The Impact of Metabolic Syndrome on the Outcomes of Rehabilitation in Post-COVID-19 Patients
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Setting and Patient Enrollment
2.2. Study Process
- For men: 6MWT distance (m) = (7.57 × height [cm]) − (5.02 × age [years]) − (1.76 × weight [kg]) − 309
- For women: 6MWT distance (m) = (2.11 × height [cm]) − (2.29 × weight [kg]) − (5.78 × age [years]) + 667
2.3. Statistical Analyses
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
6MWT | 6-min walk test |
FEV1 | Forced expiratory volume in the first second |
FVC | Forced vital capacity |
TC | Total cholesterol |
HDL | High-density lipoprotein cholesterol |
LDL | Low-density lipoprotein cholesterol |
TG | Triglycerides |
non-HDL | Non-high-density lipoprotein cholesterol |
References
- Dissanayake, H. COVID-19 and metabolic syndrome. Best Pract. Res. Clin. Endocrinol. Metab. 2023, 37, 101753. [Google Scholar]
- Saklayen, M.G. The Global Epidemic of the Metabolic Syndrome. Curr. Hypertens. Rep. 2018, 20, 12. [Google Scholar] [CrossRef]
- Jamali, Z.; Ayoobi, F.; Jalali, Z.; Bidaki, R.; Lotfi, M.A.; Esmaeili-Nadimi, A.; Khalili, P. Metabolic syndrome: A population-based study of prevalence and risk factors. Sci. Rep. 2024, 14, 3987. [Google Scholar] [CrossRef]
- Bansal, R.; Gubbi, S.; Muniyappa, R. Metabolic Syndrome and COVID-19: Endocrine-Immune-Vascular Interactions Shapes Clinical Course. Endocrinology 2020, 161, bqaa112. [Google Scholar] [CrossRef] [PubMed]
- Kzhyshkowska, J.; Venketaraman, V.; Escobedo, G. Editorial: Immunometabolic mechanisms underlying the severity of COVID-19. Front. Immunol. 2022, 13, 977907. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xie, L.; Zhang, Z.; Wang, Q.; Chen, Y.; Lu, D.; Wu, W. COVID-19 and Diabetes: A Comprehensive Review of Angiotensin Converting Enzyme 2, Mutual Effects and Pharmacotherapy. Front. Endocrinol. 2021, 12, 772865. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Grubišić, B.; Švitek, L.; Ormanac, K.; Sabo, D.; Mihaljević, I.; Bilić-Ćurčić, I.; Omanović Kolarić, T. Molecular Mechanisms Responsible for Diabetogenic Effects of COVID-19 Infection-Induction of Autoimmune Dysregulation and Metabolic Disturbances. Int. J. Mol. Sci. 2023, 24, 11576. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, Y.; Lou, X. The Bidirectional Association Between Metabolic Syndrome and Long-COVID-19. Diabetes Metab. Syndr. Obes. 2024, 17, 3697–3710. [Google Scholar] [CrossRef]
- Hassett, C.E.; Gedansky, A.; Migdady, I.; Bhimraj, A.; Uchino, K.; Cho, S.-M. Neurologic complications of COVID-19. Clevel. Clin. J. Med. 2020, 87, 729–734. [Google Scholar] [CrossRef]
- Dinakaran, D.; Manjunatha, N.; Naveen Kumar, C.; Suresh, B.M. Neuropsychiatric aspects of COVID-19 pandemic: A selective review. Asian J. Psychiatry 2020, 53, 102188. [Google Scholar] [CrossRef]
- Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020, 395, 507–513. [Google Scholar] [CrossRef]
- Taylor, R.S.; Dalal, H.M.; McDonagh, S.T.J. The role of cardiac rehabilitation in improving cardiovascular outcomes. Nat. Rev. Cardiol. 2022, 19, 180–194. [Google Scholar] [CrossRef]
- Ghram, A.; Latiri, I.; Methnani, J.; Souissi, A.; Benzarti, W.; Toulgui, E.; Ben Saad, H. Effects of cardiorespiratory rehabilitation program on submaximal exercise in patients with long-COVID-19 conditions: A systematic review of randomized controlled trials and recommendations for future studies. Expert Rev. Respir. Med. 2023, 17, 1095–1124. [Google Scholar] [CrossRef]
- Neto, M.G.; Suzart Coutinho de Araujo, W.; Pinto, A.C.P.N.; Saquetto, M.B.; Martinez, B.P.; Gomes, V.A.; Brites, C.; Carvalho, V.O. Effects of physical rehabilitation interventions on exercise performance, dyspnea, and health-related quality of life in acute and post-acute COVID-19 patients: Systematic review and meta-analysis. Chronic Illn. 2025, 21, 183–204. [Google Scholar] [CrossRef] [PubMed]
- Order of the President of the National Health Fund No. 172/2021/DSOZ of 18 October 2021. Available online: https://baw.nfz.gov.pl/NFZ/tabBrowser/mainPage (accessed on 9 March 2023).
