A Comparison of Intraoperative 3D and Conventional 2D Fluoroscopy to Detect Screw Misplacement in Volar Plate Osteosynthesis of the Distal Radius
Abstract
1. Introduction
2. Materials and Methods
2.1. Specimens
2.2. Preparation
2.3. Dorsal Protrusion
2.4. Intra-Articular Penetration
2.5. Imaging
2.6. Evaluation
2.7. Dorsal Protrusion
2.8. Intra-Articular Penetration
2.9. Statistics
3. Results
3.1. Dorsal Protrusion
3.1.1. Sensitivity and Specificity
3.1.2. Inter-Rater Agreement
3.1.3. Observer Confidence
3.1.4. Comparison 2D Fluoroscopic Views
3.2. Intra-Articular Penetration
3.2.1. Sensitivity and Specificity
3.2.2. Inter-Rater Agreement
3.2.3. Observer Confidence
3.2.4. Comparison 2D Fluoroscopic Views
3.3. Radiation Exposure
4. Discussion
4.1. Detection of Dorsal Screw Protrusion in 2D Fluoroscopy
4.2. Detection of Intra-Articular Screws in 2D Fluoroscopy
4.3. Detection of Screw Misplacement in 3D Fluoroscopy
4.4. Radiation Exposure
4.5. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AP | Anteroposterior. |
CBCT | Cone beam computed tomography. |
CSV | Carpal shoot through view. |
DAP | Dose area product. |
DTV | Dorsal tangential view. |
EPL | Extensor pollicis longus. |
ICC | Intraclass correlation coefficient. |
IQR | Interquartile range. |
References
- Court-Brown, C.M.; Caesar, B. Epidemiology of Adult Fractures: A Review. Injury 2006, 37, 691–697. [Google Scholar] [CrossRef] [PubMed]
- Bergh, C.; Wennergren, D.; Möller, M.; Brisby, H. Fracture Incidence in Adults in Relation to Age and Gender: A Study of 27,169 Fractures in the Swedish Fracture Register in a Well-Defined Catchment Area. PLoS ONE 2020, 15, e0244291. [Google Scholar] [CrossRef] [PubMed]
- Azad, A.; Kang, H.P.; Alluri, R.K.; Vakhshori, V.; Kay, H.F.; Ghiassi, A. Epidemiological and Treatment Trends of Distal Radius Fractures across Multiple Age Groups. J. Wrist Surg. 2019, 08, 305–311. [Google Scholar] [CrossRef]
- Rundgren, J.; Bojan, A.; Mellstrand Navarro, C.; Enocson, A. Epidemiology, Classification, Treatment and Mortality of Distal Radius Fractures in Adults: An Observational Study of 23,394 Fractures from the National Swedish Fracture Register. BMC Musculoskelet. Disord. 2020, 21, 88. [Google Scholar] [CrossRef]
- Arora, R.; Lutz, M.; Hennerbichler, A.; Krappinger, D.; Espen, D.; Gabl, M. Complications Following Internal Fixation of Unstable Distal Radius Fracture with a Palmar Locking-Plate. J. Orthop. Trauma 2007, 21, 316–322. [Google Scholar] [CrossRef] [PubMed]
- Stoops, T.K.; Santoni, B.G.; Clark, N.M.; Bauer, A.A.; Shoji, C.; Schwartz-Fernandes, F. Sensitivity and Specificity of Skyline and Carpal Shoot-Through Fluoroscopic Views of Volar Plate Fixation of the Distal Radius: A Cadaveric Investigation of Dorsal Cortex Screw Penetration. Hand 2017, 12, 551–556. [Google Scholar] [CrossRef]
- Dolce, D.; Goodwin, D.; Ludwig, M.; Edwards, S. Intraoperative Evaluation of Dorsal Screw Prominence after Polyaxial Volar Plate Fixation of Distal Radius Fractures Utilizing the Hoya View: A Cadaveric Study. Hand 2014, 9, 511–515. [Google Scholar] [CrossRef]
- Kaneshiro, Y.; Hyun, S.; Yano, K.; Yokoi, T.; Sakanaka, H.; Hidaka, N. Computed Tomography Evaluation of Distal Screw Penetration in Volar Locking Plate Fixation for Intra-Articular Distal Radius Fractures. J. Hand Surg. 2023, 48, 553–558. [Google Scholar] [CrossRef]
