Applications and Performance of Artificial Intelligence in Spinal Metastasis Imaging: A Systematic Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Review
2.2. Search Strategy
2.3. Screening of Studies
2.4. Data Extraction
2.5. Data Analysis
2.6. Quality Assessment
3. Results
3.1. Risk of Bias Assessment
3.2. Temporal Overview of Included Studies
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Witham, T.F.; Khavkin, Y.A.; Gallia, G.L.; Wolinsky, J.P.; Gokaslan, Z.L. Surgery Insight: Current management of epidural spinal cord compression from metastatic spine disease. Nat. Clin. Pract. Neurol. 2006, 2, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Robson, P. Metastatic spinal cord compression: A rare but important complication of cancer. Clin. Med. 2014, 14, 542–545. [Google Scholar] [CrossRef]
- Halabi, S.; Owzar, K. The Importance of Identifying and Validating Prognostic Factors in Oncology. Semin. Oncol. 2010, 37, e9–e18. [Google Scholar] [CrossRef]
- O’Sullivan, G.J. Imaging of bone metastasis: An update. World J. Radiol. 2015, 7, 202. [Google Scholar] [CrossRef]
- Jensen, M.P.; Qiang, Z.; Khan, D.Z.; Stoyanov, D.; Baldeweg, S.E.; Jaunmuktane, Z.; Brandner, S.; Marcus, H.J. Artificial intelligence in histopathological image analysis of central nervous system tumours: A systematic review. Neuropathol. Appl. Neurobiol. 2024, 50, e12981. [Google Scholar] [CrossRef]
- Avanzo, M.; Wei, L.; Stancanello, J.; Vallières, M.; Rao, A.; Morin, O.; Mattonen, S.A.; El Naqa, I. Machine and deep learning methods for radiomics. Med. Phys. 2020, 47, e185–e202. [Google Scholar] [CrossRef] [PubMed]
- Rogers, W.; Thulasi Seetha, S.; Refaee, T.A.G.; Lieverse, R.I.Y.; Granzier, R.W.Y.; Ibrahim, A.; Keek, S.A.; Sanduleanu, S.; Primakov, S.P.; Beuque, M.P.L.; et al. Radiomics: From qualitative to quantitative imaging. Br. J. Radiol. 2020, 93, 20190948. [Google Scholar] [CrossRef]
- Sanker, V.; Sanikommu, S.; Thaller, A.; Li, Z.; Heesen, P.; Hariharan, S.; Nordin, E.O.R.; Cavagnaro, M.J.; Ratliff, J.; Desai, A. Artificial Intelligence for Non-Invasive Prediction of Molecular Signatures in Spinal Metastases: A Systematic Review. Bioengineering 2025, 12, 8. [Google Scholar] [CrossRef]
- Ong, W.; Zhu, L.; Zhang, W.; Kuah, T.; Lim, D.S.W.; Low, X.Z.; Thian, Y.L.; Teo, E.C.; Tan, J.H.; Kumar, N.; et al. Application of Artificial Intelligence Methods for Imaging of Spinal Metastasis. Cancers 2022, 14, 4025. [Google Scholar] [CrossRef]
- Heisinger, S.; Salzmann, S.N.; Senker, W.; Aspalter, S.; Oberndorfer, J.; Matzner, M.P.; Stienen, M.N.; Motov, S.; Huber, D.; Grohs, J.G. ChatGPT’s Performance in Spinal Metastasis Cases—Can We Discuss Our Complex Cases with ChatGPT? J. Clin. Med. 2024, 13, 7864. [Google Scholar] [CrossRef] [PubMed]
- Zijlstra, H.; Kuijten, R.H.; Bhimavarapu, A.V.; Lans, A.; Cross, R.E.; Alnasser, A.; Karhade, A.V.; Verlaan, J.-J.; Groot, O.Q.; Schwab, J.H. Temporal validation of the SORG 90-Day and 1-Year machine learning algorithms for survival of patients with spinal metastatic disease. Eur. Spine J. 2024; online ahead of print. [Google Scholar]
