Perampanel, Brivaracetam, Cenobamate, Stiripentol, and Ganaxolone in Lennox-Gastaut Syndrome: A Comprehensive Narrative Review
Abstract
1. Introduction
2. Methods
3. Perampanel
3.1. Efficacy in LGS
3.2. Safety and Tolerability
3.3. Current Clinical Role
4. Brivaracetam
4.1. Efficacy in LGS
4.2. Safety and Tolerability
4.3. Current Clinical Role
5. Cenobamate
5.1. Efficacy in LGS
5.2. Safety and Tolerability
5.3. Current Clinical Role
6. Ganaxolone
6.1. Efficacy in LGS
6.2. Safety and Tolerability
6.3. Current Clinical Role
7. Stiripentol
7.1. Efficacy in LGS
7.2. Safety and Tolerability
7.3. Current Clinical Role
8. Conclusions
Supplementary Materials
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AMPA | α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid |
BID | Twice daily |
CNS | Central nervous system |
CYP | Cytochrome P450 enzyme |
DRESS | Drug Reaction with Eosinophilia and Systemic Symptoms |
GABA | Gamma-aminobutyric acid |
IV | Intravenous |
PK | Pharmacokinetics |
PGTC | Primary Generalized Tonic–Clonic |
QHS | Every night at bedtime |
SV2A | Synaptic vesicle protein 2A |
T½ | Elimination half-life |
References
- Camfield, P.R. Definition and natural history of Lennox-Gastaut syndrome. Epilepsia 2011, 52, 3–9. [Google Scholar] [CrossRef]
- Specchio, N.; Wirrell, E.C.; Scheffer, I.E.; Nabbout, R.; Riney, K.; Samia, P.; Guerreiro, M.; Gwer, S.; Zuberi, S.M.; Wilmshurst, J.M. International League Against Epilepsy classification and definition of epilepsy syndromes with onset in childhood: Position paper by the ILAE Task Force on Nosology and Definitions. Epilepsia 2022, 63, 1398–1442. [Google Scholar] [CrossRef]
- Strzelczyk, A.; Schubert-Bast, S.; Simon, A.; Wyatt, G.; Holland, R.; Rosenow, F. Epidemiology, healthcare resource use, and mortality in patients with probable Lennox-Gastaut syndrome: A population-based study on German health insurance data. Epilepsy Behav. 2021, 115, 107647. [Google Scholar] [CrossRef] [PubMed]
- Strzelczyk, A.; Zuberi, S.M.; Striano, P.; Rosenow, F.; Schubert-Bast, S. The burden of illness in Lennox–Gastaut syndrome: A systematic literature review. Orphanet J. Rare Dis. 2023, 18, 42. [Google Scholar] [CrossRef] [PubMed]
- Chin, R.F.; Pickrell, W.O.; Guelfucci, F.; Martin, M.; Holland, R. Prevalence, healthcare resource utilization and mortality of Lennox-Gastaut syndrome: Retrospective linkage cohort study. Seizure 2021, 91, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, J.; Benítez, A.; Roth, J.; Andrews, J.S.; Shah, D.; Butcher, E.; Jones, A.; Cross, J.H. A systematic literature review on the global epidemiology of Dravet syndrome and Lennox–Gastaut syndrome: Prevalence, incidence, diagnosis, and mortality. Epilepsia 2024, 65, 1240–1263. [Google Scholar] [CrossRef]
- Samanta, D.; Aungaroon, G.; Fine, A.L.; Karakas, C.; Chiu, M.Y.; Jain, P.; Seinfeld, S.; Knowles, J.K.; Mohamed, I.S.; Stafstrom, C.E.; et al. Neuromodulation Strategies in Lennox-Gastaut Syndrome: Practical Clinical Guidance from the Pediatric Epilepsy Research Consortium. Epilepsy Res. 2025, 210, 107499. [Google Scholar] [CrossRef]
- Samanta, D.; Bhalla, S.; Bhatia, S.; Fine, A.L.; Haridas, B.; Karakas, C.; Keator, C.G.; Koh, H.Y.; Perry, M.S.; Stafstrom, C.E.; et al. Antiseizure medications for Lennox-Gastaut Syndrome: Comprehensive review and proposed consensus treatment algorithm. Epilepsy Behav. 2025, 164, 110261. [Google Scholar] [CrossRef]
