Diagnostic Applications of Artificial Intelligence in Liver Diseases
Abstract
1. Introduction
2. Materials and Methods
3. Artificial Intelligence and Chronic Liver Diseases
4. Artificial Intelligence and Focal Liver Lesions
5. Conclusions and Future Directions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
AUC | Area Under the Curve |
AUROC | Area Under the Receiver Operating Characteristic Curve |
APRI | Aspartate Aminotransferase to Platelet Ratio Index |
BTC | Biliary Tract Cancer |
ceMDCT | Contrast-Enhanced Multidetector Computed Tomography |
CFNRI | Category-Free Net Reclassification Index |
CNN | Convolutional Neural Network |
CRLM | Colorectal Liver Metastases |
CT | Computed Tomography |
DCNN | Deep Convolutional Neural Network |
DL | Deep Learning |
DLRE | Deep Learning Radiomics Elastography |
EHR | Electronic Health Record |
ENDOANGEL | Endoscopy-Based Artificial Intelligence System for Varices Detection |
EV | Esophageal Varices |
EVendo | Esophageal Varices Endoscopy Avoidance Score |
FIB-4 | Fibrosis-4 Index |
FNH | Focal Nodular Hyperplasia |
HGP | Histopathologic Growth Pattern |
HVPG | Hepatic Venous Pressure Gradient |
LASSO | Least Absolute Shrinkage and Selection Operator |
LOOCV | Leave-One-Out Cross Validation |
LSN | Liver Surface Nodularity |
ML | Machine Learning |
MRI | Magnetic Resonance Imaging |
MRE | Magnetic Resonance Elastography |
mRMR | Maximum Relevance Minimum Redundancy |
PathAI | Pathology-Based Artificial Intelligence System |
PE-T | Peritumoral Enhancement |
PET-CT | Positron Emission Tomography Computed Tomography |
RAD_HGP | Radiomically Diagnosed Histopathologic Growth Pattern |
ROC | Receiver Operating Characteristic |
ROI | Region of Interest |
SVM | Support Vector Machine |
T-RO | Tumoral Radiomic Features |
TTP | Time to Progression |
References
- Balsano, C.; Alisi, A.; Brunetto, M.R.; Invernizzi, P.; Burra, P.; Piscaglia, F.; Special Interest Group Artificial Intelligence and Liver Diseases; Italian Association for the Study of the Liver (AISF). The application of artificial intelligence in hepatology: A systematic review. Dig. Liver Dis. 2022, 54, 299–308. [Google Scholar] [CrossRef]
- Cabitza, F.; Campagner, A.; Balsano, C. Bridging the “last mile” gap between AI implementation and operation: “data awareness” that matters. Ann. Transl. Med. 2020, 8, 501. [Google Scholar] [CrossRef]
- Wong, G.L.H.; Yuen, P.C.; Ma, A.J.; Chan, A.W.H.; Leung, H.H.W.; Wong, V.W.S. Artificial Intelligence in prediction of non-alcoholic fatty liver disease and fibrosis. J. Gastroenterol. Hepatol. 2021, 36, 543–550. [Google Scholar] [CrossRef] [PubMed]
- Nam, D.; Chapiro, J.; Paradis, V.; Seraphin, T.P.; Kather, J.N. Artificial Intelligence in liver diseases: Improving diagnostics, prognostics, and response prediction. JHEP Rep. 2022, 4, 100443. [Google Scholar] [CrossRef] [PubMed]
- European Association for the Study of the Liver. EASL Clinical Practice Guidelines on non-invasive tests for evaluation of liver disease severity and prognosis—2021 update. J. Hepatol. 2021, 75, 659–689. [Google Scholar] [CrossRef] [PubMed]
- Pickhardt, P.J.; Malecki, K.; Kloke, J.; Lubner, M.G. Accuracy of Liver Surface Nodularity Quantification on MDCT as a Noninvasive Biomarker for Staging Hepatic Fibrosis. AJR Am. J. Roentgenol. 2016, 207, 1194–1199. [Google Scholar] [CrossRef]
