Anatomical Lens Position Predictability for a Capsulotomy-Fixated Intraocular Lens in Femtosecond Laser-Assisted Cataract Surgery
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Patients
2.2. Preoperative and Postoperative Assessment
2.3. FEMTIS FB-313 and TECNIS 1-Piece ZCB00V Intraocular Lenses
2.4. Surgical Technique
2.5. Intraocular Lens Power Calculation Formulas
2.6. Statistical Analysis
3. Results
3.1. Demographics
3.2. Preoperative FEMTIS vs. TECNIS Cohorts Biometry, Refraction, and Visual Acuity
3.3. Preoperative Anterion vs. IOLMaster 700 Biometry
3.4. Postoperative Changes in Anterion Biometry
3.5. Influence of ACD, LT, AL, Km, WTW, IOL Power, and Type on the Anatomical Lens Position
3.6. Predicting Anatomical Lens Position Using ACD and LT for Two IOL Designs
3.7. FEMTIS vs. TECNIS Postoperative Visual and Refractive Outcomes
3.8. FEMTIS vs. TECNIS Signed and Absolute Prediction Error
3.9. Influence of LT and ACD on Signed Prediction Error
3.10. Influence of LT and ACD on Absolute Prediction Error
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Langenbucher, A.; Hoffmann, P.; Cayless, A.; Bolz, M.; Wendelstein, J.; Szentmary, N. Impact of uncertainties in biometric parameters on intraocular lens power formula predicted refraction using a Monte-Carlo simulation. Acta Ophthalmol. 2024, 102, e285–e295. [Google Scholar] [CrossRef]
- Norrby, S. Sources of error in intraocular lens power calculation. J. Cataract. Refract. Surg. 2008, 34, 368–376. [Google Scholar] [CrossRef]
- Olsen, T. Calculation of intraocular lens power: A review. Acta Ophthalmol. Scand. 2007, 85, 472–485. [Google Scholar] [CrossRef]
- Plat, J.; Hoa, D.; Mura, F.; Busetto, T.; Schneider, C.; Payerols, A.; Villain, M.; Daien, V. Clinical and biometric determinants of actual lens position after cataract surgery. J. Cataract. Refract. Surg. 2017, 43, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.; Wang, L.; Jiang, C.; Song, Z.; Lu, P. Predicting the postoperative intraocular lens position based on IOL Master 700 biometry, compared with results from the anterior segment analysis system. Graefes Arch. Clin. Exp. Ophthalmol. 2024, 262, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Hoffer, K.J. The Hoffer Q formula: A comparison of theoretic and regression formulas. J. Cataract. Refract. Surg. 1993, 19, 700–712. [Google Scholar] [CrossRef]
- Holladay, J.T.; Prager, T.C.; Chandler, T.Y.; Musgrove, K.H.; Lewis, J.W.; Ruiz, R.S. A three-part system for refining intraocular lens power calculations. J. Cataract. Refract. Surg. 1988, 14, 17–24. [Google Scholar] [CrossRef]
- Retzlaff, J.A.; Sanders, D.R.; Kraff, M.C. Development of the SRK/T intraocular lens implant power calculation formula. J. Cataract. Refract. Surg. 1990, 16, 333–340. [Google Scholar] [CrossRef] [PubMed]
- Schroder, S.; Langenbucher, A. Relationship between effective lens position and axial position of a thick intraocular lens. PLoS ONE 2018, 13, e0198824. [Google Scholar] [CrossRef]