- Cha, S.M.; Shin, H.D.; Lee, S.H. “Island-Shape” Fractures of Lister’s Tubercle Have an Increased Risk of Delayed Extensor Pollicis Longus Rupture in Distal Radial Fractures: After Surgical Treatment by Volar Locking Plate. Injury 2018, 49, 1816–1821. [Google Scholar] [CrossRef]
- Knight, D.; Hajducka, C.; Will, E.; McQueen, M. Locked Volar Plating for Unstable Distal Radial Fractures: Clinical and Radiological Outcomes. Injury 2010, 41, 184–189. [Google Scholar] [CrossRef]
- Kunes, J.A.; Hong, D.Y.; Hellwinkel, J.E.; Tedesco, L.J.; Strauch, R.J. Extensor Tendon Injury After Volar Locking Plating for Distal Radius Fractures: A Systematic Review. Hand 2022, 17, 87S–94S. [Google Scholar] [CrossRef]
- Pulos, N.; DeGeorge, B.R.; Shin, A.Y.; Rizzo, M. The Effect of Radial Shaft Dorsal Screw Prominence in Volar Locking Plate Fixation of Distal Radius Fractures. Hand 2020, 15, 271–275. [Google Scholar] [CrossRef] [PubMed]
- Pichler, W.; Windisch, G.; Schaffler, G.; Rienmüller, R.; Grechenig, W. Computer Tomography Aided 3D Analysis of the Distal Dorsal Radius Surface and the Effects on Volar Plate Osteosynthesis. J. Hand Surg. Eur. Vol. 2009, 34, 598–602. [Google Scholar] [CrossRef]
- Joseph, S.J.; Harvey, J.N. The Dorsal Horizon View: Detecting Screw Protrusion at the Distal Radius. J. Hand Surg. 2011, 36, 1691–1693. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.K.; Bae, K.W.; Choy, W.S. Use of the Radial Groove View Intra-Operatively to Prevent Damage to the Extensor Pollicis Longus Tendon by Protruding Screws during Volar Plating of a Distal Radial Fracture. Bone Jt. J. 2013, 95-B, 1372–1376. [Google Scholar] [CrossRef]
- Bergsma, M.; Denk, K.; Doornberg, J.N.; Van Den Bekerom, M.P.J.; Kerkhoffs, G.M.M.J.; Jaarsma, R.L.; Obdeijn, M.C. Volar Plating: Imaging Modalities for the Detection of Screw Penetration. J. Wrist Surg. 2019, 08, 520–530. [Google Scholar] [CrossRef] [PubMed]
- Diong, T.W.; Haflah, N.H.M.; Kassim, A.Y.M.; Habshi, S.M.I.A.; Shukur, M.H. Use of Computed Tomography in Determining the Occurrence of Dorsal and Intra-Articular Screw Penetration in Volar Locking Plate Osteosynthesis of Distal Radius Fracture. J. Hand Surg. Asian-Pac. Vol. 2018, 23, 26–32. [Google Scholar] [CrossRef]
- Rausch, S.; Marintschev, I.; Graul, I.; Wilharm, A.; Klos, K.; Hofmann, G.O.; Florian Gras, M. Tangential View and Intraoperative Three-Dimensional Fluoroscopy for the Detection of Screw-Misplacements in Volar Plating of Distal Radius Fractures. Arch. Trauma Res. 2015, 4, e24622. [Google Scholar] [CrossRef]
- Mehling, I.; Rittstieg, P.; Mehling, A.P.; Küchle, R.; Müller, L.P.; Rommens, P.M. Intraoperative C-Arm CT Imaging in Angular Stable Plate Osteosynthesis of Distal Radius Fractures. J. Hand Surg. Eur. Vol. 2013, 38, 751–757. [Google Scholar] [CrossRef]
- Langerhuizen, D.W.G.; Bergsma, M.; Selles, C.A.; Jaarsma, R.L.; Goslings, J.C.; Schep, N.W.L.; Doornberg, J.N. Diagnosis of Dorsal Screw Penetration after Volar Plating of a Distal Radial Fracture: Intraoperative Dorsal Tangential Views versus 3D Fluoroscopy. Bone Jt. J. 2020, 102-B, 874–880. [Google Scholar] [CrossRef]
- Landis, J.R.; Koch, G.G. The Measurement of Observer Agreement for Categorical Data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef]
- Cicchetti, D.V. Guidelines, Criteria, and Rules of Thumb for Evaluating Normed and Standardized Assessment Instruments in Psychology. Psychol. Assess. 1994, 6, 284–290. [Google Scholar] [CrossRef]