- Park, H.J.; Lee, S.S.; Park, B.; Yun, J.; Sung, Y.S.; Shim, W.H.; Shin, Y.M.; Kim, S.Y.; Lee, S.J.; Lee, M.G. Radiomics Analysis of Gadoxetic Acid-enhanced MRI for Staging Liver Fibrosis. Radiology 2019, 290, 380–387. [Google Scholar] [CrossRef]
- Lili, H.; Li, H.; Dudley, J.; Maloney, T.C.; Brady, S.L.; Somasundaram, E.; Trout, A.; Dillman, J.R. Machine Learning Prediction of Liver Stiffness Using Clinical and T2-Weighted MRI Radiomic Data. Am. J. Roentgenol. 2019, 213, 592–601. [Google Scholar] [CrossRef]
- Schawkat, K.; Ciritsis, A.; von Ulmenstein, S.; Honcharova-Biletska, H.; Jüngst, C.; Weber, A.; Gubler, C.; Mertens, J.; Reiner, C.S. Diagnostic accuracy of texture analysis and machine learning for quantification of liver fibrosis in MRI: Correlation with MR elastography and histopathology. Eur. Radiol. 2020, 30, 4675–4685. [Google Scholar] [CrossRef]
- Lee, J.H.; Joo, I.; Kang, T.W.; Paik, Y.H.; Sinn, D.H.; Ha, S.Y.; Kim, K.; Choi, C.; Lee, G.; Yi, J.; et al. Deep learning with ultrasonography: Automated classification of liver fibrosis using a deep convolutional neural network. Eur. Radiol. 2020, 30, 1264–1273. [Google Scholar] [CrossRef]
- Wang, K.; Lu, X.; Zhou, H.; Gao, Y.; Zheng, J.; Tong, M.; Wu, C.; Liu, C.; Huang, L.; Jiang, T.; et al. Deep learning Radiomics of shear wave elastography significantly improved diagnostic performance for assessing liver fibrosis in chronic hepatitis B: A prospective multicentre study. Gut 2019, 68, 729–741. [Google Scholar] [CrossRef]
- Gatos, I.; Tsantis, S.; Spiliopoulos, S.; Karnabatidis, D.; Theotokas, I.; Zoumpoulis, P.; Loupas, T.; Hazle, J.D.; Kagadis, G.C. Temporal stability assessment in shear wave elasticity images validated by deep learning neural network for chronic liver disease fibrosis stage assessment. Med. Phys. 2019, 46, 2298–2309. [Google Scholar] [CrossRef]
- Choi, K.J.; Jang, J.K.; Lee, S.S.; Sung, Y.S.; Shim, W.H.; Kim, H.S.; Yun, J.; Choi, J.Y.; Lee, Y.; Kang, B.K.; et al. Development and Validation of a Deep Learning System for Staging Liver Fibrosis by Using Contrast Agent-enhanced CT Images in the Liver. Radiology 2018, 289, 688–697. [Google Scholar] [CrossRef]
- Yasaka, K.; Akai, H.; Kunimatsu, A.; Abe, O.; Kiryu, S. Liver Fibrosis: Deep Convolutional Neural Network for Staging by Using Gadoxetic Acid-enhanced Hepatobiliary Phase MR Images. Radiology 2018, 287, 146–155. [Google Scholar] [CrossRef]
- Yu, Q.; Huang, Y.; Li, X.; Pavlides, M.; Liu, D.; Luo, H.; Ding, H.; An, W.; Liu, F.; Zuo, C.; et al. An imaging-based artificial intelligence model for non-invasive grading of hepatic venous pressure gradient in cirrhotic portal hypertension. Cell Rep. Med. 2022, 3, 100563. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, Z.; Chen, M.; Xiao, Y.; Chen, S.; Wu, L.; Yao, L.; Jiang, X.; Li, J.; Xu, M.; et al. An interpretable artificial intelligence system for detecting risk factors of gastroesophageal variceal bleeding. NPJ Digit. Med. 2022, 5, 183. [Google Scholar] [CrossRef] [PubMed]
- Estes, C.; Razavi, H.; Loomba, R.; Younossi, Z.; Sanyal, A.J. Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease. Hepatology 2018, 68, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Fialoke, S.; Malarstig, A.; Miller, M.R.; Dumitriu, A. Application of Machine Learning Methods to Predict Non-Alcoholic Steatohepatitis (NASH) in Non-Alcoholic Fatty Liver (NAFL) Patients. AMIA Annu. Symp. Proc. 2018, 2018, 430–439. [Google Scholar]
