Influence of Rolfing Structural Integration on Lower Limb Mobility, Respiratory Thorax Mobility, and Trunk Symmetry: A Retrospective Cohort Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Inclusion Criteria
2.3. Structural Integration Intervention
2.4. Materials and Measures
2.4.1. Passive Hip Flexion Mobility (PHF)
2.4.2. Passive Knee Flexion Mobility (PKF)
2.4.3. Chest Circumference at Normal Breathing (CC-NB)
2.4.4. Chest Circumference at Full Inspiration (CC-FI)
2.4.5. Trunk Length Symmetry (TLS)
2.5. Statistical Analysis
3. Results
4. Discussion
4.1. Functional and Myofascial Mechanisms Underlying the New Findings
4.2. Interpreting Functional Gains and Clinical Impact
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BMI | Body mass index |
CC-FI | Chest circumference at full inspiration |
CC-NB | Chest circumference at normal breathing |
MCID | Minimal clinically important difference |
PHF | Passive hip flexion mobility |
PKF | Passive knee flexion mobility |
ROM | Range of motion |
SI | Structural Integration |
TLS | Tunk length symmetry |
References
- Schleip, R.; Gabbiani, G.; Wilke, J.; Naylor, I.; Hinz, B.; Zorn, A.; Jäger, H.; Breul, R.; Schreiner, S.; Klingler, W. Fascia Is Able to Actively Contract and May Thereby Influence Musculoskeletal Dynamics: A Histochemical and Mechanographic Investigation. Front. Physiol. 2019, 10, 336. [Google Scholar] [CrossRef]
- Jacobson, E. Structural integration: Origins and development. J. Altern. Complement. Med. 2011, 17, 775–780. [Google Scholar] [CrossRef]
- James, H.; Castaneda, L.; Miller, M.E.; Findley, T. Rolfing structural integration treatment of cervical spine dysfunction. J. Bodyw. Mov. Ther. 2009, 13, 229–238. [Google Scholar] [CrossRef]
- Brandl, A.; Bartsch, K.; James, H.; Miller, M.E.; Schleip, R. Influence of Rolfing Structural Integration on Active Range of Motion: A Retrospective Cohort Study. J. Clin. Med. 2022, 11, 5878. [Google Scholar] [CrossRef]
- Santos, T.S.; Oliveira, K.K.B.; Martins, L.V.; Vidal, A.P.C. Effects of manual therapy on body posture: Systematic review and meta-analysis. Gait Posture 2022, 96, 280–294. [Google Scholar] [CrossRef]
- Janda, V. Muscle Function Testing; Butterworths: Oxford, UK, 1983. [Google Scholar]
- Findley, T.; DeFilippis, J. Information for Clinical Health Care Practitioners; Rolfing Structural Integration—The Rolf Institute Research Committee: Seattle, WA, USA, 2005; p. e6. [Google Scholar]
- Elson, R.A.; Aspinall, G.R. Measurement of hip range of flexion-extension and straight-leg raising. Clin. Orthop. Relat. Res. 2008, 466, 281–286. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Anthropometry Procedures Manual; National Center for Health Statistics: Hyattsville, MD, USA, 1988. Available online: https://wwwn.cdc.gov/nchs/data/nhanes3/manuals/anthro.pdf (accessed on 1 July 2025).
- NASA. NASA Anthropometric Source Book: Volume II—A Handbook of Anthropometric Data; NASA Reference Publication 1024; NASA: Washington, DC, USA, 1978. Available online: https://ntrs.nasa.gov/api/citations/19790005540/downloads/19790005540.pdf (accessed on 1 March 2025).