- Samanta, D.; Bhatia, S.; Hunter, S.E.; Rao, C.K.; Xiong, K.; Karakas, C.; Reeders, P.C.; Erdemir, G.; Sattar, S.; Axeen, E.; et al. Current and Emerging Precision Therapies for Developmental and Epileptic Encephalopathies. Pediatr. Neurol. 2025, 168, 67–81. [Google Scholar] [CrossRef]
- Samanta, D.; Haneef, Z.; Albert, G.W.; Naik, S.; Reeders, P.C.; Jain, P.; Abel, T.J.; Al-Ramadhani, R.; Ibrahim, G.M.; Warren, A.E.L. Neuromodulation strategies in developmental and epileptic encephalopathies. Epilepsy Behav. 2024, 160, 110067. [Google Scholar] [CrossRef]
- Samanta, D.; Jain, P.; Cunningham, J.; Arya, R. Comparative efficacy of neuromodulation therapies in Lennox-Gastaut syndrome: A systematic review and meta-analysis of vagus nerve stimulation, deep brain stimulation, and responsive neurostimulation. Epilepsia 2025. [Google Scholar] [CrossRef]
- Samanta, D. Cognitive and behavioral impact of antiseizure medications, neuromodulation, ketogenic diet, and surgery in Lennox-Gastaut syndrome: A comprehensive review. Epilepsy Behav. 2025, 164, 110272. [Google Scholar] [CrossRef] [PubMed]
- Samanta, D. Efficacy and Safety of Vagus Nerve Stimulation in Lennox–Gastaut Syndrome: A Scoping Review. Children 2024, 11, 905. [Google Scholar] [CrossRef]
- Samanta, D. Precision Therapeutics in Lennox-Gastaut Syndrome: Targeting Molecular Pathophysiology in a Developmental and Epileptic Encephalopathy. Children 2025, 12, 481. [Google Scholar] [CrossRef] [PubMed]
- Samanta, D.; Nath, M. Current and emerging pharmacotherapies in Lennox-Gastaut syndrome. Expert. Opin. Pharmacother. 2025, 26, 1133–1147. [Google Scholar] [CrossRef]
- Knowles, J.K.; Warren, A.E.L.; Mohamed, I.S.; Stafstrom, C.E.; Koh, H.Y.; Samanta, D.; Shellhaas, R.A.; Gupta, G.; Dixon-Salazar, T.; Tran, L.; et al. Clinical trials for Lennox-Gastaut syndrome: Challenges and priorities. Ann. Clin. Transl. Neurol. 2024, 11, 2818–2835. [Google Scholar] [CrossRef]
- Abou-Khalil, B.W. Update on Antiseizure Medications 2025. Contin. Lifelong Learn. Neurol. 2025, 31, 125–164. [Google Scholar] [CrossRef] [PubMed]
- Samanta, D. Fenfluramine: A Review of Pharmacology, Clinical Efficacy, and Safety in Epilepsy. Children 2022, 9, 1159. [Google Scholar] [CrossRef]
- Samanta, D. Cannabidiol: A Review of Clinical Efficacy and Safety in Epilepsy. Pediatr. Neurol. 2019, 96, 24–29. [Google Scholar] [CrossRef]
- Vossler, D.G.; Porter, B.E.; Kira, R.; Lee, J.; Aeby, A.; Patten, A.; Cheng, J.Y.; Ngo, L.Y. Efficacy and safety of perampanel in patients with seizures associated with Lennox-Gastaut syndrome: A randomized trial. Epilepsia 2025, 66, 379–393. [Google Scholar] [CrossRef]
- Auvin, S.; Dozieres, B.; Ilea, A.; Delanoë, C. Use of perampanel in children and adolescents with Lennox-Gastaut Syndrome. Epilepsy Behav. 2017, 74, 59–63. [Google Scholar] [CrossRef] [PubMed]
- Biró, A.; Stephani, U.; Tarallo, T.; Bast, T.; Schlachter, K.; Fleger, M.; Kurlemann, G.; Fiedler, B.; Leiz, S.; Nikanorova, M.; et al. Effectiveness and tolerability of perampanel in children and adolescents with refractory epilepsies: First experiences. Neuropediatrics 2015, 46, 110–116. [Google Scholar] [CrossRef]
- Crespel, A.; Tang, N.P.L.; Macorig, G.; Gelisse, P.; Genton, P. Open-label, uncontrolled retrospective study of perampanel in adults with Lennox-Gastaut syndrome. Seizure 2020, 75, 66–69. [Google Scholar] [CrossRef]
- Matricardi, S.; Cesaroni, E.; Bonanni, P.; Foschi, N.; D Aniello, A.; Di Gennaro, G.; Striano, P.; Cappanera, S.; Siliquini, S.; Freri, E.; et al. Long-term effectiveness of add-on perampanel in patients with Lennox-Gastaut syndrome: A multicenter retrospective study. Epilepsia 2023, 64, e98–e104. [Google Scholar] [CrossRef]