- Liu, F.; Goh, G.B.; Tiniakos, D.; Wee, A.; Leow, W.Q.; Zhao, J.M.; Rao, H.Y.; Wang, X.X.; Wang, Q.; Wan, W.K.; et al. qFIBS: An Automated Technique for Quantitative Evaluation of Fibrosis, Inflammation, Ballooning, and Steatosis in Patients with Nonalcoholic Steatohepatitis. Hepatology 2020, 71, 1953–1966. [Google Scholar] [CrossRef]
- Forlano, R.; Mullish, B.H.; Giannakeas, N.; Maurice, J.B.; Angkathunyakul, N.; Lloyd, J.; Tzallas, A.T.; Tsipouras, M.; Yee, M.; Thursz, M.R.; et al. High-Throughput, Machine Learning–Based Quantification of Steatosis, Inflammation, Ballooning, and Fibrosis in Biopsies from Patients with Nonalcoholic Fatty Liver Disease. Clin. Gastroenterol. Hepatol. 2020, 18, 2081–2090. [Google Scholar] [CrossRef]
- Taylor-Weiner, A.; Pokkalla, H.; Han, L.; Han, L.; Jia, C.; Huss, R.; Chung, C.; Elliott, H.; Glass, B.; Pethia, K.; et al. A Machine Learning Approach Enables Quantitative Measurement of Liver Histology and Disease Monitoring in NASH. Hepatology 2021, 74, 133–147. [Google Scholar] [CrossRef]
- Greenspan, H.; Van Ginneken, B.; Summers, R.M. Guest editorial deep learning in medical imaging: Overview and future promise of an exciting new technique. IEEE Trans. Med. Imaging 2016, 35, 1153–1159. [Google Scholar] [CrossRef]
- Hamm, C.A.; Wang, C.J.; Savic, L.J.; Ferrante, M.; Schobert, I.; Schlachter, T.; Lin, M.; Duncan, J.S.; Weinreb, J.C.; Chapiro, J.; et al. Deep learning for liver tumor diagnosis part I: Development of a convolutional neural network classifier for multi-phasic MRI. Eur. Radiol. 2019, 29, 3338–3347. [Google Scholar] [CrossRef] [PubMed]
- Olden, J.D.; Jackson, D.A. Illuminating the “black box”: A randomization approach for understanding variable contributions in artificial neural networks. Ecol. Modell. 2002, 154, 135–150. [Google Scholar] [CrossRef]
- Kiczales, G. Beyond the black box: Open implementation. IEEE Softw. 1996, 13, 8–11. [Google Scholar] [CrossRef]
- Ben-Cohen, A.; Klang, E.; Diamant, I.; Rozendorn, N.; Raskin, S.P.; Konen, E.; Amitai, M.M.; Greenspan, H. CT Image-based Decision Support System for Categorization of Liver Metastases Into Primary Cancer Sites: Initial Results. Acad. Radiol. 2017, 24, 1501–1509. [Google Scholar] [CrossRef]
- Wei, S.; Han, Y.; Zeng, H.; Ye, S.; Cheng, J.; Chai, F.; Wei, J.; Zhang, J.; Hong, N.; Bao, Y.; et al. Radiomics diagnosed histopathological growth pattern in prediction of response and 1-year progression free survival for colorectal liver metastases patients treated with bevacizumab containing chemotherapy. Eur. J. Radiol. 2021, 142, 109863. [Google Scholar] [CrossRef]
- Dercle, L.; Lu, L.; Schwartz, L.H.; Qian, M.; Tejpar, S.; Eggleton, P.; Zhao, B.; Piessevaux, H. Radiomics Response Signature for Identification of Metastatic Colorectal Cancer Sensitive to Therapies Targeting EGFR Pathway. J. Natl. Cancer Inst. 2020, 112, 902–912. [Google Scholar] [CrossRef]
- Cheng, S.; Jin, Z.; Xue, H. Assessment of Response to Chemotherapy in Pancreatic Cancer with Liver Metastasis: CT Texture as a Predictive Biomarker. Diagnostics 2021, 11, 2252. [Google Scholar] [CrossRef]
- Shan, Q.Y.; Hu, H.T.; Feng, S.T.; Peng, Z.P.; Chen, S.L.; Zhou, Q.; Li, X.; Xie, X.Y.; Lu, M.D.; Wang, W.; et al. CT-based peritumoral radiomics signatures to predict early recurrence in hepatocellular carcinoma after curative tumor resection or ablation. Cancer Imaging 2019, 27, 19. [Google Scholar] [CrossRef]