- Wang, Z.; Tan, Y.; Zeng, K.; Tan, H.; Xiao, P.; Su, G. Bone density measurement in patients with spinal metastatic tumors using chest quantitative CT deep learning model. J. Bone Oncol. 2024, 49, 100641. [Google Scholar] [CrossRef]
- Duan, S.; Cao, G.; Hua, Y.; Hu, J.; Zheng, Y.; Wu, F.; Xu, S.; Rong, T.; Liu, B. Identification of Origin for Spinal Metastases from MR Images: Comparison Between Radiomics and Deep Learning Methods. World Neurosurg. 2023, 175, e823–e831. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Liu, M.; Li, S.; Cui, J.; Zhang, G.; Wang, X. An MRI-based radiomics nomogram for differentiating spinal metastases from multiple myeloma. Cancer Imaging 2023, 23, 72. [Google Scholar] [CrossRef]
- Liu, J.; Guo, W.; Zeng, P.; Geng, Y.; Liu, Y.; Ouyang, H.; Lang, N.; Yuan, H. Vertebral MRI-based radiomics model to differentiate multiple myeloma from metastases: Influence of features number on logistic regression model performance. Eur. Radiol. 2022, 32, 572–581. [Google Scholar] [CrossRef]
- Ahn, S.H.; Baek, S.; Park, J.; Kim, J.; Rhee, H.; Chung, Y.E.; Kim, H.; Lee, Y.H. Uncertainty Quantification in Automated Detection of Vertebral Metastasis Using Ensemble Monte Carlo Dropout. J. Imaging Inform. Med. 2024, 1–16. [Google Scholar] [CrossRef]
- Duan, S.; Dong, W.; Hua, Y.; Zheng, Y.; Ren, Z.; Cao, G.; Wu, F.; Rong, T.; Liu, B. Accurate Differentiation of Spinal Tuberculosis and Spinal Metastases Using MR-Based Deep Learning Algorithms. Infect. Drug Resist. 2023, 16, 4325–4334. [Google Scholar] [CrossRef]
- Koike, Y.; Yui, M.; Nakamura, S.; Yoshida, A.; Takegawa, H.; Anetai, Y.; Hirota, K.; Tanigawa, N. Artificial intelligence-aided lytic spinal bone metastasis classification on CT scans. Int. J. Comput. Assist. Radiol. Surg. 2023, 18, 1867–1874. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Yu, X.; Shi, R.; Zhu, B.; Zhang, R.; Kang, B.; Liu, F.; Zhang, S.; Wang, X. MRI-based radiomics nomogram for differentiation of solitary metastasis and solitary primary tumor in the spine. BMC Med. Imaging 2023, 23, 29. [Google Scholar] [CrossRef]
- Liu, K.; Qin, S.; Ning, J.; Xin, P.; Wang, Q.; Chen, Y.; Zhao, W.; Zhang, E.; Lang, N. Prediction of Primary Tumor Sites in Spinal Metastases Using a ResNet-50 Convolutional Neural Network Based on MRI. Cancers 2023, 15, 2974. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Huang, H.; Xu, S.; Du, L.; Zeng, X.; Cao, Y.; Liu, D.; Wang, X.; Zhang, J. XGBoost-based multiparameters from dual-energy computed tomography for the differentiation of multiple myeloma of the spine from vertebral osteolytic metastases. Eur. Radiol. 2023, 33, 4801–4811. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Cao, J.; Zhang, X.; Wang, X.; Zhao, X.; Li, Q.; Chen, S.; Wang, P.; Liu, T.; Du, J.; et al. Differentiation between spinal multiple myeloma and metastases originated from lung using multi-view attention-guided network. Front. Oncol. 2022, 12, 981769. [Google Scholar] [CrossRef]