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B Stat. Methodol. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Elkjær, E.; Mikkelsen, M.B.; Michalak, J.; Mennin, D.S.; O’Toole, M.S. Expansive and Contractive Postures and Movement: A Systematic Review and Meta-Analysis. Perspect. Psychol. Sci. 2022, 17, 276–304. [Google Scholar] [CrossRef]
- Weinberg, R.S.; Hunt, V.V. The interrelationships between anxiety, motor performance and electromyography. J. Mot. Behav. 1976, 8, 219–224. [Google Scholar] [CrossRef]
- Brandl, A.; Engel, R.; Egner, C.; Schleip, R.; Schubert, C. Relations between Daily Stressful Events, Exertion, Heart Rate Variability, and Thoracolumbar Fascia Deformability: A Case Report. J. Med. Case Rep. 2024, 18, 589. [Google Scholar] [CrossRef]
- Tozzi, P.; Bongiorno, D.; Vitturini, C. Low back pain and kidney mobility: Local osteopathic fascial manipulation decreases pain perception and improves renal mobility. J. Bodyw. Mov. Ther. 2011, 16, 381–391. [Google Scholar] [CrossRef]
- Cathcart, E.; McSweeney, T.; Johnston, R.; Young, H.; Edwards, D.J. Immediate biomechanical, systemic, and interoceptive effects of myofascial release on the thoracic spine: A randomised controlled trial. J. Bodyw. Mov. Ther. 2019, 23, 74–81. [Google Scholar] [CrossRef]
- Krause, F.; Wilke, J.; Vogt, L.; Banzer, W. Intermuscular force transmission along myofascial chains: A systematic review. J. Anat. 2016, 228, 910–918. [Google Scholar] [CrossRef]
- Wilke, J.; Krause, F.; Vogt, L.; Banzer, W. What Is Evidence-Based About Myofascial Chains: A Systematic Review. Arch. Phys. Med. Rehabil. 2016, 97, 454–461. [Google Scholar] [CrossRef]
- Brandl, A.; Egner, C.; Schleip, R. Immediate Effects of Myofascial Release on the Thoracolumbar Fascia and Osteopathic Treatment for Acute Low Back Pain on Spine Shape Parameters: A Randomized, Placebo-Controlled Trial. Life 2021, 11, 845. [Google Scholar] [CrossRef]
- Stecco, C.; Macchi, V.; Porzionato, A.; Duparc, F.; De Caro, R. The fascia: The forgotten structure. Ital. J. Anat. Embryol. 2011, 116, 127–138. [Google Scholar]
- Schleip, R.; Müller, D.G. Training principles for fascial connective tissues. J. Bodyw. Mov. Ther. 2013, 17, 103–115. [Google Scholar] [CrossRef]
- Langevin, H.M. Connective tissue: A body-wide signaling network? Med. Hypotheses 2006, 66, 1074–1077. [Google Scholar] [CrossRef]
- Bianchi, M.; Rossettini, G.; Cerritelli, F.; Esteves, J.E. Insights into how manual therapists incorporate the biopsychosocial-enactive model in care of individuals with CLBP. Chiropr. Man. Therap. 2025, 33, 7. [Google Scholar] [CrossRef]
- Jaeschke, R.; Singer, J.; Guyatt, G.H. Measurement of health status: Ascertaining the minimal clinically important difference. Control Clin. Trials 1989, 10, 407–415. [Google Scholar] [CrossRef]
- Copay, A.G.; Subach, B.R.; Glassman, S.D.; Polly, D.W., Jr.; Schuler, T.C. Understanding the minimum clinically important difference. Spine J. 2007, 7, 541–546. [Google Scholar] [CrossRef]
- Pantouveris, M.; Kotsifaki, R.; Whiteley, R. Inclinometers and Apps Are Better than Goniometers, Measuring Knee Extension Range of Motion in Anterior Cruciate Ligament Patients: Reliability and Minimal Detectable Change for the Three Devices. J. Knee Surg. 2024, 37, 821–827. [Google Scholar] [CrossRef]
- Adegoke, B.O.; Fapojuwo, O.A. Range of Active Hip Motion in Low Back Pain Patients and Apparently Healthy Controls. J. Allied Health Sci. Pract. 2010, 8, 11. [Google Scholar] [CrossRef]
- Bockenhauer, S.E.; Chen, H.; Julliard, K.N.; Weedon, J. Measuring thoracic excursion: Reliability of the cloth tape measure technique. J. Am. Osteopath. Assoc. 2007, 107, 191–196. [Google Scholar]
- Hwang, J.; Jung, M.-C. Age and Sex Differences in Ranges of Motion and Motion Patterns. Int. J. Occup. Saf. Ergon. 2015, 21, 173–186. [Google Scholar] [CrossRef] [PubMed]
Baseline Characteristics | Participants (n = 497) Mean ± SD |
---|---|
Sex (men/woman) | 176/321 |
Age (years) | 39.0 ± 11.1 |
Height (m) | 1.69 ± 0.1 |
Weight (kg) | 71.4 ± 16.2 |
BMI (kg/m2) | 25.0 ± 4.8 |