- Monaco, N.A.; Dwyer, C.L.; Ferikes, A.J.; Lubahn, J.D. Hand Surgeon Reporting of Tendon Rupture Following Distal Radius Volar Plating. Hand 2016, 11, 278–286. [Google Scholar] [CrossRef]
- Drobetz, H.; Black, A.; Davies, J.; Buttner, P.; Heal, C. Screw Placement Is Everything: Risk Factors for Loss of Reduction with Volar Locking Distal Radius Plates. World J. Orthop. 2018, 9, 203–209. [Google Scholar] [CrossRef]
- Zhuang, Y.-Q.; Zhang, J.-Y.; Yu, X.-B.; Chen, H.; Wu, Y.-S.; Sun, L.-J. Detection of Dorsal Screw Penetration during Volar Plating of the Distal Radius Fractures: A Comparison of Different Fluoroscopic Views and Screw Sizes. Orthop. Traumatol. Surg. Res. 2020, 106, 377–380. [Google Scholar] [CrossRef] [PubMed]
- Maschke, S.D.; Evans, P.J.; Schub, D.; Drake, R.; Lawton, J.N. Radiographic Evaluation of Dorsal Screw Penetration after Volar Fixed-Angle Plating of the Distal Radius: A Cadaveric Study. Hand 2007, 2, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Clement, H.; Pichler, W.; Nelson, D.; Hausleitner, L.; Tesch, N.P.; Grechenig, W. Morphometric Analysis of Lister’s Tubercle and Its Consequences on Volar Plate Fixation of Distal Radius Fractures. J. Hand Surg. 2008, 33, 1716–1719. [Google Scholar] [CrossRef] [PubMed]
- Watchmaker, J.; Daley, R.; Watchmaker, G.; Grindel, S. Ultrasound Imaging Improves Identification of Prominent Hardware in the Surgical Treatment of Distal Radius Fractures: A Cadaveric and Prospective Clinical Study. J. Wrist Surg. 2015, 05, 036–041. [Google Scholar] [CrossRef]
- Hill, B.W.; Shakir, I.; Cannada, L.K. Dorsal Screw Penetration With the Use of Volar Plating of Distal Radius Fractures: How Can You Best Detect? J. Orthop. Trauma 2015, 29, e408–e413. [Google Scholar] [CrossRef]
- Oc, Y.; Kilinc, B.E.; Gulcu, A.; Varol, A.; Ertugrul, R.; Kara, A. Ultrasonography or Direct Radiography? A Comparison of Two Techniques to Detect Dorsal Screw Penetration after Volar Plate Fixation. J. Orthop. Surg. Res. 2018, 13, 70. [Google Scholar] [CrossRef]
- Poole, W.E.; Marsland, D.; Durani, P.; Hobbs, C.M.; Sauvé, P.S. Detecting Dorsal Screw Penetration Following Volar Plate Fixation of the Distal Radius—A Validation Study in a Saw Bone Model. Trauma 2017, 19, 46–53. [Google Scholar] [CrossRef]
- Ozer, K.; Wolf, J.M.; Watkins, B.; Hak, D.J. Comparison of 4 Fluoroscopic Views for Dorsal Cortex Screw Penetration After Volar Plating of the Distal Radius. J. Hand Surg. 2012, 37, 963–967. [Google Scholar] [CrossRef]
- Ozer, K.; Toker, S. Dorsal Tangential View of the Wrist to Detect Screw Penetration to the Dorsal Cortex of the Distal Radius after Volar Fixed-Angle Plating. Hand 2011, 6, 190–193. [Google Scholar] [CrossRef]
- Ganesh, D.; Service, B.; Zirgibel, B.; Koval, K. The Detection of Prominent Hardware in Volar Locked Plating of Distal Radius Fractures: Intraoperative Fluoroscopy Versus Computed Tomography. J. Orthop. Trauma 2016, 30, 618–621. [Google Scholar] [CrossRef]
- Riddick, A.P.; Hickey, B.; White, S.P. Accuracy of the Skyline View for Detecting Dorsal Cortical Penetration during Volar Distal Radius Fixation. J. Hand Surg. Eur. Vol. 2012, 37, 407–411. [Google Scholar] [CrossRef]
