Smartphone-Based 3D Surface Imaging: A New Frontier in Digital Breast Assessment? Smartphone-Based Breast Assessment
Abstract
1. Introduction
2. Material and Methods
2.1. Study Protocol
2.2. Participant Preparation
2.3. Three-Dimensional Data Acquisition
2.4. Three-Dimensional Data Processing
2.5. SM Comparison
2.6. Statistical Analysis
3. Results
3.1. Patient Demographics
3.2. Landmark-to-Landmark Distance Analyses
3.3. Intra- and Inter-Rater Reliability
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- O’Connell, R.L.; Khabra, K.; Bamber, J.C.; deSouza, N.; Meybodi, F.; Barry, P.A.; Rusby, J.E. Validation of the Vectra XT three-dimensional imaging system for measuring breast volume and symmetry following oncological reconstruction. Breast Cancer Res. Treat. 2018, 171, 391–398. [Google Scholar] [CrossRef]
- Killaars, R.C.; Preuβ, M.L.G.; de Vos, N.J.P.; van Berlo, C.C.J.L.Y.; Lobbes, M.B.I.; van der Hulst, R.R.W.J.; Piatkowski, A.A. Clinical Assessment of Breast Volume: Can 3D Imaging Be the Gold Standard? Plast. Reconstr. Surg.—Glob. Open 2020, 8, e3236. [Google Scholar] [CrossRef]
- Galdino, G.M.; Nahabedian, M.; Chiaramonte, M.; Geng, J.Z.; Klatsky, S.; Manson, P. Clinical applications of three-dimensional photography in breast surgery. Plast. Reconstr. Surg. 2002, 110, 58–70. [Google Scholar] [CrossRef] [PubMed]
- Tepper, O.M.; Karp, N.S.; Small, K.; Unger, J.; Rudolph, L.; Pritchard, A.; Choi, M. Three-dimensional imaging provides valuable clinical data to aid in unilateral tissue expander-implant breast reconstruction. Breast J. 2008, 14, 543–550. [Google Scholar] [CrossRef] [PubMed]
- Dijkman, B.A.M.; Liberton, N.P.T.J.; te Slaa, S.; Smit, J.M.; Wiepjes, C.M.; Dreijerink, K.M.A.; den Heijer, M.; Verdaasdonk, R.M.; de Blok, C.J.M. A comparative study of 3D measuring methods for monitoring breast volume changes. PLoS ONE 2024, 19, e0305059. [Google Scholar] [CrossRef]
- Camison, L.; Bykowski, M.; Lee, W.W.; Carlson, J.C.; Roosenboom, J.; Goldstein, J.A.; Losee, J.E.; Weinberg, S.M. Validation of the Vectra H1 portable three-dimensional photogrammetry system for facial imaging. Int. J. Oral Maxillofac. Surg. 2018, 47, 403–410. [Google Scholar] [CrossRef]
- Rudy, H.L.; Lu, Y.-H.; Rothchild, E.; Tepper, O.M.; Weichman, K. Expanding Access to 3D Technology in Plastic Surgery of the Breast: Validation of the iPhone Against the Vectra H2. Aesthetic Surg. J. 2024, 44, 1350–1358. [Google Scholar] [CrossRef]