- Klok, F.A.; Boon, G.J.A.M.; Barco, S.; Endres, M.; Geelhoed, J.J.M.; Knauss, S.; Rezek, S.A.; Spruit, M.A.; Vehreschild, J.; Siegerink, B. The Post-COVID-19 Functional Status scale: A tool to measure functional status over time after COVID-19. Eur. Respir. J. 2020, 56, 2001494. [Google Scholar] [CrossRef] [PubMed]
- Paternostro-Sluga, T.; Grim-Stieger, M.; Posch, M.; Schuhfried, O.; Vacariu, G.; Mittermaier, C.; Bittner, C.; Fialka-Moser, V. Reliability and validity of the Medical Research Council (MRC) scale and a modified scale for testing muscle strength in patients with radial palsy. J. Rehabil. Med. 2008, 40, 665–671. [Google Scholar] [CrossRef] [PubMed]
- Hayata, A.; Minakata, Y.; Matsunaga, K.; Nakanishi, M.; Yamamoto, N. Differences in physical activity according to mMRC grade in patients with COPD. Int. J. Chronic Obstr. Pulm. Dis. 2016, 11, 2203–2208. [Google Scholar] [CrossRef]
- Dobrowolski, P.; Prejbisz, A.; Kuryłowicz, A.; Baska, A.; Burchardt, P.; Chlebus, K.; Dzida, G.; Jankowski, P.; Jaroszewicz, J.; Jaworski, P.; et al. Metabolic syndrome—A new definition and management guidelines. Arter. Hypertens. 2022, 26, 99–121. [Google Scholar] [CrossRef]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P.; STROBE Initiative. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for Reporting Observational Studies. Lancet 2007, 370, 1453–1457. [Google Scholar] [CrossRef]
- Pellegrino, R.; Viegi, G.; Brusasco, V.; Crapo, R.O.; Burgos, F.; Casaburi, R.; Coates, A.; Van Der Grinten, C.P.M.; Gustafsson, P.; Hankinson, J.; et al. Interpretative strategies for lung function tests. Eur. Respir. J. 2005, 26, 948–968. [Google Scholar] [CrossRef]
- Graham, B.L.; Steenbruggen, I.; Miller, M.R.; Barjaktarevic, I.Z.; Cooper, B.G.; Hall, G.L.; Hallstrand, T.S.; Kaminsky, D.A.; McCarthy, K.; McCormack, M.C.; et al. Standardization of spirometry 2019 update. Am. J. Respir. Crit. Care Med. 2019, 200, e70–e88. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.J.; Puhan, M.A.; Andrianopoulos, V.; Hernandes, N.A.; Mitchell, K.E.; Hill, C.J.; Lee, A.L.; Camillo, C.A.; Troosters, T.; Spruit, M.A.; et al. An official systematic review of the European Respiratory Society/American Thoracic Society: Measurement properties of field walking tests in chronic respiratory disease. Eur. Respir. J. 2014, 44, 1447–1478. [Google Scholar] [CrossRef] [PubMed]
- Sonnweber, T.; Sahanic, S.; Pizzini, A.; Luger, A.; Schwabl, C.; Sonnweber, B.; Kurz, K.; Koppelstätter, S.; Haschka, D.; Petzer, V.; et al. Cardiopulmonary recovery after COVID-19: An observational prospective multicentre trial. Eur. Respir. J. 2021, 57, 2003481. [Google Scholar] [CrossRef] [PubMed]
- Eksombatchai, D.; Wongsinin, T.; Phongnarudech, T.; Thammavaranucupt, K.; Amornputtisathaporn, N.; Sungkanuparph, S. Pulmonary function and six-minute-walk test in patients after recovery from COVID-19: A prospective cohort study. PLoS ONE 2021, 16, e0257040. [Google Scholar] [CrossRef]