- Giugale, J.M.; Fourman, M.S.; Bielicka, D.L.; Fowler, J.R. Comparing Dorsal Tangential and Lateral Views of the Wrist for Detecting Dorsal Screw Penetration after Volar Plating of Distal Radius Fractures. Adv. Orthop. 2017, 2017, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Vernet, P.; Durry, A.; Nicolau, X.; D’Ambrosio, A.; Collinet, A.; Botero Salazar, S.; Liverneaux, P.; Hidalgo Diaz, J.J. Detection of Penetration of the Dorsal Cortex by Epiphyseal Screws of Distal Radius Volar Plates: Anatomical Study Comparing Ultrasound and Fluoroscopy. Orthop. Traumatol. Surg. Res. 2017, 103, 911–913. [Google Scholar] [CrossRef] [PubMed]
- Vaiss, L.; Ichihara, S.; Ramirez, D.G.H.; Hendriks, S.; Liverneaux, P.; Facca, S. A Comparative Study about Ionizing Radiation Emitted during Radiological “Skyline” View of the Wrist in Pronation versus Supination. Eur. J. Orthop. Surg. Traumatol. 2015, 25, 309–311. [Google Scholar] [CrossRef]
- Bergsma, M.; Obdeijn, M.C.; Janssen, S.J.; Bain, G.I.; Jaarsma, R.L.; Doornberg, J.N. Influence of Training on Dorsal Tangential Radiographic View to Detect Screw Protrusion after Anterior Plating of the Distal Radius: A Cadaveric Study. J. Hand Surg. Eur. Vol. 2020, 45, 864–870. [Google Scholar] [CrossRef]
- Boyer, M.I.; Korcek, K.J.; Gelberman, R.H.; Gilula, L.A.; Ditsios, K.; Evanoff, B.A. Anatomic Tilt X-Rays of the Distal Radius: An Ex Vivo Analysis of Surgical Fixation. J. Hand Surg. 2004, 29, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Takemoto, R.C.; Gage, M.; Rybak, L.; Immerman, I.; Egol, K.A. Accuracy of Detecting Screw Penetration of the Radiocarpal Joint Following Volar Plating Using Plain Radiographs Versus Computed Tomography. Am. J. Orthop. 2012, 41, 358–361. [Google Scholar] [PubMed]
- Tweet, M.L.; Calfee, R.P.; Stern, P.J. Rotational Fluoroscopy Assists in Detection of Intra-Articular Screw Penetration During Volar Plating of the Distal Radius. J. Hand Surg. 2010, 35, 619–627. [Google Scholar] [CrossRef] [PubMed]
- Schnetzke, M.; Fuchs, J.; Vetter, S.Y.; Swartman, B.; Keil, H.; Grützner, P.-A.; Franke, J. Intraoperative Three-Dimensional Imaging in the Treatment of Distal Radius Fractures. Arch. Orthop. Trauma Surg. 2018, 138, 487–493. [Google Scholar] [CrossRef] [PubMed]
- Wung, C.-H.; Liu, W.-C.; Chiquiar, L.; Jupiter, J.B.; Regazzoni, P.; dell’Oca, A.A.F. Skyline View versus Intraoperative 3D Fluoroscopy for Dorsal Screw Protrusion Identification Following Volar Plating in the Treatment of Distal Radial Fracture. J. Orthop. Surg. Res. 2025, 20, 190. [Google Scholar] [CrossRef]
- Borggrefe, J.; Bolte, H.; Worms, W.; Mahlke, L.; Seekamp, A.; Menzdorf, L.; Varoga, D.; Müller, M.; Weuster, M.; Zorenkov, D.; et al. Comparison of Intraoperative Flat Panel Imaging and Postoperative Plain Radiography for the Detection of Intraarticular Screw Displacement in Volar Distal Radius Plate Ostheosynthesis. Orthop. Traumatol. Surg. Res. 2015, 101, 913–917. [Google Scholar] [CrossRef]
- Seuthe, R.; Seekamp, A.; Kurz, B.; Pfarr, J.; Schaefer, J.P.; Peh, S.; Lippross, S. Comparison of a Ceiling-Mounted 3D Flat Panel Detector vs. Conventional Intraoperative 2D Fluoroscopy in Plate Osteosynthesis of Distal Radius Fractures with Volar Locking Plate Systems. BMC Musculoskelet. Disord. 2021, 22, 924. [Google Scholar] [CrossRef]
- Halvachizadeh, S.; Berk, T.; Pieringer, A.; Ried, E.; Hess, F.; Pfeifer, R.; Pape, H.-C.; Allemann, F. Is the Additional Effort for an Intraoperative CT Scan Justified for Distal Radius Fracture Fixations? A Comparative Clinical Feasibility Study. J. Clin. Med. 2020, 9, 2254. [Google Scholar] [CrossRef]