- Zeng, Q.; Xia, X.; Jiang, L.; Chen, J.; Liu, Y.; Hu, Y. Efficacy and safety of adjunctive perampanel treatment in pediatric patients with epilepsy aged 4–12 years: A real-world study. J. Neurol. 2024, 271, 4566–4576. [Google Scholar] [CrossRef]
- Alonso-Singer, P.; Prior, M.; Oliva-Navarro, J.; Massot-Tarrus, A.; Giraldez, B.G.; Bermejo, P.; DeToledo-Heras, M.; Aledo-Serrano, A.; Martinez-Cayuelas, E.; Tirado-Requero, P.; et al. Perampanel as adjuvant treatment in epileptic encephalopathies: A multicenter study in routine clinical practice. EPILEPSY Behav. 2022, 134, 108836. [Google Scholar] [CrossRef]
- Yamagishi, H.; Osaka, H.; Muramatsu, K.; Kojima, K.; Monden, Y.; Mitani, T.; Asakura, Y.; Wakae, K.; Nagai, K.; Tajima, T. Perampanel reduces seizure frequency in patients with developmental and epileptic encephalopathy for a long term. Sci. Rep. 2024, 14, 30051. [Google Scholar] [CrossRef] [PubMed]
- Potschka, H.; Trinka, E. Perampanel: Does it have broad-spectrum potential? Epilepsia 2019, 60, 22–36. [Google Scholar] [CrossRef]
- Franco, V.; Crema, F.; Iudice, A.; Zaccara, G.; Grillo, E. Novel treatment options for epilepsy: Focus on perampanel. Pharmacol. Res. 2013, 70, 35–40. [Google Scholar] [CrossRef]
- Samanta, D.; Naik, S. Seizure-type-specific treatment responses in Lennox-Gastaut Syndrome: A comprehensive review of pharmacological, neuromodulatory, dietary, and surgical therapies. Epilepsy Behav. 2025, 170, 110472. [Google Scholar] [CrossRef] [PubMed]
- Villanueva, V.; D’Souza, W.; Goji, H.; Kim, D.W.; Liguori, C.; McMurray, R.; Najm, I.; Santamarina, E.; Steinhoff, B.J.; Vlasov, P. PERMIT study: A global pooled analysis study of the effectiveness and tolerability of perampanel in routine clinical practice. J. Neurol. 2022, 269, 1957–1977. [Google Scholar] [CrossRef] [PubMed]
- Samanta, D. Management of Lennox-Gastaut syndrome beyond childhood: A comprehensive review. Epilepsy Behav. 2021, 114, 107612. [Google Scholar] [CrossRef]
- Hussein, Z.; Majid, O.; Boyd, P.; Aluri, J.; Ngo, L.Y.; Reyderman, L. Intravenous perampanel as an interchangeable alternative to oral perampanel: A randomized, crossover, phase I pharmacokinetic and safety study. Clin. Pharmacol. Drug Dev. 2022, 11, 878–888. [Google Scholar] [CrossRef]
- Ettinger, A.B.; LoPresti, A.; Yang, H.; Williams, B.; Zhou, S.; Fain, R.; Laurenza, A. Psychiatric and behavioral adverse events in randomized clinical studies of the noncompetitive AMPA receptor antagonist perampanel. Epilepsia 2015, 56, 1252–1263. [Google Scholar] [CrossRef]
- Zaccara, G.; Perucca, E. Interactions between antiepileptic drugs, and between antiepileptic drugs and other drugs. Epileptic Disord. 2014, 16, 409–431. [Google Scholar] [CrossRef]
- Klein, P.; Diaz, A.; Gasalla, T.; Whitesides, J. A review of the pharmacology and clinical efficacy of brivaracetam. Clin. Pharmacol. Adv. Appl. 2018, 10, 1–22. [Google Scholar] [CrossRef]
- Špilárová, Z.; Sládková, S.; Bělohlávková, A.; Česká, K.; Hanáková, P.; Horák, O.; Jahodová, A.; Knedlíková, L.; Kolář, S.; Ebel, M.; et al. Brivaracetam use in children with epilepsy: A retrospective multicenter study. Seizure 2024, 121, 243–252. [Google Scholar] [CrossRef]
- Visa-Reñé, N.; Raspall-Chaure, M.; Paredes-Carmona, F.; Coromina, J.S.; Macaya-Ruiz, A. Clinical experience with brivaracetam in a series of 46 children. EPILEPSY Behav. 2020, 107, 107067. [Google Scholar] [CrossRef] [PubMed]