- Chen, W.L.; Wang, C.C.; Wu, L.W.; Kao, T.W.; Chan, J.Y.; Chen, Y.J.; Yang, Y.H.; Chang, Y.W.; Peng, T.C. Relationship between lung function and metabolic syndrome. PLoS ONE 2014, 9, e108989. [Google Scholar] [CrossRef]
- Kumari, T.; Choudhary, S.C.; Usman, K.; Sawlani, K.K.; Agrawal, A.; Patel, M.L.; Himanshu, D.; Gupta, K.K.; Verma, A. Study of six minute walk test in patient of metabolic syndrome. Int. J. Adv. Res. 2019, 7, 339–343. [Google Scholar] [CrossRef]
- Codo, A.C.; Davanzo, G.G.; Monteiro, L.B.; de Souza, G.F.; Muraro, S.P.; Virgilio-da-Silva, J.V.; Prodonoff, J.S.; Carregari, V.C.; de Biagi Junior, C.A.O.; Crunfli, F.; et al. Elevated glucose levels favor SARS-CoV-2 infection and monocyte response through a HIF-1α/glycolysis-dependent axis. Cell Metab. 2020, 32, 437–446.e5. [Google Scholar] [CrossRef]
- Li, S.; Dai, B.; Hou, Y.; Zhang, L.; Liu, J.; Hou, H.; Song, D.; Wang, S.; Li, X.; Zhao, H.; et al. Effect of pulmonary rehabilitation for patients with long COVID-19: A systematic review and meta-analysis of randomized controlled trials. Ther. Adv. Respir. Dis. 2025, 19, 17534666251323482. [Google Scholar] [CrossRef]
- Liang, M.; Pan, Y.; Zhong, T.; Zeng, Y.; Cheng, A.S.K. Effects of aerobic, resistance, and combined exercise on metabolic syndrome parameters and cardiovascular risk factors: A systematic review and network meta-analysis. Rev. Cardiovasc. Med. 2021, 22, 1523–1533. [Google Scholar] [CrossRef]
- Sonnweber, T.; Grubwieser, P.; Pizzini, A.; Boehm, A.; Sahanic, S.; Luger, A.; Schwabl, C.; Widmann, G.; Egger, A.; Hoermann, G.; et al. Pulmonary recovery from COVID-19 in patients with metabolic diseases: A longitudinal prospective cohort study. Sci. Rep. 2023, 13, 2599. [Google Scholar] [CrossRef]
- Meléndez-Oliva, E.; Martínez-Pozas, O.; Cuenca-Zaldívar, J.N.; Villafañe, J.H.; Jiménez-Ortega, L.; Sánchez-Romero, E.A. Efficacy of Pulmonary Rehabilitation in Post-COVID-19: A Systematic Review and Meta-Analysis. Biomedicines 2023, 11, 2213. [Google Scholar] [CrossRef]
- Hantal, A.O.; Kayhan, S.; Sagmen, S.B.; Soy, M. Efficacy of pulmonary rehabilitation in patients with post-acute COVID-19. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 2117–2126. [Google Scholar]
- Zhu, P.; Wang, Z.; Guo, X.; Feng, Z.; Chen, C.; Zheng, A.; Gu, H.; Cai, Y. Pulmonary Rehabilitation Accelerates the Recovery of Pulmonary Function in Patients With COVID-19. Front. Cardiovasc. Med. 2021, 8, 691609. [Google Scholar] [CrossRef]
- Joseph, M.S.; Tincopa, M.A.; Walden, P.; Jackson, E.; Conte, M.L.; Rubenfire, M. The Impact Of Structured Exercise Programs On Metabolic Syndrome And Its Components: A Systematic Review. Diabetes Metab. Syndr. Obes. 2019, 12, 2395–2404. [Google Scholar] [CrossRef]
- Amin, M.; Kerr, D.; Atiase, Y.; Aldwikat, R.K.; Driscoll, A. Effect of Physical Activity on Metabolic Syndrome Markers in Adults with Type 2 Diabetes: A Systematic Review and Meta-Analysis. Sports 2023, 11, 101. [Google Scholar] [CrossRef]