- Liu, K.; Zhang, Y.; Wang, Q.; Chen, Y.; Qin, S.; Xin, P.; Zhao, W.; Zhang, E.; Nie, K.; Lang, N. Differentiation of predominantly osteolytic from osteoblastic spinal metastases based on standard magnetic resonance imaging sequences: A comparison of radiomics model versus semantic features logistic regression model findings. Quant. Imaging Med. Surg. 2022, 12, 5004–5017. [Google Scholar] [CrossRef]
- Netherton, T.J.; Nguyen, C.; Cardenas, C.E.; Chung, C.; Klopp, A.H.; Colbert, L.E.; Rhee, D.J.; Peterson, C.B.; Howell, R.; Balter, P.; et al. An Automated Treatment Planning Framework for Spinal Radiation Therapy and Vertebral-Level Second Check. Int. J. Radiat. Oncol. Biol. Phys. 2022, 114, 516–528. [Google Scholar] [CrossRef]
- Chianca, V.; Cuocolo, R.; Gitto, S.; Albano, D.; Merli, I.; Badalyan, J.; Cortese, M.C.; Messina, C.; Luzzati, A.; Parafioriti, A.; et al. Radiomic Machine Learning Classifiers in Spine Bone Tumors: A Multi-Software, Multi-Scanner Study. Eur. J. Radiol. 2021, 137, 109586. [Google Scholar] [CrossRef]
- Filograna, L.; Lenkowicz, J.; Cellini, F.; Dinapoli, N.; Manfrida, S.; Magarelli, N.; Leone, A.; Colosimo, C.; Valentini, V. Identification of the most significant magnetic resonance imaging (MRI) radiomic features in oncological patients with vertebral bone marrow metastatic disease: A feasibility study. Radiol. Med. 2019, 124, 50–57. [Google Scholar] [CrossRef]
- Roth, H.R.; Yao, J.; Lu, L.; Stieger, J.; Burns, J.E.; Summers, R.M. Detection of Sclerotic Spine Metastases via Random Aggregation of Deep Convolutional Neural Network Classifications. In Recent Advances in Computational Methods and Clinical Applications for Spine Imaging; Springer: Berlin/Heidelberg, Germany, 2015; pp. 3–12. [Google Scholar]
- Zhou, S.K.; Greenspan, H.; Davatzikos, C.; Duncan, J.S.; Van Ginneken, B.; Madabhushi, A.; Prince, J.L.; Rueckert, D.; Summers, R.M. A Review of Deep Learning in Medical Imaging: Imaging Traits, Technology Trends, Case Studies with Progress Highlights, and Future Promises. Proc. IEEE 2021, 109, 820–838. [Google Scholar] [CrossRef] [PubMed]
- Papalia, G.F.; Brigato, P.; Sisca, L.; Maltese, G.; Faiella, E.; Santucci, D.; Pantano, F.; Vincenzi, B.; Tonini, G.; Papalia, R.; et al. Artificial intelligence in detection, management, and prognosis of bone metastasis: A systematic review. Cancers 2024, 16, 2700. [Google Scholar] [CrossRef]
- Tao, H.; Hui, X.; Zhang, Z.; Zhu, R.; Wang, P.; Zhou, S.; Yang, K. Accuracy of artificial intelligence in detecting tumor bone metastases: A systematic review and meta-analysis. BMC Cancer 2025, 25, 286. [Google Scholar] [CrossRef]
- Shah, L.M.; Salzman, K.L. Imaging of Spinal Metastatic Disease. Int. J. Surg. Oncol. 2011, 2011, 769753. [Google Scholar] [CrossRef] [PubMed]