- Han, W.Y.; Lee, S.J.; Chang, H.P.; Heo, J.; Eom, J.S.; Kim, E.K.; Han, H.H. Development of Three-Dimensional Breast Scan and Measurement Application Using Laser Imaging Detection and Ranging Sensor on iPhone. Plast. Reconstr. Surg. 2023, 152, 1183e–1187e. [Google Scholar] [CrossRef]
- Chrobot, N.; Alfertshofer, M.; Frank, K.; Smolka, W.; Anker, A.; Taxis, J.; Ettl, T.; Prantl, L.; Brébant, V.; Hartmann, R. Advancing digital anthropometry in plastic surgery: Comparing smartphone 3D surface imaging to Vectra H2 in breast reconstruction. J. Plast. Reconstr. Aesthetic Surg. 2025, 104, 398–406. [Google Scholar] [CrossRef] [PubMed]
- Loucas, R.; Loucas, M.; Leitsch, S.; Danuser, K.; Reichard, G.; Haroon, O.; Mayer, J.M.; Koban, K.; Holzbach, T. Evaluation of Intraoperative Volumetric Assessment of Breast Volume Using 3D Handheld Stereo Photogrammetric Device. J. Pers. Med. 2023, 13, 1262. [Google Scholar] [CrossRef]
- Kim, J.; Matsumine, H.; Niimi, Y.; Osada, A.; Sakurai, H. Estimation of Mastectomy Volume Using Preoperative Mastectomy Simulation Images Acquired by the Vectra H2 System. Plast. Reconstr. Surg.—Glob. Open 2023, 11, e5180. [Google Scholar] [CrossRef] [PubMed]
- Brebant, V.; Lemonnier, L.; Georgieva, M.; Anker, A.; Heine, N.; Seitz, S.; Frank, K.; Prantl, L.; Eigenberger, A. Comparison of analog and digitally evaluated volume of the female breast in reconstructive breast surgery. Validation of a noninvasive measurement method with 3D camera1. Clin. Hemorheol. Microcirc. 2023, 85, 277–287. [Google Scholar] [CrossRef]
- Hartmann, R.; Weiherer, M.; Schiltz, D.; Baringer, M.; Noisser, V.; Hösl, V.; Eigenberger, A.; Seitz, S.; Palm, C.; Prantl, L.; et al. New aspects in digital breast assessment: Further refinement of a method for automated digital anthropometry. Arch. Gynecol. Obs. 2021, 303, 721–728. [Google Scholar] [CrossRef] [PubMed]
- Cignoni, P.; Callieri, M.; Corsini, M.; Dellepiane, M.; Ganovelli, F.; Ranzuglia, G. MeshLab: An Open-Source Mesh Processing Tool. In Proceedings of the Eurographics Italian Chapter Conference, Brescia, Italy, 18–19 October 2018. [Google Scholar]
- Thurzo, A.; Strunga, M.; Havlínová, R.; Reháková, K.; Urban, R.; Surovková, J.; Kurilová, V. Smartphone-Based Facial Scanning as a Viable Tool for Facially Driven Orthodontics? Sensors 2022, 22, 7752. [Google Scholar] [CrossRef]
- Hartmann, R.; Nieberle, F.; Palm, C.; Brébant, V.; Prantl, L.; Kuehle, R.; Reichert, T.E.; Taxis, J.; Ettl, T. Utility of Smartphone-based Three-dimensional Surface Imaging for Digital Facial Anthropometry. JPRAS Open 2024, 39, 330–343. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Aung, S.C.; Ngim, R.C.K.; Lee, S.T. Evaluation of the laser scanner as a surface measuring tool and its accuracy compared with direct facial anthropometric measurements. Br. J. Plast. Surg. 1995, 48, 551–558. [Google Scholar] [CrossRef]
