The Usefulness of Anthropometric Measurements and Indicators in Assessing Muscle Mass in Older Adults
Abstract
1. Introduction
2. Materials and Methods
2.1. Laboratory Measures
2.2. Anthropometric Measurements
2.3. Anthropometric Indices
2.4. Body Composition Analysis
2.5. Statistical Analysis
3. Results
Characteristic of the Study Group
4. Discussion
Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BIA | Bioelectrical Impedance Analysis |
MST | Malnutrition Screening Tool |
MUST | Malnutrition Universal Screening Tool |
MNA-SF | Mini Nutritional Assessment–Short Form |
NRS-2002 | Nutritional Risk Screening 2002 |
SGA | Subjective Global Assessment |
BMI | Body Mass Index |
EWGSOP2 | The European Working Group on Sarcopenia in Older People |
DXA | Dual-Energy X-ray Absorptiometry |
MR | Magnetic Resonance |
CT | Computed Tomography |
ASM | Skeletal Muscle Mass |
BAI | Body Adiposity Index |
WHR | Waist–Hip Ratio |
WHtR | Waist–Height Ratio |
VAI | Visceral Adiposity Index |
BRI | Body Roundness Index |
ABSI | A Body Shape Index |
AVI | Abdominal Volume Index |
FFMI | Fat-Free Mass Index |
FMI | Fat Mass Index |
MAMC | Mid-Arm Muscle Circumference |
TS | Triceps Skinfold |
References
- Guerra, D.J.R.; de Souza Fernandes, D.P.; da Silva, R.P.; Nunes, M.V.; Ribeiro, A.Q. Low muscle reserve in older adults and associated factors. Rev. Bras. Geriatr. Gerontol. 2022, 25, e220159. [Google Scholar] [CrossRef]
- Thomas, D.R. Loss of skeletal muscle mass in aging: Examining the relationship of starvation, sarcopenia and cachexia. Clin. Nutr. 2007, 26, 389–399. [Google Scholar] [CrossRef] [PubMed]
- Larsson, L.; Degens, H.; Li, M.; Salviati, L.; Lee, Y.I.; Thompson, W.; Kirkland, J.L.; Sandri, M. Sarcopenia: Aging-related loss of muscle mass and function. Physiol. Rev. 2019, 99, 427–511. [Google Scholar] [CrossRef] [PubMed]
- Dent, E.; Hoogendijk, E.O.; Visvanathan, R.; Wright, O.R.L. Malnutrition screening and assessment in hospitalised older people: A Review. J. Nutr. Health Aging 2019, 23, 431–441. [Google Scholar] [CrossRef]
- Dent, E.; Wright, O.R.L.; Woo, J.; Hoogendijk, E.O. Malnutrition in older adults. Lancet 2023, 401, 951–966. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef]
- Baglietto, N.; Vaquero-Cristóbal, R.; Albaladejo-Saura, M.; Mecherques-Carini, M.; Esparza-Ros, F. Assessing skeletal muscle mass and lean body mass: An analysis of the agreement among dual X-ray absorptiometry, anthropometry, and bioelectrical impedance. Front. Nutr. 2024, 11, 1445892. [Google Scholar] [CrossRef]
- Padilla, C.J.; Ferreyro, F.A.; Arnold, W.D. Anthropometry as a readily accessible health assessment of older adults. Exp. Gerontol. 2021, 153, 111464. [Google Scholar] [CrossRef]
- Nuttall, F.Q. Body Mass Index Obesity, BMI, and Health: A Critical Review. Nutr. Today 2015, 50, 117–128. [Google Scholar] [CrossRef]
