.1) | <0.001 |
ASC-US | 8 (6.4) | 5 (10.8) | 4 (16.0) | 7 (25.0) | ||
LSIL | 7 (5.6) | 7 (15.2) | 10 (40.0) | 6 (21.4) | ||
HSIL | 3 (2.4) | 17 (36.9) | 7 (28.0) | 5 (17.9) | ||
ASC-H | 2 (1.6) | 3 (6.5) | 2 (8.0) | 1 (3.6) | ||
SCC | 1 (0.8) | 1 (2.1) | 0 (0.0) | 0 (0.0) |
Status Category | Risk Mean (SD) | p-Value | Post-Treatment Risk Mean (SD) | p-Value |
---|---|---|---|---|
Progression | 18.14 (16.86) | <0.001 | 28.30 (25.67) | <0.001 |
Regression | 15.07 (14.96) | 14.37 (19.80) | ||
Persistence | 9.90 (10.92) | 10.29 (18.07) |
Comparison | Immediate Pre-Treatment Risk Difference | p-Value | Immediate Post-Treatment Risk Difference | p-Value |
---|---|---|---|---|
Progression vs. Regression | −3.08 | 1.000 | −13.93 | 0.004 |
Progression vs. Persistence | −8.25 | 0.042 | −18.01 | <0.001 |
Regression vs. Persistence | −5.17 | 0.832 | −4.08 | 1.000 |
Failure Type | Predictor | SHR (95% CI) | p-Value | Predictor | SHR (95% CI) | p-Value |
---|---|---|---|---|---|---|
Progression | Immediate pre-treatment risk | 1.015 (0.993–1.038) | 0.181 | Immediate pre-treatment risk > 60% | 4.13 (1.15–14.87) | 0.030 |
Immediate post-treatment risk | 1.022 (1.008–1.036) | 0.002 | Immediate post-treatment risk > 60% | 2.55 (1.06–6.11) | 0.036 | |
Regression | Immediate pre-treatment risk | 1.022 (1.002–1.043) | 0.031 | Immediate pre-treatment risk > 60% | 1.55 (0.30–7.95) | 0.601 |
Immediate post-treatment risk | 0.994 (0.974–1.013) | 0.520 | Immediate post-treatment risk > 60% | 1.49 (0.32–6.93) | 0.609 | |
Persistence | Immediate pre-treatment risk | 1.005 (0.982–1.029) | 0.673 | Immediate pre-treatment risk > 60% | 3.90 (1.34–6.14) | <0.001 |
Immediate post-treatment risk | 0.991 (0.969–1.013) | 0.427 | Immediate post-treatment risk > 60% | 1.24 (0.33–4.70) | 0.751 |
Outcome | Predictor | Histology Subgroup | SHR (95% CI) | p-Value |
---|---|---|---|---|
Progression | Immediate pre-treatment risk > 60% | CIN2+ | 2.05 (0.51–8.24) | 0.312 |
Immediate pre-treatment risk > 60% | CIN3+ | 7.97 (4.09–19.03) | <0.001 | |
Immediate post-treatment risk > 60% | CIN2+ | 3.47 (1.23–9.83) | 0.019 | |
Immediate post-treatment risk > 60% | CIN3+ | 2.08 (1.52–2.85) | <0.001 | |
Regression | Immediate pre-treatment risk > 60% | CIN2+ | 1.22 (0.24–6.25) | 0.813 |
Immediate pre-treatment risk > 60% | CIN3+ | 1.01 (0.97–7.56) | 0.774 | |
Immediate post-treatment risk > 60% | CIN2+ | 0.81 (0.11–6.03) | 0.841 | |
Immediate post-treatment risk > 60% | CIN3+ | 0.73 (0.16–18.20) | 0.649 | |
Persistence | Immediate pre-treatment risk > 60% | CIN2+ | 5.19 (1.55– 17.4) | <0.001 |
Immediate pre-treatment risk > 60% | CIN3+ | 5.23 (1.99– 19.16) | <0.001 | |
Immediate post-treatment risk > 60% | CIN2+ | 5.15 (1.95– 13.31) | <0.001 | |
Immediate post-treatment risk > 60% | CIN3+ | 5.19 (1.97– 13.87) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Munteanu, I.-V.; Socolov, D.; Socolov, R.; Adam, A.-M.; Adam, G.; Vasilache, I.-A.; Vicoveanu, P.; Harabor, V.; Harabor, A.; Calin, A.-M. A Competing-Risks Approach to the Progression, Regression and Persistence of High-Grade Cervical Dysplasia in Patients over 30 Years Old—A Prospective Study. J. Clin. Med. 2025, 14, 6303. https://doi.org/10.3390/jcm14176303
Munteanu I-V, Socolov D, Socolov R, Adam A-M, Adam G, Vasilache I-A, Vicoveanu P, Harabor V, Harabor A, Calin A-M. A Competing-Risks Approach to the Progression, Regression and Persistence of High-Grade Cervical Dysplasia in Patients over 30 Years Old—A Prospective Study. Journal of Clinical Medicine. 2025; 14(17):6303. https://doi.org/10.3390/jcm14176303
Chicago/Turabian StyleMunteanu, Iulian-Valentin, Demetra Socolov, Razvan Socolov, Ana-Maria Adam, Gigi Adam, Ingrid-Andrada Vasilache, Petronela Vicoveanu, Valeriu Harabor, Anamaria Harabor, and Alina-Mihaela Calin. 2025. "A Competing-Risks Approach to the Progression, Regression and Persistence of High-Grade Cervical Dysplasia in Patients over 30 Years Old—A Prospective Study" Journal of Clinical Medicine 14, no. 17: 6303. https://doi.org/10.3390/jcm14176303
APA StyleMunteanu, I.-V., Socolov, D., Socolov, R., Adam, A.-M., Adam, G., Vasilache, I.-A., Vicoveanu, P., Harabor, V., Harabor, A., & Calin, A.-M. (2025). A Competing-Risks Approach to the Progression, Regression and Persistence of High-Grade Cervical Dysplasia in Patients over 30 Years Old—A Prospective Study. Journal of Clinical Medicine, 14(17), 6303. https://doi.org/10.3390/jcm14176303