Variable | With MetS n (%) | Without MetS n (%) | p | |
---|---|---|---|---|
Sex | Female | 40 (47.6) | 40 (64.5) | 0.063 (0.0052) |
Male | 44 (52.4) | 22 (35.5) | ||
Age | Me (Q1–Q3) | 67.0 (57.0–74.0) | 65.5 (52.0–73.0) | 0.257 (0.0214) |
Nutritional status (BMI) | M ± SD | 31.23 ± 4.73 | 26.85 ± 4.65 | <0.001 * (<0.001) |
Hospitalization | Yes | 63 (75.0) | 39 (62.9) | 0.174 (0.0145) |
No | 19 (22.6) | 21 (33.9) | ||
Pneumonia during COVID-19 infection | Yes | 72 (85.7) | 40 (64.5) | 0.004 * (0.0003) |
No | 10 (11.9) | 20 (32.3) | ||
Oxygen therapy during hospitalization | Yes | 58 (69.1) | 35 (56.5) | 0.450 (0.0375) |
No | 18 (21.4) | 16 (25.8) | ||
The duration of rehabilitation | Me (Q1–Q3) | 28.0 (21.0–42.0) | 23.0 (21.0–38.0) | 0.089 (0.0074) |
Comorbidities | Diabetes | 42 (50.0) | 5 (8.06) | <0.001 * (<0.001) |
Hypertension | 74 (88.1) | 24 (38.7) | <0.001 * (<0.001) | |
Asthma | 13 (15.5) | 3 (4.8) | 0.059 (0.0049) | |
COPD | 3 (3.6) | 3 (4.8) | 0.699 (0.0557) | |
Smoking status | Yes | 8 (9.5) | 4 (6.5) | 0.559 (0.0465) |
No | 76 (90.5) | 58 (93.5) |
Variable | With MetS | Without MetS | p | |
---|---|---|---|---|
M (±SD) | M (±SD) | |||
TC mg/dL | M ± SD | 176.0 ± 50.87 | 181.5 ± 44.59 | 0.485 (0.097) |
HDL mg/dL | Me (Q1–Q3) | 35.8 (31.9–45.85) | 50.9 (41.6–59.9) | <0.001 * (0.0002) |
LDL mg/dL | Me (Q1–Q3) | 96.2 (70.6–135.6) | 103.7 (74.4–131.3) | 0.506 (0.1012) |
TG mg/dL | Me (Q1–Q3) | 157.5 (127.0–198.5) | 110.0 (92.5–131.0) | <0.001 * (0.002) |
non-HDL mg/dL | M ± SD | 137.6 ± 50.46 | 129.8 ± 42.28 | 0.132 (0.0264) |
Outcome | Predictor | OR (95% CI) | p |
---|---|---|---|
Measurement 1 | |||
FVC | Sex | −10.06 (−21.02, 0.89) | 0.071 |
Age | −0.02 (−0.53, 0.49) | 0.941 | |
Diabetes | −2.64 (−13.93, 8.65) | 0.642 | |
Hypertension | −3.7 (−24.39, 17.00) | 0.722 | |
FEV1 | Sex | −7.7 (−18.96, 3.56) | 0.176 |
Age | 0.1 (−0.43, 0.62) | 0.717 | |
Diabetes | −6.58 (−18.18, 5.03) | 0.261 | |
Hypertension | −6.91 (−28.18, 14.36) | 0.518 | |
6MWT | Sex | 32.49 (−21.70, 86.68) | 0.235 |
Age | −4.2 (−6.73, −1.67) | 0.002 * | |
Diabetes | −39.46 (−95.33, 16.40) | 0.163 | |
Hypertension | −49.26 (−151.66, 53.14) | 0.340 | |
Measurement 2 | |||
FVC | Sex | −10.72 (−20.94, −0.51) | 0.040 |
Age | −0.06 (−0.53, 0.42) | 0.815 | |
Diabetes | −6.06 (−16.59, 4.47) | 0.254 | |
Hypertension | −7.39 (−26.69, 11.90) | 0.447 | |
FEV1 | Sex | −5.12 (−16.35, 6.12) | 0.366 |
Age | 0.01 (−0.52, 0.53) | 0.976 | |
Diabetes | −7.19 (−18.77, 4.39) | 0.219 | |
Hypertension | −11.72 (−32.95, 9.51) | 0.274 | |
6MWT | Sex | 45.63 (−23.28, 114.54) | 0.190 |
Age | −5.34 (−8.56, −2.12) | 0.002 * | |
Diabetes | −44.84 (−115.88, 26.20) | 0.212 | |
Hypertension | −47.7 (−177.91, 82.51) | 0.467 | |
Δ | |||
FVC | Sex | −0.66 (−7.44, 6.12) | 0.846 |
Age | −0.04 (−0.35, 0.28) | 0.816 | |
Diabetes | −3.42 (−10.40, 3.57) | 0.332 | |
Hypertension | −3.7 (−16.50, 9.11) | 0.566 | |
FEV1 | Sex | 2.58 (−4.36, 9.52) | 0.460 |
Age | −0.09 (−0.41, 0.24) | 0.590 | |