- Bergman, R.N.; Stefanovski, D.; Buchanan, T.A.; Sumner, A.E.; Reynolds, J.C.; Sebring, N.G.; Xiang, A.H.; Watanabe, R.M. A better index of body adiposity. Obesity 2011, 19, 1083–1089. [Google Scholar] [CrossRef]
- World Health Organization. Waist Circumference and Waist-Hip Ratio: Report of a WHO Expert Consultation, Geneva, 8–11 December 2008; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Liu, W.; Weng, S.; Chen, Y.; Cao, C.; Peng, D. Age adjusted visceral adiposity index (VAI) is superior to VAI for predicting mortality among US adults: An analysis of the NHANES 2011–2014. Aging Clin. Exp. Res. 2024, 36, 24. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Ding, L.; Hu, H.; He, H.; Xiong, Z.; Zhu, X. Associations of Body-Roundness Index and Sarcopenia with Cardiovascular Disease among Middle-Aged and Older Adults: Findings from CHARLS. J. Nutr. Health Aging 2023, 27, 953–959. [Google Scholar] [CrossRef] [PubMed]
- Shafran, I.; Krakauer, N.Y.; Krakauer, J.C.; Goshen, A.; Gerber, Y. The predictive ability of ABSI compared to BMI for mortality and frailty among older adults. Front. Nutr. 2024, 11, 1305330. [Google Scholar] [CrossRef] [PubMed]
- Khosravian, S.; Bayani, M.A.; Hosseini, S.R.; Bijani, A.; Mouodi, S.; Ghadimi, R. Comparison of anthropometric indices for predicting the risk of metabolic syndrome in older adults. Rom. J. Intern. Med. 2021, 59, 43–49. [Google Scholar] [CrossRef]
- Merchant, R.A.; Seetharaman, S.; Au, L.; Wong, M.W.K.; Wong, B.L.L.; Tan, L.F.; Chen, M.Z.; Ng, S.E.; Soong, J.T.Y.; Hui, R.J.Y.; et al. Relationship of Fat Mass Index and Fat Free Mass Index With Body Mass Index and Association With Function, Cognition and Sarcopenia in Pre-Frail Older Adults. Front. Endocrinol. 2021, 12, 765415. [Google Scholar] [CrossRef]
- Chao, Y.P.; Kao, T.W.; Chen, W.L.; Peng, T.C.; Wu, L.W. Mid-arm muscle circumference as an indicator of osteoporosis in community-dwelling older men. Arch. Gerontol. Geriatr. 2020, 87, 103998. [Google Scholar] [CrossRef]
- Chen, L.K.; Woo, J.; Assantachai, P.; Auyeung, T.W.; Chou, M.Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S.; et al. Asian Working Group for Sarcopenia: 2019 consensus update on sarcopenia diagnosis and treatment. J. Am. Med. Dir. Assoc. 2020, 21, 300–307. [Google Scholar] [CrossRef]
- Quinonez-Olivas, C.G.; Salinas-Martínez, R.; Ortiz-Jiménez, X.A.; Gamez-Trevino, D.G.; Guajardo-Alvarex, G.; Gonzalez-Garcia, B. Muscle mass measured using bioelectrical impedance analysis, calf circumference and grip strength in older adults. Med. Univ. 2016, 18, 158–162. [Google Scholar] [CrossRef]
- Kiss, C.M.; Bertschi, D.; Beerli, N.; Berres, M.; Kressig, R.W. Calf circumference as a surrogate indicator for detecting low muscle mass in hospitalized geriatric patients. Aging Clin. Exp. Res. 2024, 36, 25. [Google Scholar] [CrossRef]