- Seifert, L.B.; Beyer, M.; Czok, V.; Aigner, A.; Abazi, S.; Thieringer, F.M.; Sader, R. Comparative Accuracy of Stationary and Smartphone-Based Photogrammetry in Oral and Maxillofacial Surgery: A Clinical Study. J. Clin. Med. 2024, 13, 6678. [Google Scholar] [CrossRef]
- De Stefani, A.; Barone, M.; Hatami Alamdari, S.; Barjami, A.; Baciliero, U.; Apolloni, F.; Gracco, A.; Bruno, G. Validation of Vectra 3D Imaging Systems: A Review. Int. J. Environ. Res. Public Health 2022, 19, 8820. [Google Scholar] [CrossRef]
- Aynechi, N.; Larson, B.E.; Leon-Salazar, V.; Beiraghi, S. Accuracy and precision of a 3D anthropometric facial analysis with and without landmark labeling before image acquisition. Angle Orthod. 2011, 81, 245–252. [Google Scholar] [CrossRef]
- Behrens, A.S.; Huebner, H.; Häberle, L.; Stamminger, M.; Zint, D.; Heindl, F.; Emons, J.; Hack, C.C.; Nabieva, N.; Uder, M.; et al. Comparative assessment of breast volume using a smartphone device versus MRI. Breast Cancer 2025, 32, 166–176. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, R.; Weiherer, M.; Nieberle, F.; Palm, C.; Brébant, V.; Prantl, L.; Lamby, P.; Reichert, T.E.; Taxis, J.; Ettl, T. Evaluating smartphone-based 3D imaging techniques for clinical application in oral and maxillofacial surgery: A comparative study with the vectra M5. Oral Maxillofac. Surg. 2025, 29, 29. [Google Scholar] [CrossRef] [PubMed]
- Longo, B.; Farcomeni, A.; Ferri, G.; Campanale, A.; Sorotos, M.; Santanelli, F. The BREAST-V: A Unifying Predictive Formula for Volume Assessment in Small, Medium, and Large Breasts. Plast. Reconstr. Surg. 2013, 132, 1e–7e. [Google Scholar] [CrossRef] [PubMed]
Landmark-to-Landmark Distance | |
---|---|
Term | Landmark |
(1) SN-SN | Sternal notch |
(2) Xi-Xi | Xiphoid |
(3) CP-CP (R) | Proc. Coracoideus (R) |
(4) ULBP-ULBP (R) | Upper lateral breast point (R) |
(5) UMBP-UMBP (R) | Upper medial breast point (R) |
(6) Ni-Ni (R) | Nipple (R) |
(7) LaBP-LaBP (R) | Lateral Breast point (R) |
(8) LBP-LBP (R) | Lower Breast point (R) |
(9) CP-CP (L) | Proc. Coracoideus (L) |
(10) ULBP-ULBP (L) | Upper lateral breast point (L) |
(11) UMBP-UMBP (L) | Upper medial breast point (L) |
(12) Ni-Ni (L) | Nipple (L) |
(13) LaBP-LaBP (L) | Lateral Breast point (L) |
(14) LBP-LBP (L) | Lower Breast point (L) |