- Ferretjans, F.F.; Insuga, V.S.; Cuesta, B.B.; Extremera, V.C.; Rodriguez, A.D.; Legido, M.J.; Alguacil, E.G.; García, M.F.; Solana, L.G.; Cantero, T.M. Efficacy of brivaracetam in children with epilepsy. Epilepsy Res. 2021, 177, 106757. [Google Scholar] [CrossRef] [PubMed]
- Nissenkorn, A.; Tzadok, M.; Bar-Yosef, O.; Ben-Zeev, B. Treatment with brivaracetam in children—The experience of a pediatric epilepsy center. Epilepsy Behav. 2019, 101, 106541. [Google Scholar] [CrossRef]
- Willems, L.M.; Bertsche, A.; Bösebeck, F.; Hornemann, F.; Immisch, I.; Klein, K.M.; Knake, S.; Kunz, R.; Kurlemann, G.; Langenbruch, L.; et al. Efficacy, Retention, and Tolerability of Brivaracetam in Patients with Epileptic Encephalopathies: A Multicenter Cohort Study from Germany. Front. Neurol. 2018, 9, 569. [Google Scholar] [CrossRef]
- Caraballo, R.H.; Reyes, G.; Chacón, S.; Fortini, P.S. Brivaracetam as add-on therapy in children with developmental epileptic encephalopathies: A study of 42 patients. Epilepsy Behav. 2024, 150, 109561. [Google Scholar] [CrossRef] [PubMed]
- Andres, E.; Kerling, F.; Hamer, H.; Winterholler, M. Behavioural changes in patients with intellectual disability treated with brivaracetam. Acta Neurol. Scand. 2018, 138, 195–202. [Google Scholar] [CrossRef]
- Abraira, L.; Salas-Puig, J.; Quintana, M.; Seijo-Raposo, I.; Santamarina, E.; Fonseca, E.; Toledo, M. Overnight switch from levetiracetam to brivaracetam. Safety and tolerability. Epilepsy Behav. Rep. 2021, 16, 100504. [Google Scholar] [CrossRef]
- Brigo, F.; Lattanzi, S.; Nardone, R.; Trinka, E. Intravenous brivaracetam in the treatment of status epilepticus: A systematic review. CNS Drugs 2019, 33, 771–781. [Google Scholar] [CrossRef]
- Moseley, B.D.; Chanteux, H.; Nicolas, J.-M.; Laloyaux, C.; Gidal, B.; Stockis, A. A review of the drug− drug interactions of the antiepileptic drug brivaracetam. Epilepsy Res. 2020, 163, 106327. [Google Scholar] [CrossRef]
- Chung, S.S.; French, J.A.; Kowalski, J.; Krauss, G.L.; Lee, S.K.; Maciejowski, M.; Rosenfeld, W.E.; Sperling, M.R.; Mizne, S.; Kamin, M. Randomized phase 2 study of adjunctive cenobamate in patients with uncontrolled focal seizures. Neurology 2020, 94, e2311–e2322. [Google Scholar] [CrossRef]
- Krauss, G.L.; Klein, P.; Brandt, C.; Lee, S.K.; Milanov, I.; Milovanovic, M.; Steinhoff, B.J.; Kamin, M. Safety and efficacy of adjunctive cenobamate (YKP3089) in patients with uncontrolled focal seizures: A multicentre, double-blind, randomised, placebo-controlled, dose-response trial. Lancet Neurol. 2020, 19, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Sperling, M.R.; Klein, P.; Aboumatar, S.; Gelfand, M.; Halford, J.J.; Krauss, G.L.; Rosenfeld, W.E.; Vossler, D.G.; Wechsler, R.; Borchert, L. Cenobamate (YKP3089) as adjunctive treatment for uncontrolled focal seizures in a large, phase 3, multicenter, open-label safety study. Epilepsia 2020, 61, 1099–1108. [Google Scholar] [CrossRef] [PubMed]
- French, J.A.; Chung, S.S.; Krauss, G.L.; Lee, S.K.; Maciejowski, M.; Rosenfeld, W.E.; Sperling, M.R.; Kamin, M. Long-term safety of adjunctive cenobamate in patients with uncontrolled focal seizures: Open-label extension of a randomized clinical study. Epilepsia 2021, 62, 2142–2150. [Google Scholar] [CrossRef]
- Keough, K.; Romick, A. Cenobamate for Adjunctive Treatment in Adult and Pediatric Patients with Refractory Lennox-Gastaut Syndrome: A Retrospective Chart Review. Neurol. Ther. 2025, 14, 1685–1694. [Google Scholar] [CrossRef]