- Da Silva Santana, F.; Farah, B.Q.; Soares, A.H.G.; Correia, M.A.; dos Reazers, T.M.P.; Filho, A.L.; Ritti-Dias, R.M. Anthropometric parameters as predictors of muscle mass in elderly women. Motricidade 2015, 11, 107–114. [Google Scholar]
- Pagotto, V.; Santos, K.F.; Malaquias, S.G.; Bachion, M.M.; Silveira, E.A. Calf circumference: Clinical validation for evaluation of muscle mass in the elderly. Rev. Bras. Enferm. 2018, 71, 322–328. [Google Scholar] [CrossRef]
- Kawakami, R.; Murakami, H.; Sanada, K.; Tanaka, N.; Sawada, S.S.; Tabata, I.; Higuchi, M.; Miyachi, M. Calf circumference as a surrogate marker of muscle mass for diagnosing sarcopenia in Japanese men and women. Geriatr. Gerontol. Int. 2014, 14, 83–90. [Google Scholar]
- Tannirandorn, A.; Pangkanon, W.; Prachansuwan, A.; Isarashewawat, P. Relationship between Calf Circumference and Skeletal Muscle Index among Community-Dwelling Thai Elderly. J. Med. Assoc. Thai 2021, 104, 1814–1820. [Google Scholar]
- Champaiboon, J.; Petchlorlian, A.; Manasvanich, B.; Ubonsutvanich, N.; Jitpugdee, W.; Kittiskulnam, P.; Wongwatthananart, S.; Menorngwa, Y.; Pornsalnuwat, S.; Praditpornsilpa, K. Calf circumference as a screening tool for low skeletal muscle mass: Cut-off values in independent Thai older adults. BMC Geriatr. 2023, 23, 826. [Google Scholar] [CrossRef] [PubMed]
- Cederholm, T.; Jensen, G.L.; Correia, M.I.T.D.; Gonzalez, M.C.; Fukushima, R.; Higashiguchi, T.; Baptista, G.; Barazzoni, R.; Blaauw, R.; Coats, A.; et al. GLIM criteria for the diagnosis of malnutrition—A consensus report from the global clinical nutrition community. Clin. Nutr. 2019, 38, 1–9. [Google Scholar] [CrossRef]
n Women | Women Group (n = 238) | n Men | Men Group (n = 123) | p | |
---|---|---|---|---|---|
Age (years) | 238 | 78 (72–83) | 123 | 77 (70–83) | 0.153 * |
Heart failure n (%) | 238 | 73 (30.7) | 123 | 37 (30.1) | 0.908 ** |
Coronary artery disease n (%) | 238 | 85 (35.7) | 123 | 45 (36.6) | 0.870 ** |
Prior myocardial infarction n (%) | 238 | 13 (5.5) | 123 | 12 (9.8) | 0.128 ** |
Atrial fibrillation n (%) | 238 | 39 (16.4) | 123 | 28 (22.8) | 0.139 ** |
Arterial hypertension n (%) | 238 | 209 (87.8) | 123 | 94 (76.4) | 0.005 ** |
Stroke n (%) | 238 | 22 (9.2) | 123 | 11 (8.9) | 0.925 ** |
Alzheimer’s disease n (%) | 238 | 25 (10.5) | 123 | 7 (5.7) | 0.171 ** |
Dementia n (%) | 238 | 34 (14.3) | 123 | 13 (10.6) | 0.320 ** |
Depression n (%) | 238 | 18 (7.6) | 123 | 7 (5.7) | 0.663 **** |
Chronic obstructive pulmonary disease n (%) | 238 | 10 (4.2) | 123 | 11 (8.9) | 0.068 ** |
Chronic kidney disease (stage 1–4) n (%) | 238 | 43 (18.1) | 123 | 15 (12.2) | 0.149 ** |
Diabetes mellitus n (%) | 238 | 88 (37.0) | 123 | 53 (43.1) | 0.259 ** |
Mixed hyperlipidemia n (%) | 238 | 13 (5.5) | 123 | 14 (11.4) | 0.043 ** |