Descriptive Statistics: | |||||
---|---|---|---|---|---|
N | Minimum | Maximum | Mean | Std. Deviation | |
(1) SN-SN | 40 | 0.05 | 6.99 | 2.73 | 1.79 |
(2) Xi-Xi | 40 | 0.25 | 7.76 | 2.28 | 1.81 |
(3) CP-CP R | 40 | 0.39 | 15.25 | 4.28 | 3.18 |
(4) ULBP-ULBP R | 40 | 0.18 | 5.76 | 2.26 | 1.43 |
(5) UMBP-UMBP R | 40 | 0.24 | 6.02 | 2.12 | 1.51 |
(6) Ni-Ni R | 40 | 0.11 | 5.89 | 2.54 | 1.23 |
(7) LaBP-LaBP R | 40 | 0.40 | 13.49 | 3.14 | 2.42 |
(8) LBP-LBP R | 40 | 0.65 | 9.81 | 3.05 | 1.93 |
(9) CP-CP L | 40 | 0.90 | 17.90 | 5.20 | 3.56 |
(10) ULBP-ULBP L | 40 | 0.37 | 8.84 | 2.78 | 1.68 |
(11) UMBP-UMBP L | 40 | 0.42 | 6.10 | 2.19 | 1.45 |
(12) Ni-Ni L | 40 | 0.46 | 5.77 | 2.40 | 1.31 |
(13) LaBP-LaBP L | 40 | 1.40 | 9.29 | 4.00 | 1.75 |
(14) LBP-LBP L | 40 | 0.47 | 8.96 | 2.99 | 1.84 |
Overall | 40 | 0.05 | 17.9 | 2.99 | 1.90 |
Descriptive Statistics (Intra-Rater) | |||||
---|---|---|---|---|---|
Intra-Rater | N | Minimum | Maximum | Mean | Std. Deviation |
(1) SN-SN | 40 | 0.29 | 8.17 | 2.71 | 1.95 |
(2) Xi-Xi | 40 | 0.31 | 7.80 | 2.21 | 1.76 |
(3) CP-CP R | 40 | 0.36 | 15.53 | 4.18 | 3.16 |
(4) ULBP-ULBP R | 40 | 0.24 | 6.38 | 2.24 | 1.56 |
(5) UMBP-UMBP R | 40 | 0.30 | 6.06 | 2.13 | 1.54 |
(6) Ni-Ni R | 40 | 0.65 | 6.03 | 2.62 | 1.25 |
(7) LaBP-LaBP R | 40 | 0.50 | 12.95 | 2.99 | 2.33 |
(8) LBP-LBP R | 40 | 0.24 | 10.75 | 3.05 | 2.03 |
(9) CP-CP L | 40 | 0.64 | 17.11 | 4.92 | 3.39 |
(10) ULBP-ULBP L | 40 | 0.23 | 8.79 | 2.58 | 1.72 |
(11) UMBP-UMBP L | 40 | 0.47 | 6.04 | 2.20 | 1.54 |
(12) Ni-Ni L | 40 | 0.55 | 7.59 | 2.41 | 1.55 |
(13) LaBP-LaBP L | 40 | 0.71 | 9.60 | 4.01 | 1.79 |
(14) LBP-LBP L | 40 | 0.41 | 8.56 | 2.97 | 1.89 |
Overall | 40 | 0.23 | 17.11 | 2.96 | 1.96 |
Bland–Altman Analyses and ICC | |||||||||
---|---|---|---|---|---|---|---|---|---|
ICC and Bland–Altman (Intra-Rater) | ICC and Bland–Altman (Inter-Rater) | ||||||||
Variables | 95% Confidence Interval | 95% Confidence Interval | |||||||
N | ICC (Intra-Rater) | Mean Bias | Upper Bound | Lower Bound | ICC (Inter-Rater) | Mean Bias | Upper Bound | Lower Bound | |
(1) SN-SN | 40 | 0.973 | 0.014 | 1.21 | −1.19 | 0.980 | 0.026 | 1.04 1.21 | −0.99 |
(2) Xi-Xi | 40 | 0.982 | 0.075 | 1.01 | −0.86 | 0.980 | −0.063 | 0.94 1.01 | −1.06 |
(3) CP-CP R | 40 | 0.994 | 0.097 | 1.06 | −0.86 | 0.994 | 0.070 | 1.07 1.06 | −0.93 |
(4) ULBP-ULBP R | 40 | 0.873 | −0.013 | 1.98 | −2.01 | 0.845 | −0.288 | 1.95 1.98 | −2.53 −2.53 −2.53 |
(5) UMBP-UMBP R | 40 | 0.970 | −0.015 | 1.02 | −1.05 | 0.971 | −0.033 | 1.00 | −1.06 |
