Camera Port Swapping in Transperitoneal Robotic Partial Nephrectomy: A Feasible Alternative to the Retroperitoneal Approach for Posterior Renal Tumors
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Study Population
2.3. Port Configuration and Camera Port Swapping
2.4. Data Collection
2.5. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Perioperative Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
RPN | Robotic partial nephrectomy |
TA | Transperitoneal approach |
RA | Retroperitoneal approach |
CPS | Camera port swapping |
BMI | Body mass index |
References
- Ljungberg, B.; Albiges, L.; Abu-Ghanem, Y.; Bedke, J.; Capitanio, U.; Dabestani, S.; Fernández-Pello, S.; Giles, R.H.; Hofmann, F.; Hora, M.; et al. European association of urology guidelines on renal cell carcinoma: The 2022 update. Eur. Urol. 2022, 82, 399–410. [Google Scholar] [CrossRef] [PubMed]
- Buffi, N.; Lista, G.; Larcher, A.; Lughezzani, G.; Ficarra, V.; Cestari, A.; Lazzeri, M.; Guazzoni, G. Margin, ischemia, and complications (mic) score in partial nephrectomy: A new system for evaluating achievement of optimal outcomes in nephron-sparing surgery. Eur. Urol. 2012, 62, 617–618. [Google Scholar] [CrossRef] [PubMed]
- Ramanathan, R.; Leveillee, R.J. A review of methods for hemostasis and renorrhaphy after laparoscopic and robot-assisted laparoscopic partial nephrectomy. Curr. Urol. Rep. 2010, 11, 208–220. [Google Scholar] [CrossRef]
- Gill, I.S.; Kavoussi, L.R.; Lane, B.R.; Blute, M.L.; Babineau, D.; Colombo, J.R., Jr.; Frank, I.; Permpongkosol, S.; Weight, C.J.; Kaouk, J.H.; et al. Comparison of 1,800 laparoscopic and open partial nephrectomies for single renal tumors. J. Urol. 2007, 178, 41–46. [Google Scholar] [CrossRef]
- Mendes, G.; Madanelo, M.; Vila, F.; Versos, R.; Teixeira, B.L.; Rocha, M.A.; Mesquita, S.; Marques-Monteiro, M.; Príncipe, P.; Ramires, R.; et al. Transperitoneal vs. Retroperitoneal approach in laparoscopic partial nephrectomy for posterior renal tumors: A retrospective, multi-center, comparative study. J. Clin. Med. 2024, 13, 701. [Google Scholar] [CrossRef] [PubMed]
- Porpiglia, F.; Mari, A.; Amparore, D.; Fiori, C.; Antonelli, A.; Artibani, W.; Bove, P.; Brunocilla, E.; Capitanio, U.; Da Pozzo, L.; et al. Transperitoneal vs retroperitoneal minimally invasive partial nephrectomy: Comparison of perioperative outcomes and functional follow-up in a large multi-institutional cohort (the record 2 project). Surg. Endosc. 2021, 35, 4295–4304. [Google Scholar] [CrossRef]
- Zhao, W.; Ding, Y.; Chen, D.; Xuan, Y.; Chen, Z.; Zhao, X.; Jiang, B.; Wang, B.; Li, H.; Yin, C.; et al. Comparison of transperitoneal and retroperitoneal robotic partial nephrectomy for patients with completely lower pole renal tumors. J. Clin. Med. 2023, 12, 722. [Google Scholar] [CrossRef]
- Bertolo, R.; Ditonno, F.; Veccia, A.; De Marco, V.; Migliorini, F.; Porcaro, A.B.; Rizzetto, R.; Cerruto, M.A.; Autorino, R.; Antonelli, A. Postoperative outcomes of transperitoneal versus retroperitoneal robotic partial nephrectomy: A propensity-score matched comparison focused on patient mobilization, return to bowel function, and pain. J. Robot. Surg. 2024, 18, 96. [Google Scholar] [CrossRef]