Hypercholesterolemia n (%) | 238 | 73 (30.7) | 123 | 15 (12.2) | <0.001 ** |
Hypertriglycerides n (%) | 238 | 3 (1.3) | 123 | 0 (0.0) | 0.554 **** |
Hypothyroidism n (%) | 238 | 43 (18.1) | 123 | 8 (6.5) | 0.003 ** |
Osteoporosis n (%) | 238 | 22 (9.2) | 123 | 4 (3.3) | 0.051 **** |
Anemia n (%) | 238 | 56 (23.5) | 123 | 48 (39.0) | 0.002 ** |
Albumin (g/L) | 131 | 36 (34–38) | 58 | 36 (34–38) | 0.871 * |
Vitamin D (nmol/L) | 190 | 33.9 (25.9–46.2) | 80 | 40.2 (30.3–49.7) | 0.031 * |
TSH (uIU/mL) | 230 | 1.3 (0.7–1.9) | 114 | 1.3 (0.9–1.9) | 0.605 * |
Fasting glucose (mmol/L) | 237 | 5.4 (4.9–6.3) | 123 | 5.6 (5.1–6.4) | 0.316 * |
Total cholesterol (mmol/L) | 234 | 4.8 (4.0–5.8) | 119 | 4.3 (3.5–5.2) | 0.005 * |
LDL cholesterol (mmol/L) | 235 | 2.8 (2.1–3.5) | 119 | 2.4 (1.9–3.2) | 0.065 * |
HDL cholesterol (mmol/L) | 235 | 1.5 (1.2–1.8) | 119 | 1.1 (0.9–1.4) | >0.0001 * |
Non-HDL cholesterol (mmol/L) | 233 | 3.3 (2.6–4.1) | 119 | 3.1 (2.5–3.9) | 0.295 * |
Triglycerides (mmol/L) | 235 | 1.2 (0.9–1.5) | 117 | 1.3 (1.0–1.8) | 0.015 * |
CRP | 234 | 1.6 (0.7–4.0) | 118 | 2.9 (1.0–7.3) | 0.001 * |
eGFR (mL/min/1.73 m2) | 201 | 70.8 (±21.1) | 97 | 76.8 (±23.4) | 0.017 *** |
Serum creatinine (µmol/L) | 236 | 0.8 (0.7–0.9) | 123 | 0.9 (0.8–1.2) | <0.0001 * |
Aspartate aminotransferase AST (U/L) | 238 | 18 (15.0–23.0) | 123 | 18 (15–26) | 0.507 * |
Alanine aminotransferase ALT (U/L) | 238 | 16 (12.0–22.0) | 123 | 17 (12–25) | 0.202 * |
Gamma-glutamyltransferase GGTP (U/L) | 232 | 20 (14–34) | 118 | 27.5 (19–46) | <0.0001 * |
Total protein (g/L) | 118 | 64.9 (61.5–68) | 66 | 64.7 (59–67.4) | 0.428 * |
Sodium (mmol/L) | 238 | 141 (139–143) | 122 | 140 (139–142) | 0.097 * |
Potassium (mmol/L) | 238 | 4.4 (4.1–4.7) | 122 | 4.3 (4.1–4.7) | 0.452 * |
n | Women Group | n | Men Group | p | |
---|---|---|---|---|---|
Body mass (kg) | 238 | 66.4 (56.3–75.3) | 123 | 75.4 (68–88.8) | <0.0001 * |
Height (cm) | 238 | 153.3 (149.5–158) | 123 | 167 (162–171.5) | <0.0001 * |
Waist circumference (cm) | 238 | 98 (90–107) | 123 | 102 (95–110) | 0.006 * |
Hip circumference (cm) | 238 | 104.3 (97–113) | 123 | 101.5 (97–107) | 0.043 * |
Arm circumference (cm) | 238 | 28.7 (±4.2) | 123 | 29.2 (±3.9) | 0.317 ** |
Calf circumference (cm) | 238 | 34 (32–37) | 123 | 36 (33.5–38) | <0.001 * |
MAMC (cm) | 235 | 21.9 (19.8–23.7) | 117 | 24.7 (22.5–26.3) | 0.031 * |
BMI (kg/m2) | 238 | 27.7 (24.6–31.5) | 123 | 27.8 (±4.4–27.5) | 0.647 * |
BAI (%) | 238 | 36.9 (32.7–41.7) | 123 | 29.4 (26.7–32.1) | <0.0001 * |
VAI | 235 | 1.7 (1.1–2.7) | 117 | 1.6 (1.2–2.7) | 0.615 * |
WHR | 238 | 0.9 (±0.07) | 123 | 1.0 (±0.06) | <0.0001 ** |
WHtR | 238 | 0.65 (±0.09) | 123 | 0.62 (±0.07) | 0.002 ** |
FFMI (kg/m2) | 238 | 17.3 (16.1–19.0) | 123 | 20.2 (18.7–21.4) | <0.0001 * |
FMI (kg/m2) | 238 | 10.4 (8.1–13.3) | 123 | 7.4 (5.8–8.9) | <0.0001 * |
BRI | 238 | 6.5 (5.1–7.9) | 123 | 5.8 (4.7–6.8) | 0.002 * |