- Yang, C.; Huang, M.; Li, S.; Chen, J.; Yang, Y.; Qin, N.; Huang, D.; Shu, J. Radiomics model of magnetic resonance imaging for predicting pathological grading and lymph node metastases of extra-hepatic cholangiocarcinoma. Cancer Lett. 2020, 1, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.; Xu, L.; Yang, P.; Zhang, L.; Wan, D.; Huang, Q.; Niu, T.; Chen, F. Novel nomogram for preoperative prediction of early recurrence in intrahepatic cholangiocarcinoma. Front. Oncol. 2018, 8, 360. [Google Scholar] [CrossRef] [PubMed]
- Ji, G.W.; Zhu, F.P.; Zhang, Y.D.; Liu, X.S.; Wu, F.Y.; Wang, K.; Xia, Y.X.; Zhang, Y.D.; Jiang, W.J.; Li, X.C.; et al. A radiomics approach to predict lymph node metastasis and clinical outcome of intrahepatic cholangiocarcinoma. Eur. Radiol. 2019, 29, 3725–3735. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Yang, P.; Liang, W.; Liu, W.; Wang, W.; Luo, C.; Wang, J.; Peng, Z.; Xing, L.; Huang, M.; et al. A radiomics approach based on support vector machine using MR images for preoperative lymph node status evaluation in intrahepatic cholangiocarcinoma. Theranostics 2019, 9, 5374–5385. [Google Scholar] [CrossRef]
- Peng, Y.T.; Zhou, C.Y.; Lin, P.; Wen, D.Y.; Wang, X.D.; Zhong, X.Z.; Pan, D.H.; Que, Q.; Li, X.; Chen, L. Preoperative ultrasound radiomics signatures for noninvasive evaluation of biological characteristics of intrahepatic cholangiocarcinoma. Acad. Radiol. 2020, 27, 785–797. [Google Scholar] [CrossRef]
- Chu, H.; Liu, Z.; Liang, W.; Zhou, Q.; Zhang, Y.; Lei, K.; Tang, M.; Cao, Y.; Chen, S.; Peng, S.; et al. Radiomics using CT images for preoperative prediction of futile resection in intrahepatic cholangiocarcinoma. Eur. Radiol. 2021, 31, 2368–2376. [Google Scholar] [CrossRef]
- Vivanti, R.; Szeskin, A.; Lev-Cohain, N.; Sosna, J.; Joskowicz, L. Automatic detection of new tumors and tumor burden evaluation in longitudinal liver CT scan studies. Int. J. Comput. Assist. Radiol. Surg. 2017, 12, 1945–1957. [Google Scholar] [CrossRef]
- Tiyarattanachai, T.; Susantitaphong, P.; Marukatat, S.; Sukcharoen, S.; Yimsawad, S.; Chaichuen, O.; Komoltri, C.; Tiranathanagul, K.; Avihingsanon, Y.; Jutivorakool, K.; et al. Development and validation of artificial intelligence to detect and diagnose focal liver lesions from ultrasonography still images. PLoS ONE 2021, 16, e0252882. [Google Scholar] [CrossRef]
- Kim, J.; Min, J.H.; Kim, S.K.; Shin, S.-Y.; Lee, M.W. Detection of hepatocellular carcinoma in contrast-enhanced magnetic resonance imaging using a deep learning classifier: A multi-center retrospective study. Sci. Rep. 2020, 10, 9458. [Google Scholar] [CrossRef]
- Hassan, T.M.; Elmogy, M.; Sallam, E.-S. Diagnosis of focal liver diseases based on deep learning technique for ultrasound images. Arab. J. Sci. Eng. 2017, 42, 3127–3140. [Google Scholar] [CrossRef]
- Yasaka, K.; Akai, H.; Abe, O.; Kiryu, S. Deep learning with convolutional neural network for differentiation of liver masses at dynamic contrast-enhanced CT: A preliminary study. Radiology 2018, 286, 887–896. [Google Scholar] [CrossRef]
AUC 1 Significant Fibrosis | AUC Advanced Fibrosis | AUC Cirrhosis | References | |
---|---|---|---|---|