- Motohashi, M.; Funauchi, Y.; Adachi, T.; Fujioka, T.; Otaka, N.; Kamiko, Y.; Okada, T.; Tateishi, U.; Okawa, A.; Yoshii, T.; et al. A New Deep Learning Algorithm for Detecting Spinal Metastases on Computed Tomography Images. Spine 2024, 49, 390–397. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Fang, Z.; Lang, N.; Yuan, H.; Su, M.Y.; Baldi, P. A multi-resolution approach for spinal metastasis detection using deep Siamese neural networks. Comput. Biol. Med. 2017, 84, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Arends, S.R.S.; Savenije, M.H.F.; Eppinga, W.S.C.; van der Velden, J.M.; van den Berg, C.A.T.; Verhoeff, J.J.C. Clinical utility of convolutional neural networks for treatment planning in radiotherapy for spinal metastases. Phys. Imaging Radiat. Oncol. 2022, 21, 42–47. [Google Scholar] [CrossRef]
- Houston, R.; Desai, S.; Takayanagi, A.; Tran, C.Q.; Mortezaei, A.; Oladaskari, A.; Sourani, A.; Siddiqi, I.; Khodayari, B.; Ho, A.; et al. A multidisciplinary update on treatment modalities for metastatic spinal tumors with a surgical emphasis: A literature review and evaluation of the role of artificial intelligence. Cancers 2024, 16, 2800. [Google Scholar] [CrossRef] [PubMed]
- Edelmers, E.; Ņikuļins, A.; Sprūdža, K.L.; Stapulone, P.; Pūce, N.S.; Skrebele, E.; Sinicina, E.E.; Cīrule, V.; Kazuša, A.; Boločko, K. AI-Assisted Detection and Localization of Spinal Metastatic Lesions. Diagnostics 2024, 14, 2458. [Google Scholar] [CrossRef] [PubMed]
- Wallace, A.N.; Greenwood, T.J.; Jennings, J.W. Radiofrequency ablation and vertebral augmentation for palliation of painful spinal metastases. J. Neurooncol. 2015, 124, 111–118. [Google Scholar] [CrossRef]
- Romero, M.; Interian, Y.; Solberg, T.; Valdes, G. Targeted transfer learning to improve performance in small medical physics datasets. Med. Phys. 2020, 47, 6246–6256. [Google Scholar] [CrossRef] [PubMed]
- Alzubaidi, L.; Bai, J.; Al-Sabaawi, A.; Santamaría, J.; Albahri, A.S.; Al-dabbagh, B.S.N.; Fadhel, M.A.; Manoufali, M.; Zhang, J.; Al-Timemy, A.H.; et al. A survey on deep learning tools dealing with data scarcity: Definitions, challenges, solutions, tips, and applications. J. Big Data 2023, 10, 46. [Google Scholar] [CrossRef]
- Chen, H.; Atenafu, E.G.; Zeng, K.L.; Chan, A.; Detsky, J.; Myrehaug, S.; Soliman, H.; Tseng, C.-L.; Sahgal, A.; Maralani, P.J. Magnetic Resonance Imaging Frequency After Stereotactic Body Radiation Therapy for Spine Metastases. Int. J. Radiat. Oncol. Biol. Phys. 2024, 119, 1413–1421. [Google Scholar] [CrossRef]
- Mostafa, E.; Hui, A.; Aasman, B.; Chowdary, K.; Mani, K.; Mardakhaev, E.; Zampolin, R.; Blumfield, E.; Berman, J.; De La Garza Ramos, R.; et al. Development of a natural language processing algorithm for the detection of spinal metastasis based on magnetic resonance imaging reports. North Am. Spine Soc. J. (NASSJ) 2024, 19, 100513. [Google Scholar] [CrossRef]
- Xu, Y.; Meng, C.; Chen, D.; Cao, Y.; Wang, X.; Ji, P. Improved localization and segmentation of spinal bone metastases in MRI with nnUNet radiomics. J. Bone Oncol. 2024, 48, 100630. [Google Scholar] [CrossRef]
- Wang, H.; Xu, S.; Fang, K.B.; Dai, Z.S.; Wei, G.Z.; Chen, L.F. Contrast-enhanced magnetic resonance image segmentation based on improved U-Net and Inception-ResNet in the diagnosis of spinal metastases. J. Bone Oncol. 2023, 42, 100498. [Google Scholar] [CrossRef]