- Aguilar-Amat Prior, M.J.; Alonso Singer, P.; Oliva Navarro, J.; Olivie Garcia, L.; Machio Castello, M.; Beltran-Corbellini, Á.; Sánchez-Larsen, Á.; Parejo-Carbonell, B.; de Toledo-Heras, M.; Vieira Campos, A.; et al. Effectiveness and safety of cenobamate in Lennox-Gastaut syndrome: A multicenter real-world study in Spain. Seizure 2025, 131, 84–89. [Google Scholar] [CrossRef]
- Buhleier, E.; Schubert-Bast, S.; Knake, S.; von Podewils, F.; Hamer, H.M.; Melzer, N.; Kurlemann, G.; Klotz, K.A.; Willems, L.M.; Rosenow, F.; et al. A multicenter cohort study on the efficacy, retention, and tolerability of cenobamate in patients with developmental and epileptic encephalopathies. Epilepsia 2025, 66, 1519–1528. [Google Scholar] [CrossRef]
- Friedo, A.-L.; Greshake, B.; Makridis, K.L.; Straub, H.-B. Cenobamate significantly improves seizure control in intellectually disabled patients with drug-resistant epilepsy and allows drug load reduction. Front. Neurol. 2023, 14, 1209487. [Google Scholar] [CrossRef]
- Falcicchio, G.; Lattanzi, S.; Negri, F.; de Tommaso, M.; La Neve, A.; Specchio, N. Treatment with Cenobamate in Adult Patients with Lennox–Gastaut Syndrome: A Case Series. J. Clin. Med. 2023, 12, 129. [Google Scholar] [CrossRef]
- Agashe, S.; Worrell, G.; Britton, J.; Noe, K.; Ritaccio, A.; Wirrell, E.C.; Nickels, K.C.; Cascino, G.D.; Burkholder, D. Cenobamate in Generalized Epilepsy and Combined Generalized and Focal Epilepsy. Neurol. Clin. Pr. 2023, 13, e200133. [Google Scholar] [CrossRef]
- Keough, K.; Stern, S.; Wade, C.; Weingarten, M. Effectiveness of Cenobamate in Pediatric Patients with Lennox-Gastaut Syndrome: A Retrospective Claims-based Analysis. Neurology 2024, 102, 3535. [Google Scholar] [CrossRef]
- Gjerulfsen, C.E.; Oudin, M.J.; Furia, F.; Gverdtsiteli, S.; Landmark, C.J.; Trivisano, M.; Balestrini, S.; Guerrini, R.; Aledo-Serrano, A.; Morcos, R. Cenobamate as add-on treatment for SCN8A developmental and epileptic encephalopathy. Epilepsia 2025, 66, 1119–1128. [Google Scholar] [CrossRef] [PubMed]
- Roberti, R.; De Caro, C.; Iannone, L.F.; Zaccara, G.; Lattanzi, S.; Russo, E. Pharmacology of cenobamate: Mechanism of action, pharmacokinetics, drug–drug interactions and tolerability. CNS Drugs 2021, 35, 609–618. [Google Scholar] [CrossRef] [PubMed]
- Nohria, V.; Giller, E. Ganaxolone. Neurotherapeutics 2007, 4, 102–105. [Google Scholar] [CrossRef]
- Knight, E.M.P.; Amin, S.; Bahi-Buisson, N.; Benke, T.A.; Cross, J.H.; Demarest, S.T.; Olson, H.E.; Specchio, N.; Fleming, T.R.; Aimetti, A.A. Safety and efficacy of ganaxolone in patients with CDKL5 deficiency disorder: Results from the double-blind phase of a randomised, placebo-controlled, phase 3 trial. Lancet Neurol. 2022, 21, 417–427. [Google Scholar] [CrossRef]
- Eric Marsh, J.F.; Aimetti, A.; Hulihan, J.; Dlugos, D. Effect of Ganaxolone in Patients with Features of Lennox-gastaut Syndrome: Post-hoc Analysis from a Clinical Trial in CDKL5 Deficiency Disorder. In Proceedings of the AES Annual Meeting, Los Angeles, CA, USA, 8 December2024. [Google Scholar]
- Chez, M. Ganaxolone Therapy Improves Interictal EEG and Seizure Control in Lennox Gastaut Syndrome in Patients with PCDH19 and CDLK5. Ann. Neurol. 2016, 80, S325. [Google Scholar]
- Olson, H.E.; Amin, S.; Bahi-Buisson, N.; Devinsky, O.; Marsh, E.D.; Pestana-Knight, E.; Rajaraman, R.R.; Aimetti, A.A.; Rybak, E.; Kong, F.; et al. Long-term treatment with ganaxolone for seizures associated with cyclin-dependent kinase-like 5 deficiency disorder: Two-year open-label extension follow-up. Epilepsia 2024, 65, 37–45. [Google Scholar] [CrossRef]