Machine learning based on contrast enhanced CT 2 | 0.90 | 0.93 | 0.96 | Pickhardt P J, 2016 [6] |
Deep learning based on contrast enhanced CT | 0.96 | 0.97 | 0.95 | Choi K J, 2018 [13] |
Deep learning based on contrast enhanced MRI 3 | 0.85 | 0.84 | 0.84 | Yasaka K, 2017 [14] |
Radiomics based on contrast enhanced MRI | 0.91 | 0.88 | 0.87 | Park H J, 2019 [7] |
Deep learning based on US 4 | 0.90 | 0.90 | Lee J H, 2020 [10] | |
Deep learning based on shear wave elastography | 0.85 | 0.98 | 0.97 | Wang K, 2019 [11] |
Deep learning based on shear wave elastography | 0.85–0.89 | 0.845–0.87 | 0.85–0.87 | Gatos I, 2019 [12] |
Target | N° Patients | Imaging | Metod | AUC 11 | References |
---|---|---|---|---|---|
To develop a new radiomic nomogram to predict the ER 1 of ICC 2. | 209 | CECT 3 | LASSO 4 | 0.9 | Liang W, 2018 [32] |
To develop a radiomic model for predicting the LNM 5 of ICC and determine its prognostic value. | 103 | CECT | LASSO | 0.9244 | Ji JW, 2019 [33] |
To evaluate a radiomic model for predicting LNM in BTC 6 and determine its prognostic value. | 247 | CECT | LASSO | 0.81 | Ji JW, 2019 [33] |
To develop a prediction model for preoperative LNM in patients with ICC | 148 | MRI | SVM 7 | 0.870 | Xu L, 2019 [34] |
To develop radiomic signatures based on ultrasound (US) to assess the biological behaviors of ICC 0.930 | 128 | US | LASSO, SVM | 0.930 | Peng YT, 2020 [35] |
To assess the diagnostic performance of radiomic MRI 8 models in detecting DD 9 and LNM of ECC 10. | 100 | MRI | Random forest | 0.9 | Yang C, 2020 [31] |
Target | Method | Accuracy | References |
---|---|---|---|
Predicting the primary origin of liver metastases | CT 1-based radiomics and deep learning | 56% | Ben Cohen A, 2017 [28] |
Detection of new liver tumors | CT-based deep learning | 86% | Vivanti R, 2017 [37] |
Detection of focal liver lesions | Deep learning based on ultrasound | 89% | Tryarattanachai T, 2021 [38] |
Detection of liver tumors | Deep learning based on MRI 2 | 90% | Kim J, 2020 [39] |
Detection and distinction of different focal liver lesions | Deep learning based on ultrasound | 97.2% | Hassan TM, 2017 [40] |
Detection of liver metastases | Deep learning based on PET/CT 3 | 90.5% | Yang C, 2020 [31] |
Evaluation of focal liver lesions | Deep learning based on MRI | 92% | Hamm C, 2019 [23] |
Evaluation of focal liver lesions | Deep learning based on CT | 84% | Yasaka K, 2018 [41] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bragazzi, M.C.; Venere, R.; Andriollo, G.; Ridola, L.; Alvaro, D. Diagnostic Applications of Artificial Intelligence in Liver Diseases. J. Clin. Med. 2025, 14, 6231. https://doi.org/10.3390/jcm14176231
Bragazzi MC, Venere R, Andriollo G, Ridola L, Alvaro D. Diagnostic Applications of Artificial Intelligence in Liver Diseases. Journal of Clinical Medicine. 2025; 14(17):6231. https://doi.org/10.3390/jcm14176231
Chicago/Turabian StyleBragazzi, Maria Consiglia, Rosanna Venere, Gloria Andriollo, Lorenzo Ridola, and Domenico Alvaro. 2025. "Diagnostic Applications of Artificial Intelligence in Liver Diseases" Journal of Clinical Medicine 14, no. 17: 6231. https://doi.org/10.3390/jcm14176231
APA StyleBragazzi, M. C., Venere, R., Andriollo, G., Ridola, L., & Alvaro, D. (2025). Diagnostic Applications of Artificial Intelligence in Liver Diseases. Journal of Clinical Medicine, 14(17), 6231. https://doi.org/10.3390/jcm14176231