(6) Ni-Ni R | 40 | 0.960 | −0.074 | 0.88 | −1.02 | 0.940 | −0.148 | 0.97 | −1.26 |
(7) LaBP-LaBP R | 40 | 0.979 | 0.156 | 1.49 | −1.18 | 0.984 | 0.064 0.156 | 1.26 1.49 | −1.13 |
(8) LBP-LBP R | 40 | 0.970 | 0.001 | 1.33 | −1.33 | 0.977 | −0.069 | 1.09 1.33 | −1.23 |
(9) CP-CP L | 40 | 0.993 | 0.281 0.281 | 1.32 | −0.76 | 0.992 | 0.189 0.281 | 1.34 1.32 | −0.96 |
(10) ULBP-ULBP L | 40 | 0.927 | 0.202 | 1.92 | −1.52 | 0.924 | −0.063 | 1.73 1.92 | −1.85 |
(11) UMBP-UMBP L | 40 | 0.964 | −0.012 | 1.09 | −1.11 | 0.964 | −0.005 −0.012 | 1.12 1.09 | −1.13 |
(12) Ni-Ni L | 40 | 0.932 | −0.012 | 1.42 | −1.45 | 0.883 | −0.053 −0.012 | 1.78 1.42 | −1.89 |
(13) LaBP-LaBP L | 40 | 0.978 | −0.005 | 1.03 | −1.04 | 0.971 | −0.136 −0.005 | 1.04 1.03 | −1.31 |
(14) LBP-LBP L | 40 | 0.967 | 0.015 | 1.35 | −1.32 | 0.953 | −0.248 −0.498 | 1.27 1.35 | −1.77 |
Variables | Paired Differences | ||||
---|---|---|---|---|---|
95% Confidence Interval of the Difference | |||||
Mean | Std. Deviation | Lower | Upper | Two-Sided p | |
(1) SN-SN | 0.0145 | 0.612 | −0.181 | 0.210 | 0.882 |
(2) Xi-Xi | 0.0753 | 0.475 | −0.077 | 0.227 | 0.322 |
(3) CP-CP R | 0.0966 | 0.490 | −0.060 | 0.253 | 0.220 |
(4) ULBP-ULBP R | 0.0129 | 1.017 | −0.312 | 0.338 | 0.936 |
(5) UMBP-UMBP R | −0.0146 | 0.529 | −0.184 | 0.154 | 0.863 |
(6) Ni-Ni R | −0.0739 | 0.484 | −0.229 | 0.081 | 0.340 |
(7) LaBP-LaBP R | 0.1558 | 0.679 | −0.061 | 0.373 | 0.155 |
(8) LBP-LBP R | 0.0009 | 0.680 | −0.217 | 0.219 | 0.993 |
(9) CP-CP L | 0.2813 | 0.529 | 0.112 | 0.450 | 0.002 * |
(10) ULBP-ULBP L | 0.2016 | 0.877 | −0.079 | 0.482 | 0.154 |
(11) UMBP-UMBP L | −0.0119 | 0.563 | −0.192 | 0.168 | 0.895 |
(12) Ni-Ni L | −0.0122 | 0.732 | −0.246 | 0.222 | 0.917 |
(13) LaBP-LaBP L | −0.0046 | 0.530 | −0.174 | 0.165 | 0.956 |
(14) LBP-LBP L | 0.0147 | 0.680 | −0.203 | 0.232 | 0.892 |
Descriptive Statistics (Inter-Rater) | |||||
---|---|---|---|---|---|
N | Minimum | Maximum | Mean | Std. Deviation | |
(1) SN-SN | 40 | 0.33 | 7.80 | 2.70 | 1.87 |
(2) Xi-Xi | 40 | 0.10 | 8.73 | 2.34 | 1.81 |
(3) CP-CP R | 40 | 0.97 | 15.08 | 4.21 | 3.19 |
(4) ULBP-ULBP R | 40 | 0.05 | 7.72 | 2.54 | 1.72 |
(5) UMBP-UMBP R | 40 | 0.26 | 6.65 | 2.15 | 1.60 |
(6) Ni-Ni R | 40 | 0.51 | 6.39 | 2.69 | 1.21 |
(7) LaBP-LaBP R | 40 | 0.30 | 12.96 | 3.08 | 2.41 |
(8) LBP-LBP R | 40 | 0.34 | 10.49 | 3.12 | 1.99 |
(9) CP-CP L | 40 | 0.94 | 16.77 | 5.01 | 3.49 |
(10) ULBP-ULBP L | 40 | 0.59 | 9.67 | 2.85 | 1.73 |
(11) UMBP-UMBP L | 40 | 0.38 | 6.02 | 2.20 | 1.57 |
(12) Ni-Ni L | 40 | 0.47 | 6.93 | 2.45 | 1.55 |