Diabetes | −0.61 (−7.77, 6.55) | 0.866 | |
Hypertension | −4.8 (−17.92, 8.31) | 0.467 | |
6MWT | Sex | 13.14 (−38.73, 65.01) | 0.614 |
Age | −1.14 (−3.56, 1.28) | 0.351 | |
Diabetes | −5.38 (−58.85, 48.10) | 0.841 | |
Hypertension | 1.56 (−96.46, 99.58) | 0.975 |
Outcome | Predictor | OR (95% CI) | p |
---|---|---|---|
Measurement 1 | |||
FVC | Sex | −11.04 (−24.93, 2.85) | 0.117 |
Age | −0.13 (−0.77, 0.51) | 0.679 | |
Diabetes | −21.22 (−46.02, 3.57) | 0.092 | |
Hypertension | 16.76 (0.41, 33.11) | 0.051 | |
FEV1 | Sex | −10.45 (−25.08, 4.18) | 0.158 |
Age | −0.16 (−0.83, 0.52) | 0.644 | |
Diabetes | −10.48 (−36.60, 15.63) | 0.424 | |
Hypertension | 15.3 (−1.92, 32.52) | 0.080 | |
6MWT | Sex | 31.49 (−28.58, 91.55) | 0.297 |
Age | −5.64 (−8.41, −2.87) | <0.001 * | |
Diabetes | −24.13 (−131.34, 83.08) | 0.653 | |
Hypertension | 67.05 (−3.63, 137.73) | 0.062 | |
Measurement 2 | |||
FVC | Sex | −12.86 (−24.99, −0.72) | 0.038 * |
Age | −0.21 (−0.77, 0.35) | 0.460 | |
Diabetes | −25.07 (−46.74, −3.40) | 0.024 * | |
Hypertension | 14.59 (0.31, 28.88) | 0.051 | |
FEV1 | Sex | −12.83 (−26.24, 0.57) | 0.060 |
Age | −0.03 (−0.64, 0.59) | 0.933 | |
Diabetes | −17.19 (−41.12, 6.74) | 0.155 | |
Hypertension | 8.65 (−7.13, 24.42) | 0.276 | |
6MWT | Sex | 29.78 (−28.25, 87.80) | 0.307 |
Age | −6.83 (−9.51, −4.16) | <0.001 * | |
Diabetes | −51.06 (−154.63, 52.52) | 0.327 | |
Hypertension | 0.73 (−67.56, 69.01) | 0.983 | |
Δ | |||
FVC | Sex | −1.82 (−10.88, 7.24) | 0.688 |
Age | −0.07 (−0.49, 0.34) | 0.721 | |
Diabetes | −3.84 (−20.02, 12.33) | 0.635 | |
Hypertension | −2.17 (−12.83, 8.49) | 0.684 | |
FEV1 | Sex | −2.38 (−9.25, 4.48) | 0.489 |
Age | 0.13 (−0.19, 0.45) | 0.414 | |
Diabetes | −6.71 (−18.97, 5.55) | 0.277 | |
Hypertension | −6.65 (−14.73, 1.43) | 0.104 | |
6MWT | Sex | −1.71 (−43.94, 40.53) | 0.936 |
Age | −1.19 (−3.14, 0.75) | 0.224 | |
Diabetes | −26.93 (−102.32, 48.46) | 0.476 | |
Hypertension | −66.33 (−116.03, −16.63) | 0.011 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mińko, A.; Turoń-Skrzypińska, A.; Rył, A.; Rotter, I. The Impact of Metabolic Syndrome on the Outcomes of Rehabilitation in Post-COVID-19 Patients. J. Clin. Med. 2025, 14, 5893. https://doi.org/10.3390/jcm14165893
Mińko A, Turoń-Skrzypińska A, Rył A, Rotter I. The Impact of Metabolic Syndrome on the Outcomes of Rehabilitation in Post-COVID-19 Patients. Journal of Clinical Medicine. 2025; 14(16):5893. https://doi.org/10.3390/jcm14165893
Chicago/Turabian StyleMińko, Alicja, Agnieszka Turoń-Skrzypińska, Aleksandra Rył, and Iwona Rotter. 2025. "The Impact of Metabolic Syndrome on the Outcomes of Rehabilitation in Post-COVID-19 Patients" Journal of Clinical Medicine 14, no. 16: 5893. https://doi.org/10.3390/jcm14165893
APA StyleMińko, A., Turoń-Skrzypińska, A., Rył, A., & Rotter, I. (2025). The Impact of Metabolic Syndrome on the Outcomes of Rehabilitation in Post-COVID-19 Patients. Journal of Clinical Medicine, 14(16), 5893. https://doi.org/10.3390/jcm14165893