PHF Right | PHF Left | PKF Right | PKF Left | CC-NB | CC-FI | TLS | ||
---|---|---|---|---|---|---|---|---|
All participants | Wilcoxon W | 2753.0 | 3655.0 | 0.0 | 57.5 | 47,680.5 | 22,966.5 | 8986.0 |
p (adjusted) 1 | <0.001 | <0.001 | <0.001 | <0.001 | 0.026 | <0.001 | 0.001 | |
Effect size 2 | −0.50 | −0.34 | −1 | −0.98 | 0.13 | −0.50 | −0.25 | |
Female | Wilcoxon W | 1108.0 | 1505.5 | 0.0 | 42.0 | 19,832.0 | 9703.0 | 3239.0 |
p (adjusted) 1 | <0.001 | 0.013 | <0.001 | <0.001 | 0.098 | <0.001 | 0.008 | |
Effect size 2 | −0.43 | −0.30 | −1 | −0.97 | 0.12 | −0.49 | −0.26 | |
Men | Wilcoxon W | 373.0 | 476.0 | 0.0 | 0.0 | 6018.0 | 2902.0 | 1452 |
p (adjusted) 1 | <0.001 | 0.008 | <0.001 | <0.001 | 0.111 | <0.001 | 0.049 | |
Effect size 2 | −0.59 | −0.40 | −1 | −1 | 0.15 | −0.49 | −0.24 |
Percentiles | ||||||
---|---|---|---|---|---|---|
Time | Sex | N | Median | 25th | 75th | |
PHF right (°) | T1 | all | 193 | 94.00 | 90.00 | 99.00 |
female | 115 | 91.50 * | 88.00 | 95.0 | ||
men | 78 | 99.00 | 95.38 | 104.0 | ||
T2 | all | 193 | 95.00 | 90.50 | 100.0 | |
female | 115 | 92.50 * | 89.00 | 96.0 | ||
men | 78 | 100.0 | 95.25 | 105.0 | ||
PHF left (°) | T1 | all | 190 | 95.00 | 90.38 | 99.00 |
female | 113 | 92.00 * | 89.00 | 96.0 | ||
men | 77 | 99.20 | 96.13 | 104.0 | ||
T2 | all | 190 | 95.50 | 91.00 | 100.4 | |
female | 113 | 93.00 * | 89.50 | 97.0 | ||
men | 77 | 100.5 | 95.50 | 105.0 | ||
PKF right (°) | T1 | all | 165 | 115.0 | 105.0 | 120.0 |
female | 105 | 115.0 | 105.0 | 120.0 | ||
men | 60 | 115.0 | 108.8 | 120.0 | ||
T2 | all | 165 | 120.0 | 115.0 | 125.0 | |
female | 105 | 125.0 * | 115.0 | 130.0 | ||
men | 60 | 120.0 | 115.0 | 125.0 | ||
PKF left (°) | T1 | all | 165 | 115.0 | 105.0 | 120.0 |
female | 105 | 115.0 | 105.0 | 120.0 | ||
men | 60 | 110.0 | 105.0 | 120.0 | ||
T2 | all | 165 | 120.0 | 115.0 | 125.0 | |
female | 105 | 120.0 * | 115.0 | 125.0 | ||
men | 60 | 120.0 | 113.8 | 121.3 | ||
CC-NB (cm) | T1 | all | 485 | 83.25 | 76.50 | 92.50 |
female | 312 | 79.00 * | 74.00 | 84.00 | ||
men | 172 | 93.00 | 87.25 | 100.5 | ||
T2 | all | 485 | 83.00 | 76.50 | 92.00 | |
female | 312 | 78.13 * | 74.50 | 83.6 | ||
men | 172 | 92.50 | 87.38 | 100.6 | ||
CC-FI (cm) | T1 | all | 484 | 85.50 | 79.00 | 95.00 |
female | 312 | 81.50 * | 76.50 | 86.3 | ||
men | 172 | 96.50 | 90.75 | 103.0 | ||
T2 | all | 484 | 86.00 | 79.50 | 95.10 | |
female | 312 | 81.50 * | 78.00 | 86.6 | ||
men | 172 | 97.00 | 91.50 | 104.0 | ||
TLS (cm) | T1 | all | 294 | −0.50 | −1.50 | 0.00 |
female | 183 | −0.25 | −1.25 | 0.00 | ||
men | 111 | −0.50 | −1.50 | 0.00 | ||
T2 | all | 294 | 0.00 | −0.50 | 0.00 | |
female | 183 | 0.00 | −0.50 | 0.00 | ||
men | 111 | 0.00 | −1.00 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schleip, R.; James, H.; Bartsch, K.; Jacobsen, E.; Lesondak, D.; Miller, M.E.; Brandl, A. Influence of Rolfing Structural Integration on Lower Limb Mobility, Respiratory Thorax Mobility, and Trunk Symmetry: A Retrospective Cohort Study. J. Clin. Med. 2025, 14, 6123. https://doi.org/10.3390/jcm14176123
Schleip R, James H, Bartsch K, Jacobsen E, Lesondak D, Miller ME, Brandl A. Influence of Rolfing Structural Integration on Lower Limb Mobility, Respiratory Thorax Mobility, and Trunk Symmetry: A Retrospective Cohort Study. Journal of Clinical Medicine. 2025; 14(17):6123. https://doi.org/10.3390/jcm14176123
Chicago/Turabian StyleSchleip, Robert, Helen James, Katja Bartsch, Eric Jacobsen, David Lesondak, Marilyn E. Miller, and Andreas Brandl. 2025. "Influence of Rolfing Structural Integration on Lower Limb Mobility, Respiratory Thorax Mobility, and Trunk Symmetry: A Retrospective Cohort Study" Journal of Clinical Medicine 14, no. 17: 6123. https://doi.org/10.3390/jcm14176123
APA StyleSchleip, R., James, H., Bartsch, K., Jacobsen, E., Lesondak, D., Miller, M. E., & Brandl, A. (2025). Influence of Rolfing Structural Integration on Lower Limb Mobility, Respiratory Thorax Mobility, and Trunk Symmetry: A Retrospective Cohort Study. Journal of Clinical Medicine, 14(17), 6123. https://doi.org/10.3390/jcm14176123