- Langenbucher, A.; Szentmary, N.; Cayless, A.; Wendelstein, J.; Hoffmann, P. Prediction of the axial lens position after cataract surgery using deep learning algorithms and multilinear regression. Acta Ophthalmol. 2022, 100, e1378–e1384. [Google Scholar] [CrossRef]
- Savini, G.; Taroni, L.; Hoffer, K.J. Recent developments in intraocular lens power calculation methods-update 2020. Ann. Transl. Med. 2020, 8, 1553. [Google Scholar] [CrossRef]
- Olsen, T. Prediction of the effective postoperative (intraocular lens) anterior chamber depth. J. Cataract. Refract. Surg. 2006, 32, 419–424. [Google Scholar] [CrossRef]
- Olsen, T.; Cooke, D.L.; Findl, O.; Gatinel, D.; Koch, D.; Langenbucher, A.; Melles, R.B.; Yeo, T.K. Surgeons need to know more about intraocular lens design for accurate power calculation. J. Cataract. Refract. Surg. 2023, 49, 556–557. [Google Scholar] [CrossRef] [PubMed]
- Holland, D.; Rufer, F. New intraocular lens designs for femtosecond laser-assisted cataract operations: Chances and benefits. Ophthalmologe 2020, 117, 424–430. [Google Scholar] [CrossRef]
- Tassignon, M.J.; De Groot, V.; Vrensen, G.F. Bag-in-the-lens implantation of intraocular lenses. J. Cataract. Refract. Surg. 2002, 28, 1182–1188. [Google Scholar] [CrossRef] [PubMed]
- Masket, S.; Fram, N.R.; Cho, A.; Park, I.; Pham, D. Surgical management of negative dysphotopsia. J. Cataract. Refract. Surg. 2018, 44, 6–16. [Google Scholar] [CrossRef] [PubMed]
- Dick, H.B.; Schultz, T. Intraocular lens fixated in the anterior capsulotomy created in the line of sight by a femtosecond laser. J. Refract. Surg. 2014, 30, 198–201. [Google Scholar] [CrossRef]
- Auffarth, G.U.; Friedmann, E.; Breyer, D.; Kaymak, H.; Holland, D.; Dick, B.; Petzold, A.; Shah, S.; Ladaria, L.S.; Garcia, S.A.; et al. Stability and Visual Outcomes of the Capsulotomy-Fixated FEMTIS-IOL After Automated Femtosecond Laser-Assisted Anterior Capsulotomy. Am. J. Ophthalmol. 2021, 225, 27–37. [Google Scholar] [CrossRef]
- Englisch, C.N.; Boden, K.T.; Messias, A.; Szurman, P.; Rickmann, A.; Muller, L.J.; Lorenz, A.T.; Seitz, B.; Langenbucher, A.; Wakili, P. Refraction Predictability for a Capsulotomy-Fixated Intraocular Lens in Femtosecond Laser-Assisted Cataract Surgery. J. Refract. Surg. 2025, 41, e532–e541. [Google Scholar] [CrossRef]
- Hirnschall, N.; Farrokhi, S.; Amir-Asgari, S.; Hienert, J.; Findl, O. Intraoperative optical coherence tomography measurements of aphakic eyes to predict postoperative position of 2 intraocular lens designs. J. Cataract. Refract. Surg. 2018, 44, 1310–1316. [Google Scholar] [CrossRef]
- Shah, R.; Edgar, D.F.; Rabbetts, R.; Harle, D.E.; Evans, B.J. Standardized patient methodology to assess refractive error reproducibility. Optom. Vis. Sci. 2009, 86, 517–528. [Google Scholar] [CrossRef]
- Teshigawara, T.; Meguro, A.; Mizuki, N. Relationship Between Postoperative Intraocular Lens Shift and Postoperative Refraction Change in Cataract Surgery Using Three Different Types of Intraocular Lenses. Ophthalmol. Ther. 2021, 10, 989–1002. [Google Scholar] [CrossRef] [PubMed]