ABSI | 238 | 0.09 (±0.01) | 123 | 0.09 (±0.0) | 0.610 ** |
AVI | 238 | 19.2 (16.3–22.9) | 123 | 20.8 (18.1–24.2) | 0.009 * |
Body fat (kg) | 238 | 25.2 (18.4–32.2) | 123 | 19.9 (15.5–26.0) | <0.001 * |
Body fat (%) | 238 | 37.9 (32.5–43.0) | 123 | 25.6 (22.4–31.6) | <0.0001 * |
Muscle mass (kg) | 238 | 39.4 (36.3–42.1) | 123 | 52.6 (49–57.5) | <0.0001 * |
Free fat mass (kg) | 238 | 41.5 (38.3–44.4) | 123 | 55.4 (51.6–60.5) | <0.0001 * |
Women Group | Men Group | ||||
---|---|---|---|---|---|
R | p-Value | R | p-Value | ||
Body mass (kg) | Muscle mass [kg] | 0.834 | <0.001 | 0.823 | <0.001 |
Height (cm) | 0.381 | <0.001 | 0.607 | <0.001 | |
Waist circumference (cm) | 0.597 | <0.001 | 0.626 | <0.001 | |
Hip circumference (cm) | 0.696 | <0.001 | 0.621 | <0.001 | |
Arm circumference (cm) | 0.651 | <0.001 | 0.560 | <0.001 | |
Calf circumference (cm) | 0.798 | <0.001 | 0.744 | <0.001 | |
MAMC (cm) | 0.548 | <0.001 | 0.363 | <0.001 | |
BMI (kg/m2) | 0.733 | <0.001 | 0.606 | <0.001 | |
BAI (%) | 0.443 | <0.001 | 0.069 | 0.450 | |
VAI | 0.130 | 0.047 | 0.232 | 0.012 | |
WHR | 0.021 | 0.745 | 0.339 | <0.001 | |
WHtR | 0.456 | <0.001 | 0.327 | <0.001 | |
FFMI (kg/m2) | 0.697 | <0.001 | 0.721 | <0.001 | |
FMI (kg/m2) | 0.600 | <0.001 | 0.354 | <0.001 | |
BRI | 0.46 | <0.001 | 0.327 | <0.001 | |
ABSI | −0.234 | <0.001 | −0.225 | 0.012 | |
AVI | 0.602 | <0.001 | 0.625 | <0.001 | |
Body fat (%) | 0.440 | <0.001 | 0.185 | 0.041 | |
Body fat (kg) | 0.653 | <0.001 | 0.483 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nowak, J.; Jabczyk, M.; Jagielski, P.; Bartosiewicz, A.; Górski, M.; Hudzik, B.; Buczkowska, M.; Zubelewicz-Szkodzińska, B. The Usefulness of Anthropometric Measurements and Indicators in Assessing Muscle Mass in Older Adults. J. Clin. Med. 2025, 14, 6067. https://doi.org/10.3390/jcm14176067
Nowak J, Jabczyk M, Jagielski P, Bartosiewicz A, Górski M, Hudzik B, Buczkowska M, Zubelewicz-Szkodzińska B. The Usefulness of Anthropometric Measurements and Indicators in Assessing Muscle Mass in Older Adults. Journal of Clinical Medicine. 2025; 14(17):6067. https://doi.org/10.3390/jcm14176067
Chicago/Turabian StyleNowak, Justyna, Marzena Jabczyk, Paweł Jagielski, Anna Bartosiewicz, Michał Górski, Bartosz Hudzik, Marta Buczkowska, and Barbara Zubelewicz-Szkodzińska. 2025. "The Usefulness of Anthropometric Measurements and Indicators in Assessing Muscle Mass in Older Adults" Journal of Clinical Medicine 14, no. 17: 6067. https://doi.org/10.3390/jcm14176067
APA StyleNowak, J., Jabczyk, M., Jagielski, P., Bartosiewicz, A., Górski, M., Hudzik, B., Buczkowska, M., & Zubelewicz-Szkodzińska, B. (2025). The Usefulness of Anthropometric Measurements and Indicators in Assessing Muscle Mass in Older Adults. Journal of Clinical Medicine, 14(17), 6067. https://doi.org/10.3390/jcm14176067