(13) LaBP-LaBP L | 40 | 1.15 | 10.80 | 4.14 | 1.87 |
(14) LBP-LBP L | 40 | 0.18 | 8.01 | 3.24 | 1.92 |
Overall | 40 | 0.10 | 16.77 | 3.07 | 1.99 |
Variables | Paired Differences | ||||
---|---|---|---|---|---|
95% Confidence Interval of the Difference | |||||
Mean | Std. Deviation | Lower | Upper | Two-Sided p | |
(1) SN-SN | 0.026 | 0.518 | −0.140 | 0.191 | 0.754 |
(2) Xi-Xi | −0.063 | 0.510 | −0.226 | 0.100 | 0.436 |
(3) CP-CP R | 0.070 | 0.508 | −0.093 | 0.232 | 0.391 |
(4) ULBP-ULBP R | −0.288 | 1.142 | −0.653 | 0.077 | 0.035 * |
(5) UMBP-UMBP R | −0.033 | 0.525 | −0.201 | 0.135 | 0.693 |
(6) Ni-Ni R | −0.148 | 0.570 | −0.331 | 0.034 | 0.108 |
(7) LaBP-LaBP R | 0.064 | 0.611 | −0.131 | 0.259 | 0.511 |
(8) LBP-LBP R | −0.069 | 0.591 | −0.258 | 0.120 | 0.464 |
(9) CP-CP L | 0.189 | 0.589 | 0.001 | 0.378 | 0.049 |
(10) ULBP-ULBP L | −0.063 | 0.913 | −0.355 | 0.229 | 0.667 |
(11) UMBP-UMBP L | −0.005 | 0.573 | −0.188 | 0.179 | 0.959 |
(12) Ni-Ni L | −0.053 | 0.937 | −0.352 | 0.247 | 0.723 |
(13) LaBP-LaBP L | −0.136 | 0.601 | −0.328 | 0.056 | 0.160 |
(14) LBP-LBP L | −0.248 | 0.775 | −0.496 | −0.0002 | 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chrobot, N.; Unbehaun, P.; Frank, K.; Alfertshofer, M.; Smolka, W.; Ettl, T.; Anker, A.; Prantl, L.; Brébant, V.; Hartmann, R. Smartphone-Based 3D Surface Imaging: A New Frontier in Digital Breast Assessment? Smartphone-Based Breast Assessment. J. Clin. Med. 2025, 14, 6233. https://doi.org/10.3390/jcm14176233
Chrobot N, Unbehaun P, Frank K, Alfertshofer M, Smolka W, Ettl T, Anker A, Prantl L, Brébant V, Hartmann R. Smartphone-Based 3D Surface Imaging: A New Frontier in Digital Breast Assessment? Smartphone-Based Breast Assessment. Journal of Clinical Medicine. 2025; 14(17):6233. https://doi.org/10.3390/jcm14176233
Chicago/Turabian StyleChrobot, Nikolas, Philipp Unbehaun, Konstantin Frank, Michael Alfertshofer, Wenko Smolka, Tobias Ettl, Alexandra Anker, Lukas Prantl, Vanessa Brébant, and Robin Hartmann. 2025. "Smartphone-Based 3D Surface Imaging: A New Frontier in Digital Breast Assessment? Smartphone-Based Breast Assessment" Journal of Clinical Medicine 14, no. 17: 6233. https://doi.org/10.3390/jcm14176233
APA StyleChrobot, N., Unbehaun, P., Frank, K., Alfertshofer, M., Smolka, W., Ettl, T., Anker, A., Prantl, L., Brébant, V., & Hartmann, R. (2025). Smartphone-Based 3D Surface Imaging: A New Frontier in Digital Breast Assessment? Smartphone-Based Breast Assessment. Journal of Clinical Medicine, 14(17), 6233. https://doi.org/10.3390/jcm14176233