- Chiron, C. Stiripentol. Neurotherapeutics 2007, 4, 123–125. [Google Scholar] [CrossRef]
- Soto-Insuga, V.; González-Alguacil, E.; Ballarà-Petitbò, M.; Lamagrande-Casanova, N.; Duat-Rodríguez, A.; Benítez-Provedo, C.; Cardenal-Muñoz, E.; García-Peñas, J.J. Efficacy of Stiripentol Beyond Dravet Syndrome: A Retrospective Medical Record Review of Patients with Drug-Resistant Epilepsies. Neurol. Ther. 2025, 14, 1129–1150. [Google Scholar] [CrossRef]
- Gil-Nagel, A.; Aledo-Serrano, A.; Beltrán-Corbellini, Á.; Martínez-Vicente, L.; Jimenez-Huete, A.; Toledano-Delgado, R.; Gacía-Morales, I.; Valls-Carbó, A. Efficacy and tolerability of add-on stiripentol in real-world clinical practice: An observational study in Dravet syndrome and non-Dravet developmental and epileptic encephalopathies. Epilepsia Open 2024, 9, 164–175. [Google Scholar] [CrossRef] [PubMed]
- Chancharme, L.; Serraz, B.; Bar, C. Review of stiripentol use in Lennox-Gastaut syndrome. In Proceedings of the EPILEPSIA, Los Angeles, CA, USA, 6–10 December 2024; p. 220. [Google Scholar]
- Specchio, N.; Auvin, S.; Strzelczyk, A.; Brigo, F.; Villanueva, V.; Trinka, E. Efficacy and safety of stiripentol in the prevention and cessation of status epilepticus: A systematic review. Epilepsia Open 2024, 9, 2017–2036. [Google Scholar] [CrossRef] [PubMed]
- Peigné, S.; Chhun, S.; Tod, M.; Rey, E.; Rodrigues, C.; Chiron, C.; Pons, G.; Jullien, V. Population pharmacokinetics of stiripentol in paediatric patients with Dravet syndrome treated with stiripentol, valproate and clobazam combination therapy. Clin. Pharmacokinet. 2018, 57, 739–748. [Google Scholar] [CrossRef] [PubMed]
Medication (Trial, Duration) | Drop Attack Reduction | ≥50% Drop Responder Rate | Total Seizure Reduction | ≥50% Total Responder Rate | Long-Term/Extension Outcomes | Global/Clinical Evaluation |
---|---|---|---|---|---|---|
Felbamate (Felbamate Study Group; 10 weeks) | 34% vs. 9% (p = 0.01) | N/A | 19% vs. +4% (p = 0.002) | N/A | ~50% reached ≥50% reduction in total seizures at 12 mo; ~67% had ≥50% reduction in atonic seizures | Significant improvement on global evaluations; improved performance on digit-symbol neuropsychological test |
Lamotrigine (Motte et al.; 16 weeks) | 34% vs. 9% (p = 0.01) | 37% vs. 22% (p = 0.04) | 32% vs. 9% (p = 0.002) | 33% vs. 16% (p = 0.01) | N/A | N/A |
Topiramate (Sachdeo et al., Glauser et al.; 11 weeks) | 14.8% vs. +5.1% (p = 0.041) | 28% vs. 14% (p = 0.071) | 25.8% vs. +5.2% (p = 0.015) | 33% vs. 8% (p = 0.002) | At 6 mo: 55% had ≥50% drop reduction, 15% seizure-free for ≥6 mo | N/A |
Rufinamide (Glauser et al., Kluger et al.; 12 weeks) | 42.5% vs. 1.4% (p < 0.0001) | 42.5% vs. 16.7% (p = 0.002) | 32.7% vs. 11.7% (p = 0.0015) | 31.1% vs. 10.9% (p = 0.0045) | 41% achieved ≥50% reduction in total seizures; 48% in tonic-atonic seizures at OLE | No difference in caregiver global evaluation vs. placebo |
Rufinamide (Ohtsuka et al. 2014, 2016; 12 weeks) | 24.2% vs. 3.3% (p = 0.003) | 25% vs. 6.7% (p = 0.074) | 32.9% vs. 3.1% (p < 0.001) | N/A | Sustained seizure reduction across 52 weeks; ~44% ≥50% responder at study end | Significant improvement in clinician global impression (p = 0.007) |
Clobazam (Ng, Conry; 15 weeks) | Dose-dependent: 41–68% vs. 12% (all p ≤ 0.012) | 43–78% vs. 32% (p < 0.016–0.0001) | 35–65% vs. 9% (p < 0.041–0.0001) | N/A | At 5 years: 85–97% median reduction in drop seizures; 75–85% in total seizures; 47% remained drop-seizure-free | Physician: 46–65% much/very much improved; Caregiver: 42–59% much/very much improved |