- Wang, D.; Sun, Y.; Tang, X.; Liu, C.; Liu, R. Deep learning-based magnetic resonance imaging of the spine in the diagnosis and physiological evaluation of spinal metastases. J. Bone Oncol. 2023, 40, 100483. [Google Scholar] [CrossRef]
- Hoshiai, S.; Hanaoka, S.; Masumoto, T.; Nomura, Y.; Mori, K.; Okamoto, Y.; Saida, T.; Ishiguro, T.; Sakai, M.; Nakajima, T. Effectiveness of temporal subtraction computed tomography images using deep learning in detecting vertebral bone metastases. Eur. J. Radiol. 2022, 154, 110445. [Google Scholar] [CrossRef]
- Steinhauer, V.; Sergeev, N.I. Radiomics in Breast Cancer: In-Depth Machine Analysis of MR Images of Metastatic Spine Lesion. Sovrem. Tehnol. Med. 2022, 14, 16. [Google Scholar] [CrossRef]
- Chang, C.Y.; Buckless, C.; Yeh, K.J.; Torriani, M. Automated detection and segmentation of sclerotic spinal lesions on body CTs using a deep convolutional neural network. Skelet. Radiol. 2022, 51, 391–399. [Google Scholar] [CrossRef]
- Larhmam, M.A.; Mahmoudi, S.; Drisis, S.; Benjelloun, M. A Texture Analysis Approach for Spine Metastasis Classification in T1 and T2 MRI. In Bioinformatics and Biomedical Engineering; Springer: Berlin/Heidelberg, Germany, 2018; pp. 198–211. [Google Scholar]
- Fan, X.; Zhang, X.; Zhang, Z.; Jiang, Y. Deep Learning on MRI Images for Diagnosis of Lung Cancer Spinal Bone Metastasis. Contrast Media Mol. Imaging 2021, 2021, 5294379. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Zhang, H.; Yin, Y.; Zhang, J.; Yang, M.; Qin, S.; Zhang, X.; Yu, F. Texture Analysis of 18F-FDG PET/CT for Differential Diagnosis Spinal Metastases. Front. Med. 2021, 15, 7. [Google Scholar] [CrossRef] [PubMed]
- Chmelik, J.; Jakubicek, R.; Walek, P.; Jan, J.; Ourednicek, P.; Lambert, L.; Amadori, E.; Gavelli, G. Deep convolutional neural network-based segmentation and classification of difficult to define metastatic spinal lesions in 3D CT data. Med. Image Anal. 2018, 49, 76–88. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Burns, J.E.; Sanoria, V.; Summers, R.M. Mixed spine metastasis detection through positron emission tomography/computed tomography synthesis and multiclassifier. J. Med. Imaging 2017, 4, 024504. [Google Scholar] [CrossRef]
- Iwano, S.; Ito, R.; Umakoshi, H.; Karino, T.; Inoue, T.; Li, Y.; Naganawa, S. Thoracic Temporal Subtraction Three Dimensional Computed Tomography (3D-CT): Screening for Vertebral Metastases of Primary Lung Cancers. PLoS ONE 2017, 12, e0170309. [Google Scholar] [CrossRef]
- O’Connor, S.D.; Yao, J.; Summers, R.M. Lytic Metastases in Thoracolumbar Spine: Computer-aided Detection at CT—Preliminary Study. Radiology 2007, 242, 811–816. [Google Scholar] [CrossRef]
- Soltani, Z.; Xu, M.; Radovitzky, R.; Stadelmann, M.A.; Hackney, D.; Alkalay, R.N. CT-based finite element simulating spatial bone damage accumulation predicts metastatic human vertebrae strength and stiffness. Front. Bioeng. Biotechnol. 2024, 12, 1424553. [Google Scholar] [CrossRef] [PubMed]
- Lang, N.; Zhang, Y.; Zhang, E.; Zhang, J.; Chow, D.; Chang, P.; Yu, H.J.; Yuan, H.; Su, M.-Y. Differentiation of spinal metastases originated from lung and other cancers using radiomics and deep learning based on DCE-MRI. Magn. Reson. Imaging 2019, 64, 4–12. [Google Scholar] [CrossRef] [PubMed]