- Hu, J.C.; Treat, E.; Filson, C.P.; McLaren, I.; Xiong, S.; Stepanian, S.; Hafez, K.S.; Weizer, A.Z.; Porter, J. Technique and outcomes of robot-assisted retroperitoneoscopic partial nephrectomy: A multicenter study. Eur. Urol. 2014, 66, 542–549. [Google Scholar] [CrossRef]
- Farinha, R.; Breda, A.; Porter, J.; Mottrie, A.; Van Cleynenbreugel, B.; Vander Sloten, J.; Mottaran, A.; Gallagher, A.G. International expert consensus on metric-based characterization of robot-assisted partial nephrectomy. Eur. Urol. Focus. 2023, 9, 388–395. [Google Scholar] [CrossRef]
- Bhayani, S.B. Da vinci robotic partial nephrectomy for renal cell carcinoma: An atlas of the four-arm technique. J. Robot. Surg. 2008, 1, 279–285. [Google Scholar] [CrossRef]
- Patel, M.N.; Bhandari, M.; Menon, M.; Rogers, C.G. Robotic-assisted partial nephrectomy: Has it come of age? Indian J. Urol. 2009, 25, 523–528. [Google Scholar] [CrossRef] [PubMed]
- Kutikov, A.; Uzzo, R.G. The r.E.N.A.L. Nephrometry score: A comprehensive standardized system for quantitating renal tumor size, location and depth. J. Urol. 2009, 182, 844–853. [Google Scholar] [CrossRef] [PubMed]
- Dindo, D.; Demartines, N.; Clavien, P.A. Classification of surgical complications: A new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann. Surg. 2004, 240, 205–213. [Google Scholar] [CrossRef]
- Darwiche, F.; Swain, S.; Kallingal, G.; Punnen, S.; Manoharan, M.; Parekh, D.J.; Gonzalgo, M.L. Operative technique and early experience for robotic-assisted laparoscopic nephroureterectomy (ralnu) using da vinci xi. Springerplus 2015, 4, 298. [Google Scholar] [CrossRef]
- Huang, C.W.; Tsai, H.L.; Yeh, Y.S.; Su, W.C.; Huang, M.Y.; Huang, C.M.; Chang, Y.T.; Wang, J.Y. Robotic-assisted total mesorectal excision with the single-docking technique for patients with rectal cancer. BMC Surg. 2017, 17, 126. [Google Scholar] [CrossRef]
- Mottrie, A.M. The introduction of robot-assisted surgery in urologic practice: Why is it so difficult? Eur. Urol. 2010, 57, 747–749. [Google Scholar] [CrossRef]
- Benway, B.M.; Bhayani, S.B.; Rogers, C.G.; Dulabon, L.M.; Patel, M.N.; Lipkin, M.; Wang, A.J.; Stifelman, M.D. Robot assisted partial nephrectomy versus laparoscopic partial nephrectomy for renal tumors: A multi-institutional analysis of perioperative outcomes. J. Urol. 2009, 182, 866–872. [Google Scholar] [CrossRef]
- Novara, G.; Ficarra, V.; Rosen, R.C.; Artibani, W.; Costello, A.; Eastham, J.A.; Graefen, M.; Guazzoni, G.; Shariat, S.F.; Stolzenburg, J.U.; et al. Systematic review and meta-analysis of perioperative outcomes and complications after robot-assisted radical prostatectomy. Eur. Urol. 2012, 62, 431–452. [Google Scholar] [CrossRef]
- Gul, Z.G.; Tam, A.; Badani, K.K. Robotic partial nephrectomy: The current status. Indian J. Urol. 2020, 36, 16–20. [Google Scholar] [CrossRef]
- Hung, A.J.; Cai, J.; Simmons, M.N.; Gill, I.S. "Trifecta" in partial nephrectomy. J. Urol. 2013, 189, 36–42. [Google Scholar] [CrossRef]
- Bai, N.; Qi, M.; Shan, D.; Liu, S.; Na, T.; Chen, L. Trifecta achievement in patients undergoing partial nephrectomy: A systematic review and meta-analysis of predictive factors. Int. Braz. J. Urol. 2022, 48, 625–636. [Google Scholar] [CrossRef]