Cannabidiol (GWPCARE3/4; 14 weeks) | CBD10: 37% vs. 17% (p = 0.002); CBD20: 42–44% vs. 17–22% (p ≤ 0.0135) | 36–44% vs. 14–24% (p ≤ 0.0043) | 36–41% vs. 14–19% (p ≤ 0.009) | N/A | At 48 weeks: median drop seizure reduction 48–60%; total seizure reduction 48–57% | CGI-I: 57–66% improved vs. 34–44% placebo; Subgroup with clobazam showed stronger effect |
Fenfluramine (FFA) (Study 1601; 14 weeks) | FFA0.7: 27% vs. 8% (p = 0.0165); FFA0.2: 12% (NS) | FFA0.7: 25% vs. 10% (p = 0.02); FFA0.2: 28% vs. 10% (p = 0.02) | FFA0.7: 26% vs. 8% (p = 0.0165); FFA0.2: NS | GTCS: 46–58% reduction vs. 4% placebo | At 15 mo: 50% median reduction in drop seizures; 31% ≥50% responders; tonic seizures −36% | CGI-I: 45% improved vs. 34% placebo; 26% much/very much improved vs. 6% placebo |
Valproate (Covanis et al.) | Better outcomes for drop seizures | N/A | ≥50% reduction in 55%; complete seizure control in 21% | N/A | Widely used; efficacy strongest in drop attacks | Side effects: weight gain, hepatotoxicity, GI intolerance |
Levetiracetam (Kim et al.) | N/A | 58% ≥50% responders; 27% seizure-free | N/A | N/A | Minimal cognitive adverse effects | Most common AE: hyperactivity (13%) |
Zonisamide (You et al.) | N/A | 60% with >50% seizure reduction; 4.8% seizure free | N/A | N/A | Some patients achieved complete seizure freedom (5%) | Adverse events: somnolence, anorexia (transient) |
Lacosamide (Grosso et al., Andrade-Machado et al.) | Variable; higher for focal tonic (~75%) than atonic (~20%) | 33% responders (children); lower in adults | Overall seizure reduction ~29% | N/A | Mixed results, occasional worsening of tonic/atonic seizures | Adverse events in ~44% |
PICO Element | Description |
---|---|
Population (P) | Patients diagnosed with Lennox–Gastaut syndrome (LGS) or LGS-like epileptic encephalopathies |
Intervention (I) | Treatment with newer anti-seizure medications: perampanel, brivaracetam, cenobamate, stiripentol, or ganaxolone |
Comparison (C) | Placebo, standard care, or pre-treatment baseline (for observational studies) |
Outcomes (O) | Primary: Seizure frequency reduction (≥50% responder rate) Secondary: Seizure freedom, seizure-type specific responses, adverse events, retention rates, quality of life measures |
Research Question | In patients with Lennox–Gastaut syndrome, what is the efficacy and safety of newer anti-seizure medications (perampanel, brivaracetam, cenobamate, stiripentol, and ganaxolone) compared to standard treatment approaches? |
Medication | Mechanism/Clinical Action | Dose | Forms | Pharmacokinetics (T½/Metabolism) | Drug Interactions | FDA Indications | Common Side Effects | Age Approved | DEA Schedule | Renal and Hepatic Dosing Considerations |
---|---|---|---|---|---|---|---|---|---|---|
Perampanel | Non-competitive AMPA receptor antagonist; reduces excitatory glutamate transmission | Start 2 mg QHS; titrate to 8–12 mg/day | Oral tablet, oral suspension | T½ ~105 h; CYP3A4 metabolism; ~95% protein bound | ↓ levels with CYP3A4 inducers (e.g., carbamazepine); additive sedation with CNS depressants | Adjunctive or monotherapy for focal seizures (≥4 years); adjunctive for PGTC seizures (≥12 years) | Dizziness, irritability, gait disturbance, aggression | ≥4 years | Schedule III | Renal: CrCl ≥ 30 mL/min, no adjustment; monitor/titrate slowly if 30–49 mL/min; CrCl < 30 mL/min or dialysis not recommended. Hepatic: Mild (Child-Pugh A): start 2 mg/day, titrate by 2 mg every ≥2 weeks, max 6 mg/day; Moderate (B): max 4 mg/day; Severe (C): not recommended. |