- Netherton, T.J.; Rhee, D.J.; Cardenas, C.E.; Chung, C.; Klopp, A.H.; Peterson, C.B.; Howell, R.M.; Balter, P.A.; Court, L.E. Evaluation of a multiview architecture for automatic vertebral labeling of palliative radiotherapy simulation CT images. Med. Phys. 2020, 47, 5592–5608. [Google Scholar] [CrossRef] [PubMed]
Year of publishing (range) | 2007–2024 |
Total number of patients | 6267 |
Median number of patients | 88 |
Number of patients per study (range) | 3–941 |
Median number of lesions | 137 |
Median number of scans | 405.5 |
Primary Tumor Type | Number of Studies (Percentage) |
---|---|
Lung cancer | 22/39 (56.4%) |
Breast cancer | 20/39 (51.3%) |
Prostate cancer | 16/39 (41.0%) |
Bladder cancer | 3/39 (7.7%) |
Sarcoma | 3/39 (7.7%) |
Neuroendocrine tumors | 2/39 (5.1%) |
Study | Output/Prediction | Best Performing Model | AUC | 95% CI |
---|---|---|---|---|
Wang et al. (2024) [12] | Prediction of vertebral volumetric bone mineral density in spinal metastases | Deep learning (3DResUNet) | 0.977 | 0.970–0.984 |
Duan et al. (2023) [13] | Identification of origin for spinal metastases from MRI 1 | Deep learning | 0.94 | - |
Zhang et al. (2023) [14] | Differentiating spinal metastases from multiple myeloma | Radiomics nomogram | 0.856 | 0.804–0.907 |
Liu et al. (2022) [15] | Differentiating spinal metastases from multiple myeloma | Radiomics (2EPV-CFS-model) | 0.94 | - |
Study | Output/Prediction | Best Performing Model | AUC | 95% CI | ||
---|---|---|---|---|---|---|
Ahn et al. (2024) [16] | Uncertainty quantification in automated detection of vertebral metastasis | Ensemble Monte Carlo dropout (EMCD; deep learning model) | 0.93 1 | - | ||
Wang et al. (2024) [12] | Prediction of vertebral volumetric bone mineral density in spinal metastases | Deep learning (3DResUNet) | 0.966 1 | 0.944–0.988 1 | ||
Duan et al. (2023) [13] | Identification of origin for spinal metastases from MRI 1 | Deep learning | 0.76 2 | - | ||
Duan et al. (2023) [17] | Differentiating spinal tuberculosis and spinal metastases | Multiscale vision transformers V2 (MVITV2) | 0.98 2 | - | ||
Koike et al. (2023) [18] | Detection and classification of lytic-dominant lesions | Deep learning-based computer-aided detection system | 0.941 1 | - | ||
Li et al. (2023) [19] | Differentiating solitary metastasis and solitary primary tumor | Radiomics nomogram | 0.980 2 | 0.924 1 | 0.959–0.995 2 | 0.693–0.916 1 |
Liu et al. (2023) [20] | Prediction of primary tumor sites in spinal metastases | ResNet-50 CNN (deep learning) | 0.77 2 | - | ||
Shi et al. (2023) [21] | Differentiating spinal osteolytic metastases from multiple myeloma | XGBoost with multiparameter DECT (mpDECT) | 1.00 2 | 0.97 1 | - | - |
Zhang et al. (2023) [14] | Differentiating spinal metastases from multiple myeloma | Radiomics nomogram | 0.853 1 | 0.764–0.919 1 | ||
Chen et al. (2022) [22] | Differentiating spinal metastases from multiple myeloma | Multi-view attention-guided network (MAGN; deep learning Model) | 0.785 2 | 0.682–0.888 2 | ||
