Instrumentation-Related Complications Following Nonfusion Posterior Fixation in Patients with Metastatic Spinal Tumors: Incidence and Risk Factors
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Surgical Procedures
2.3. Outcome Measures
2.4. Statistics
3. Results
3.1. Illustriative Cases
3.1.1. Case 1
3.1.2. Case 2
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Murotani, K.; Fujibayashi, S.; Otsuki, B.; Shimizu, T.; Sono, T.; Onishi, E.; Kimura, H.; Tamaki, Y.; Tsubouchi, N.; Ota, M. Prognostic factors after surgical treatment for spinal metastases. Asian Spine J. 2024, 18, 390. [Google Scholar] [CrossRef] [PubMed]
- Sugita, S.; Hozumi, T.; Yamakawa, K.; Goto, T. The significance of spinal fixation in palliative surgery for spinal metastases. J. Clin. Neurosci. 2018, 48, 163–167. [Google Scholar] [CrossRef] [PubMed]
- Falicov, A.; Fisher, C.G.; Sparkes, J.; Boyd, M.C.; Wing, P.C.; Dvorak, M.F. Impact of surgical intervention on quality of life in patients with spinal metastases. Spine 2006, 31, 2849–2856. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Qu, J.; Wu, J.; Liu, H.; Chu, T.; Xiao, J.; Zhou, Y. Effect of Surgery on Quality of Life of Patients with Spinal Metastasis from Non-Small-Cell Lung Cancer. J. Bone Jt. Surg. Am. 2016, 98, 396–402. [Google Scholar] [CrossRef]
- Vrionis, F.D.; Small, J. Surgical management of metastatic spinal neoplasms. Neurosurg. Focus. 2003, 15, 1–8. [Google Scholar] [CrossRef]
- Tian, N.F.; Wu, Y.S.; Zhang, X.L.; Wu, X.L.; Chi, Y.L.; Mao, F.M. Fusion versus nonfusion for surgically treated thoracolumbar burst fractures: A meta-analysis. PLoS ONE 2013, 8, e63995. [Google Scholar] [CrossRef]
- Bellato, R.T.; Teixeira, W.G.; Torelli, A.G.; Cristante, A.F.; de Barros, T.E.; de Camargo, O.P. Late failure of posterior fixation without bone fusion for vertebral metastases. Acta Ortop. Bras. 2015, 23, 303–306. [Google Scholar] [CrossRef]
- Drakhshandeh, D.; Miller, J.A.; Fabiano, A.J. Instrumented Spinal Stabilization without Fusion for Spinal Metastatic Disease. World Neurosurg. 2018, 111, e403–e409. [Google Scholar] [CrossRef]
- Park, S.J.; Lee, K.H.; Lee, C.S.; Jung, J.Y.; Park, J.H.; Kim, G.L.; Kim, K.T. Instrumented surgical treatment for metastatic spinal tumors: Is fusion necessary? J. Neurosurg. Spine 2019, 1–9. [Google Scholar] [CrossRef]
- Sanden, B.; Olerud, C.; Petren-Mallmin, M.; Johansson, C.; Larsson, S. The significance of radiolucent zones surrounding pedicle screws. Definition of screw loosening in spinal instrumentation. J. Bone Jt. Surg. Br. 2004, 86, 457–461. [Google Scholar] [CrossRef]
- Fisher, C.G.; DiPaola, C.P.; Ryken, T.C.; Bilsky, M.H.; Shaffrey, C.I.; Berven, S.H.; Harrop, J.S.; Fehlings, M.G.; Boriani, S.; Chou, D. A novel classification system for spinal instability in neoplastic disease: An evidence-based approach and expert consensus from the Spine Oncology Study Group. Spine 2010, 35, E1221–E1229. [Google Scholar] [CrossRef] [PubMed]
- Newman, W.C.; Amin, A.G.; Villavieja, J.; Laufer, I.; Bilsky, M.H.; Barzilai, O. Short-segment cement-augmented fixation in open separation surgery of metastatic epidural spinal cord compression: Initial experience. Neurosurg. Focus. 2021, 50, E11. [Google Scholar] [CrossRef] [PubMed]