- Ghali, F.; Elbakry, A.A.; Hamilton, Z.A.; Yim, K.; Nasseri, R.; Patel, S.; Eldefrawy, A.; Ryan, S.; Bradshaw, A.W.; Meagher, M.; et al. Robotic partial nephrectomy for clinical t2a renal mass is associated with improved trifecta outcome compared to open partial nephrectomy: A single surgeon comparative analysis. World J. Urol. 2020, 38, 1113–1122. [Google Scholar] [CrossRef] [PubMed]
- Zargar, H.; Allaf, M.E.; Bhayani, S.; Stifelman, M.; Rogers, C.; Ball, M.W.; Larson, J.; Marshall, S.; Kumar, R.; Kaouk, J.H. Trifecta and optimal perioperative outcomes of robotic and laparoscopic partial nephrectomy in surgical treatment of small renal masses: A multi-institutional study. BJU Int. 2015, 116, 407–414. [Google Scholar] [CrossRef] [PubMed]
- Macleod, L.C.; Hsi, R.S.; Gore, J.L.; Wright, J.L.; Harper, J.D. Perinephric fat thickness is an independent predictor of operative complexity during robot-assisted partial nephrectomy. J. Endourol. 2014, 28, 587–591. [Google Scholar] [CrossRef]
- Khene, Z.E.; Peyronnet, B.; Mathieu, R.; Fardoun, T.; Verhoest, G.; Bensalah, K. Analysis of the impact of adherent perirenal fat on peri-operative outcomes of robotic partial nephrectomy. World J. Urol. 2015, 33, 1801–1806. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Basilius, J.; Ali, S.N.; Dobbs, R.W.; Lee, D.I. Single-port robotic applications in urology. J. Endourol. 2023, 37, 688–699. [Google Scholar] [CrossRef]
- Billah, M.S.; Stifelman, M.; Munver, R.; Tsui, J.; Lovallo, G.; Ahmed, M. Single port robotic assisted reconstructive urologic surgery-with the da vinci sp surgical system. Transl. Androl. Urol. 2020, 9, 870–878. [Google Scholar] [CrossRef]
- Ngu, J.C.; Tsang, C.B.; Koh, D.C. The da vinci xi: A review of its capabilities, versatility, and potential role in robotic colorectal surgery. Robot. Surg. 2017, 4, 77–85. [Google Scholar] [CrossRef]
- Sorbellini, M.; Bratslavsky, G. Decreasing the indications for radical nephrectomy: A study of multifocal renal cell carcinoma. Front. Oncol. 2012, 2, 84. [Google Scholar] [CrossRef]
n (% or Range) | p-Value | ||
---|---|---|---|
Transperitoneal Approach with Camera Port Swapping | Retroperitoneal Approach | ||
Number of patients | 35 (54.7) | 29 (45.3) | |
Age, years | 50 (27–78) | 55 (42–84) | 0.062 |
Sex | 1.000 | ||
female | 12 (34.3) | 10 (34.5) | |
male | 23 (65.7) | 19 (65.5) | |
BMI, kg/m2 | 26.0 (20.3–33.8) | 26.1 (20.4–36.7) | 0.604 |
Laterality | 0.802 | ||
Right | 16 (45.7) | 15 (51.7) | |
Left | 19 (54.3) | 14 (48.3) | |
Tumor size, cm | 2.5 (0.8–6.5) | 2.1 (1.0–4.6) | 0.122 |
Hilar tumor | 9 (25.7) | 6 (20.7) | 0.770 |
Lateral tumor | 14 (40.0) | 6 (20.6) | 0.113 |
RENAL nephrometry score | 6 (4–10) | 6 (5–10) | 0.625 |
Operative time, min | 166 (97–362) | 153 (102–226) | 0.241 |
Warm ischemia time, min | 23 (0–44) * | 18 (7–45) | 0.104 |
Estimated blood loss, mL | 100 (0–650) | 75 (0–700) | 0.143 |
Positive surgical margin | 0 (0) | 0 (0) | 1.000 |
Postoperative complication | 1 (2.9) | 1 (3.4) | 1.000 |
Length of hospital stay, days | 4 (3–8) | 4 (3–11) | 0.077 |
Renal function decline | 5 (14.3) | 4 (13.8%) | 1.000 |
Trifecta achievement | 30 (85.7) | 25 (86.2) | 1.000 |
n (% or Range) | p-Value | ||
---|---|---|---|
Transperitoneal Approach with Camera Port Swapping | Retroperitoneal Approach | ||