Liu et al. (2022) [15] | Differentiating spinal metastases from multiple myeloma | Radiomics (5EPV-16-model) | 0.85 2 | - | ||
Liu et al. (2022) [23] | Differentiating osteolytic from osteoblastic spinal metastases | Radiomics | 0.82 2 | 0.71–0.93 2 | ||
Netherton et al. (2022) [24] | Automating treatment planning for diagnostic and simulation CT 3 scans | Deep learning (U-Net+) and random forest | 0.82 2 | - | ||
Chianca et al. (2021) [25] | Spinal lesion differential diagnosis | Radiomics and machine learning (BaggedREPT 4) | 0.90 1 | - | ||
Filograna et al. (2019) [26] | Identification of most significant predictors of metastasis | Deep learning—logistic regression model (T2-weighted images) | 0.912 2 | 0.829–0.994 2 | ||
Roth et al. (2015) [27] | Detection of sclerotic spine metastases | Deep learning—two-tiered cascade framework | 0.834 2 | - |
Study | Output/Prediction | Best Performing Model | AUC | 95% CI |
---|---|---|---|---|
Zijlstra et al. (2024) [11] | 90-day survival | Machine learning algorithm (SORG-MLA) | 0.81 | 0.77–0.86 |
1-year survival | 0.75 | 0.71–0.80 | ||
Duan et al. (2023) [17] | Differentiating spinal tuberculosis and spinal metastases | Multiscale vision transformers V2 (MVITV2) | 0.95 | - |
Duan et al. (2023) [13] | Identification of origin for spinal metastases from MRI 1 | Deep learning | 0.76 | - |
Zhang et al. (2023) [14] | Differentiating spinal metastases from multiple myeloma | Radiomics nomogram | 0.762 | 0.605–0.751 |
Chianca et al. (2021) [25] | Spinal lesion differential diagnosis | Radiomics and machine learning (BaggedREPT 1) | 0.89 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanker, V.; Gowda, P.; Thaller, A.; Li, Z.; Heesen, P.; Qiang, Z.; Hariharan, S.; Nordin, E.O.R.; Cavagnaro, M.J.; Ratliff, J.; et al. Applications and Performance of Artificial Intelligence in Spinal Metastasis Imaging: A Systematic Review. J. Clin. Med. 2025, 14, 5877. https://doi.org/10.3390/jcm14165877
Sanker V, Gowda P, Thaller A, Li Z, Heesen P, Qiang Z, Hariharan S, Nordin EOR, Cavagnaro MJ, Ratliff J, et al. Applications and Performance of Artificial Intelligence in Spinal Metastasis Imaging: A Systematic Review. Journal of Clinical Medicine. 2025; 14(16):5877. https://doi.org/10.3390/jcm14165877
Chicago/Turabian StyleSanker, Vivek, Poorvikha Gowda, Alexander Thaller, Zhikai Li, Philip Heesen, Zekai Qiang, Srinath Hariharan, Emil O. R. Nordin, Maria Jose Cavagnaro, John Ratliff, and et al. 2025. "Applications and Performance of Artificial Intelligence in Spinal Metastasis Imaging: A Systematic Review" Journal of Clinical Medicine 14, no. 16: 5877. https://doi.org/10.3390/jcm14165877
APA StyleSanker, V., Gowda, P., Thaller, A., Li, Z., Heesen, P., Qiang, Z., Hariharan, S., Nordin, E. O. R., Cavagnaro, M. J., Ratliff, J., & Desai, A. (2025). Applications and Performance of Artificial Intelligence in Spinal Metastasis Imaging: A Systematic Review. Journal of Clinical Medicine, 14(16), 5877. https://doi.org/10.3390/jcm14165877