- Wallace, H.B.; Misra, S.L.; Li, S.S.; McKelvie, J. Predicting pseudophakic refractive error: Interplay of biometry prediction error, anterior chamber depth, and changes in corneal curvature. J. Cataract. Refract. Surg. 2018, 44, 1123–1129. [Google Scholar] [CrossRef] [PubMed]
- Haigis, W.; Lege, B.; Miller, N.; Schneider, B. Comparison of immersion ultrasound biometry and partial coherence interferometry for intraocular lens calculation according to Haigis. Graefes Arch. Clin. Exp. Ophthalmol. 2000, 238, 765–773. [Google Scholar] [CrossRef] [PubMed]
- Taroni, L.; Hoffer, K.J.; Pellegrini, M.; Lupardi, E.; Savini, G. Comparison of the new Hoffer QST with 4 modern accurate formulas. J. Cataract. Refract. Surg. 2023, 49, 378–384. [Google Scholar] [CrossRef]
- Shajari, M.; Sonntag, R.; Niermann, T.; Holland, D.; Kohnen, T.; Priglinger, S.; Mayer, W.J. Determining and Comparing the Effective Lens Position and Refractive Outcome of a Novel Rhexis-Fixated Lens to Established Lens Designs. Am. J. Ophthalmol. 2020, 213, 62–68. [Google Scholar] [CrossRef]
Parameter | FEMTIS IOL | TECNIS IOL | p |
---|---|---|---|
Axial Length (mm) | 23.52 ± 0.22 | 23.91 ± 0.29 | 0.3 |
Anterior Chamber Depth (mm) | 3.13 ± 0.07 | 3.16 ± 0.10 | 0.8 |
Lens Thickness (mm) | 4.57 ± 0.07 | 4.59 ± 0.10 | 0.8 |
Mean Keratometry (D) | 42.91 ± 0.24 | 42.54 ± 0.32 | 0.4 |
White to White (mm) | 12.05 ± 0.07 | 11.90 ± 0.10 | 0.2 |
Spherical Equivalent (D) | 0.21 ± 0.81 | −0.74 ± 1.17 | 0.5 |
Cylinder (D) | −1.30 ± 0.17 | −1.63 ± 0.24 | 0.3 |
CDVA (LogMAR) | 0.16 ± 0.01 | 0.19 ± 0.01 | 0.04 * |
IOL Power (D) | 20.23 ± 0.63 | 21.44 ± 0.84 | 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Englisch, C.N.; Wakili, P.; Messias, A.; Szurman, P.; Rickmann, A.; Rudolph, C.N.; Fröhlich, A.T.; Seitz, B.; Langenbucher, A.; Boden, K.T. Anatomical Lens Position Predictability for a Capsulotomy-Fixated Intraocular Lens in Femtosecond Laser-Assisted Cataract Surgery. J. Clin. Med. 2025, 14, 6151. https://doi.org/10.3390/jcm14176151
Englisch CN, Wakili P, Messias A, Szurman P, Rickmann A, Rudolph CN, Fröhlich AT, Seitz B, Langenbucher A, Boden KT. Anatomical Lens Position Predictability for a Capsulotomy-Fixated Intraocular Lens in Femtosecond Laser-Assisted Cataract Surgery. Journal of Clinical Medicine. 2025; 14(17):6151. https://doi.org/10.3390/jcm14176151
Chicago/Turabian StyleEnglisch, Colya N., Philip Wakili, André Messias, Peter Szurman, Annekatrin Rickmann, Clemens N. Rudolph, Anna Theresa Fröhlich, Berthold Seitz, Achim Langenbucher, and Karl T. Boden. 2025. "Anatomical Lens Position Predictability for a Capsulotomy-Fixated Intraocular Lens in Femtosecond Laser-Assisted Cataract Surgery" Journal of Clinical Medicine 14, no. 17: 6151. https://doi.org/10.3390/jcm14176151
APA StyleEnglisch, C. N., Wakili, P., Messias, A., Szurman, P., Rickmann, A., Rudolph, C. N., Fröhlich, A. T., Seitz, B., Langenbucher, A., & Boden, K. T. (2025). Anatomical Lens Position Predictability for a Capsulotomy-Fixated Intraocular Lens in Femtosecond Laser-Assisted Cataract Surgery. Journal of Clinical Medicine, 14(17), 6151. https://doi.org/10.3390/jcm14176151