- Wall, L.B.; Brodt, M.D.; Silva, M.J.; Boyer, M.I.; Calfee, R.P. The Effects of Screw Length on Stability of Simulated Osteoporotic Distal Radius Fractures Fixed With Volar Locking Plates. J. Hand Surg. 2012, 37, 446–453. [Google Scholar] [CrossRef]
Rating | Observer Confidence |
---|---|
1 | Very low |
2 | Low |
3 | Moderate |
4 | High |
5 | Very high |
3D (n = 18) | Set 1 (AP/Lat/Pro/Sup) (n = 18) | Set 2 (AP/Lat/CSV/DTV) (n = 18) | Set 3 (AP/Lat/Pro/Sup/CSV/DTV) (n = 18) | |
---|---|---|---|---|
Sensitivity (%) | ||||
overall | 97.22 | 63.89 | 75.00 | 77.78 |
1–2 mm | 94.44 | 38.89 | 50.00 | 55.56 |
> 2 mm | 100 | 88.89 | 100 | 100 |
Specificity (%) | 100 | 77.78 | 88.89 | 83.33 |
Fleiss’ Kappa | 0.92 | 0.63 | 0.70 | 0.62 |
Observer confidence | 5 (5–5) | 4 (2–5) | 4 (3–5) | 5 (4–5) |
Lateral (n = 18) | Lateral Tilt (n = 18) | Supination (n = 18) | Pronation (n = 18) | DTV (n = 18) | CSV (n = 18) | |
---|---|---|---|---|---|---|
Sensitivity (%) | ||||||
overall | 58.33 | 52.78 | 97.22 | 33.33 | 100 | 69.44 |
1–2 mm | 50.00 | 22.22 | 94.44 | 33.33 | 100 | 38.89 |
>2 mm | 66.67 | 83.33 | 100 | 33.33 | 100 | 100 |
Specificity (%) | 66.67 | 83.33 | 61.11 | 83.33 | 94.44 | 83.33 |
Fleiss’ Kappa | 0.33 | 0.62 | 0.68 | 0.08 | 0.91 | 0.93 |
Observer confidence | 4 (3–5) | 4 (2.75–4) | 5 (3–5) | 3 (2–4) | 5 (4–5) | 5 (4–5) |
3D (n = 22) | Set 1 (AP/Lat) (n = 19) | Set 2 (AP/Lat/Pro/Sup) (n = 19) | |
---|---|---|---|
Sensitivity (%) | 95.83 | 79.17 | 83.33 |
Specificity (%) | 96.97 | 87.88 | 93.94 |
Fleiss’ Kappa | 0.86 | 0.71 | 0.85 |
Observer confidence | 5 (5–5) | 4 (3–5) | 4 (3–5) |
AP (n = 11) | AP Tilt (n = 11) | Lateral (n = 11) | Lateral Tilt (n = 11) | Supination (n = 11) | Pronation (n = 11) | |
---|---|---|---|---|---|---|
Sensitivity (%) | 57.58 | 75.76 | 60.61 | 69.70 | 72.73 | 84.85 |
Specificity (%) | 72.73 | 78.79 | 72.73 | 96.97 | 93.94 | 100 |
Fleiss’ Kappa | 0.87 | 0.58 | 0.58 | 0.33 | 0.75 | 0.69 |
Observer confidence | 3 (2–4) | 3 (2–5) | 2 (1–3) | 2 (1–3) | 3 (2–4) | 3 (2–4) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brunken, F.; Bullert, B.; Morlock, L.; Gierse, J.; Grützner, P.A.; Vetter, S.Y.; Beisemann, N. A Comparison of Intraoperative 3D and Conventional 2D Fluoroscopy to Detect Screw Misplacement in Volar Plate Osteosynthesis of the Distal Radius. J. Clin. Med. 2025, 14, 5896. https://doi.org/10.3390/jcm14165896
Brunken F, Bullert B, Morlock L, Gierse J, Grützner PA, Vetter SY, Beisemann N. A Comparison of Intraoperative 3D and Conventional 2D Fluoroscopy to Detect Screw Misplacement in Volar Plate Osteosynthesis of the Distal Radius. Journal of Clinical Medicine. 2025; 14(16):5896. https://doi.org/10.3390/jcm14165896
Chicago/Turabian StyleBrunken, Fenna, Benno Bullert, Livia Morlock, Jula Gierse, Paul A. Grützner, Sven Y. Vetter, and Nils Beisemann. 2025. "A Comparison of Intraoperative 3D and Conventional 2D Fluoroscopy to Detect Screw Misplacement in Volar Plate Osteosynthesis of the Distal Radius" Journal of Clinical Medicine 14, no. 16: 5896. https://doi.org/10.3390/jcm14165896
APA StyleBrunken, F., Bullert, B., Morlock, L., Gierse, J., Grützner, P. A., Vetter, S. Y., & Beisemann, N. (2025). A Comparison of Intraoperative 3D and Conventional 2D Fluoroscopy to Detect Screw Misplacement in Volar Plate Osteosynthesis of the Distal Radius. Journal of Clinical Medicine, 14(16), 5896. https://doi.org/10.3390/jcm14165896