Brivaracetam | High-affinity SV2A ligand; modulates neurotransmitter release | 50–100 mg BID; Max: 200 mg/day | Oral tablet, oral solution, IV | T½ ~9 h; metabolized by hydrolysis and CYP2C19; ~20% protein bound | ↑ levels with CYP2C19 inhibitors; minimal interaction profile | Adjunctive treatment for focal seizures (≥1 month) | Somnolence, fatigue, dizziness, nausea | ≥1 month | Schedule V | Renal: Mild to severe impairment, no adjustment; dialysis not recommended. Hepatic: Mild to severe (A–C): initial 25 mg BID, up to 75 mg BID. Older adults: consider starting at low end of range. |
Cenobamate | Enhances fast Na+ channel inactivation; positive allosteric modulator of GABA-A | Start 12.5 mg/day; titrate to 200 mg/day; Max 400 mg/day | Oral tablet | T½ ~50–60 h; metabolized by CYP2E1, 2A6, 2B6, 2C19, 3A4 | Inhibits CYP2C19 (↑ phenytoin, clobazam); induces CYP3A4 (↓ oral contraceptive efficacy) | Focal seizures in adults | Somnolence, dizziness, fatigue, DRESS (boxed warning) | Adults (≥18 years) | Schedule V | Renal and Hepatic: No formal dosing guidance provided; caution advised in moderate-severe impairment; monitor response and tolerability. |
Stiripentol | GABA-A receptor modulator; inhibits GABA reuptake and CYP enzymes | 50 mg/kg/day in 2–3 divided doses; Max ~3000 mg/day | Oral capsule, oral powder for suspension | T½ ~4.5–13 h; nonlinear kinetics; strong CYP inhibitor (1A2, 2C19, 3A4) | ↑ clobazam, valproate levels; risk of sedation; CYP inhibition | Adjunctive treatment of Dravet syndrome with clobazam (≥6 months) | Somnolence, decreased appetite, ataxia | ≥2 years | Not scheduled | Renal: No formal guidance; use with caution in mild impairment, avoid moderate-severe. Hepatic: No formal guidance; use with caution in mild impairment, avoid moderate-severe; titrate based on seizure control and tolerability. |
Ganaxolone | Neurosteroid; positive allosteric GABA-A modulator | ~63 mg/kg/day in 3 divided doses; Max ~1800 mg/day | Oral suspension | T½ ~30–60 h; CYP3A4 metabolism; ~99% protein bound | CYP3A4 inhibitors ↑ levels; inducers ↓ levels | CDKL5 deficiency disorder (≥2 years) | Somnolence, respiratory depression, sedation | ≥2 years | Schedule V | Renal: No adjustment required; minimal renal elimination. Hepatic: Mild-moderate (A/B): no adjustment; Severe (C >28 kg): titrate weekly from 50 mg TID → 200 mg TID by week 4. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samanta, D. Perampanel, Brivaracetam, Cenobamate, Stiripentol, and Ganaxolone in Lennox-Gastaut Syndrome: A Comprehensive Narrative Review. J. Clin. Med. 2025, 14, 6302. https://doi.org/10.3390/jcm14176302
Samanta D. Perampanel, Brivaracetam, Cenobamate, Stiripentol, and Ganaxolone in Lennox-Gastaut Syndrome: A Comprehensive Narrative Review. Journal of Clinical Medicine. 2025; 14(17):6302. https://doi.org/10.3390/jcm14176302
Chicago/Turabian StyleSamanta, Debopam. 2025. "Perampanel, Brivaracetam, Cenobamate, Stiripentol, and Ganaxolone in Lennox-Gastaut Syndrome: A Comprehensive Narrative Review" Journal of Clinical Medicine 14, no. 17: 6302. https://doi.org/10.3390/jcm14176302
APA StyleSamanta, D. (2025). Perampanel, Brivaracetam, Cenobamate, Stiripentol, and Ganaxolone in Lennox-Gastaut Syndrome: A Comprehensive Narrative Review. Journal of Clinical Medicine, 14(17), 6302. https://doi.org/10.3390/jcm14176302