Number of patients | 21 (100) | 21 (100) | |
Age, years | 46 (27–78) | 55 (42–84) | 0.053 |
Sex | 0.751 | ||
female | 7 (33.3) | 9 (42.9) | |
male | 14 (66.7) | 12 (57.1) | |
BMI, kg/m2 | 26.3 (20.7–30.5) | 26.1 (20.4–31.3) | 0.554 |
Laterality | 0.756 | ||
Right | 10 (47.6) | 8 (38.1) | |
Left | 11 (52.4) | 13 (61.9) | |
Tumor size, cm | 2.4 (0.8–4.5) | 2.2 (1.1–4.6) | 0.801 |
Hilar tumor | 7 (33.3) | 2 (9.5) | 0.130 |
Lateral tumor | 7 (33.3) | 6 (28.6) | 1.000 |
RENAL nephrometry score | 6 (6–10) | 6 (5–10) | 0.402 |
Operative time, min | 142 (97–362) | 152 (102–225) | 0.890 |
Warm ischemia time, min | 22 (0–44) * | 18 (7–45) | 0.504 |
Estimated blood loss, mL | 100 (0–400) | 100 (0–700) | 0.627 |
Positive surgical margin | 0 (0) | 0 (0) | 1.000 |
Postoperative complication | 0 (0) | 1 (4.8) | 1.000 |
Length of hospital stay, days | 4 (3–8) | 4 (3–11) | 0.989 |
Renal function decline | 1 (4.8) | 4 (19) | 0.343 |
Trifecta achievement | 20 (95.2) | 17 (81.0) | 0.343 |
Transperitoneal Approach with Camera Port Swapping | Retroperitoneal Approach | |||
---|---|---|---|---|
Trifecta Achievement/ Total (No, %) | p-Value | Trifecta Achievement/ Total (No, %) | p-Value | |
BMI | 0.381 | 0.532 | ||
<25 | 7/8 (89.9) | 5/5 (100.0) | ||
≥25 | 13/13 (100.0) | 12/16 (75.0) | ||
RENAL score | 1.000 | 1.000 | ||
<6 | 5/5 (100.0) | 6/7 (85.7) | ||
≥6 | 15/16 (93.8) | 11/14 (78.6) | ||
Tumor size | 1.000 | 0.489 | ||
<4 cm | 19/20 (95.0) | 15/18 (83.3) | ||
≥4 cm | 1/1 (100.0) | 2/3 (66.7) | ||
Hilar tumor | 0.333 | 1.000 | ||
No | 14/14 (100.0) | 15/19 (78.9) | ||
Yes | 6/7 (85.7) | 2/2 (100.0) | ||
Lateral tumor | 1.000 | 1.000 | ||
No | 13/14 (92.9) | 12/15 (80.0) | ||
Yes | 7/7 (100.0) | 5/6 (83.3) |
Margin | Difference | 95% CI | p-Value | Conclusion |
---|---|---|---|---|
−15% | +14.3% | −4.8% to 33.4% | 0.0013 | Non-inferior |
−10% | +14.3% | −4.8% to 33.4% | 0.0064 | Non-inferior |
−5% | +14.3% | −4.8% to 33.4% | 0.0239 | Non-inferior |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeon, J.; Bang, S.; Lee, J.H.; Kwon, J.K.; Kim, D.K.; Cho, K.S. Camera Port Swapping in Transperitoneal Robotic Partial Nephrectomy: A Feasible Alternative to the Retroperitoneal Approach for Posterior Renal Tumors. J. Clin. Med. 2025, 14, 6109. https://doi.org/10.3390/jcm14176109
Jeon J, Bang S, Lee JH, Kwon JK, Kim DK, Cho KS. Camera Port Swapping in Transperitoneal Robotic Partial Nephrectomy: A Feasible Alternative to the Retroperitoneal Approach for Posterior Renal Tumors. Journal of Clinical Medicine. 2025; 14(17):6109. https://doi.org/10.3390/jcm14176109
Chicago/Turabian StyleJeon, Jinhyung, Sungun Bang, Jeong Hyun Lee, Jong Kyou Kwon, Do Kyung Kim, and Kang Su Cho. 2025. "Camera Port Swapping in Transperitoneal Robotic Partial Nephrectomy: A Feasible Alternative to the Retroperitoneal Approach for Posterior Renal Tumors" Journal of Clinical Medicine 14, no. 17: 6109. https://doi.org/10.3390/jcm14176109
APA StyleJeon, J., Bang, S., Lee, J. H., Kwon, J. K., Kim, D. K., & Cho, K. S. (2025). Camera Port Swapping in Transperitoneal Robotic Partial Nephrectomy: A Feasible Alternative to the Retroperitoneal Approach for Posterior Renal Tumors. Journal of Clinical Medicine, 14(17), 6109. https://doi.org/10.3390/jcm14176109