- Clements, D.H.; Betz, R.R.; Newton, P.O.; Rohmiller, M.; Marks, M.C.; Bastrom, T. Correlation of scoliosis curve correction with the number and type of fixation anchors. Spine 2009, 34, 2147–2150. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-H.; Kim, K.-W.; Rhyu, K.-W.; Park, J.-B.; Shin, J.-H.; Kim, Y.-Y.; Lee, J.-S.; Ahn, J.-H.; Ryu, J.-H.; Park, H.-Y. Bone fusion materials: Past, present, and future. Asian Spine J. 2025, 19, 490–500. [Google Scholar] [CrossRef]
- Wetzel, F.T.; Brustein, M.; Phillips, F.M.; Trott, S. Hardware failure in an unconstrained lumbar pedicle screw system: A 2-year follow-up study. Spine 1999, 24, 1138–1143. [Google Scholar] [CrossRef]
- Jutte, P.C.; Castelein, R.M. Complications of pedicle screws in lumbar and lumbosacral fusions in 105 consecutive primary operations. Eur. Spine J. 2002, 11, 594–598. [Google Scholar] [CrossRef]
- Mohi Eldin, M.M.; Ali, A.M.A. Lumbar Transpedicular Implant Failure: A Clinical and Surgical Challenge and Its Radiological Assessment. Asian Spine J. 2014, 8, 281. [Google Scholar] [CrossRef]
- Ferrara, L.A.; Secor, J.L.; Jin, B.-h.; Wakefield, A.; Inceoglu, S.; Benzel, E.C. A biomechanical comparison of facet screw fixation and pedicle screw fixation: Effects of short-term and long-term repetitive cycling. Spine 2003, 28, 1226–1234. [Google Scholar] [CrossRef]
- Glassman, S.D.; Carreon, L.Y.; Campbell, M.J.; Johnson, J.R.; Puno, R.M.; Djurasovic, M.; Dimar, J.R. The perioperative cost of Infuse bone graft in posterolateral lumbar spine fusion. Spine J. 2008, 8, 443–448. [Google Scholar] [CrossRef]
- Pedreira, R.; Abu-Bonsrah, N.; Karim Ahmed, A.; De la Garza-Ramos, R.; Rory Goodwin, C.; Gokaslan, Z.L.; Sacks, J.; Sciubba, D.M. Hardware failure in patients with metastatic cancer to the spine. J. Clin. Neurosci. 2017, 45, 166–171. [Google Scholar] [CrossRef]
- Switlyk, M.D.; Kongsgaard, U.; Skjeldal, S.; Hald, J.K.; Hole, K.H.; Knutstad, K.; Zaikova, O. Prognostic factors in patients with symptomatic spinal metastases and normal neurological function. Clin. Oncol. 2015, 27, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.Y.; Ha, J.H.; Seo, S.G.; Chang, B.S.; Lee, C.K.; Kim, H. Prognosis of Single Spinal Metastatic Tumors: Predictive Value of the Spinal Instability Neoplastic Score System for Spinal Adverse Events. Asian Spine J. 2018, 12, 919–926. [Google Scholar] [CrossRef] [PubMed]
- Shehadi, J.A.; Sciubba, D.M.; Suk, I.; Suki, D.; Maldaun, M.V.; McCutcheon, I.E.; Nader, R.; Theriault, R.; Rhines, L.D.; Gokaslan, Z.L. Surgical treatment strategies and outcome in patients with breast cancer metastatic to the spine: A review of 87 patients. Eur. Spine J. 2007, 16, 1179–1192. [Google Scholar] [CrossRef] [PubMed]
- Wright, E.; Ricciardi, F.; Arts, M.; Buchowski, J.M.; Chung, C.K.; Coppes, M.; Crockard, A.; Depreitere, B.; Fehlings, M.; Kawahara, N.; et al. Metastatic Spine Tumor Epidemiology: Comparison of Trends in Surgery Across Two Decades and Three Continents. World Neurosurg. 2018, 114, e809–e817. [Google Scholar] [CrossRef]
- Ravindra, V.M.; Godzik, J.; Dailey, A.T.; Schmidt, M.H.; Bisson, E.F.; Hood, R.S.; Cutler, A.; Ray, W.Z. Vitamin D Levels and 1-Year Fusion Outcomes in Elective Spine Surgery: A Prospective Observational Study. Spine 2015, 40, 1536–1541. [Google Scholar] [CrossRef]
- Shillingford, J.N.; Laratta, J.L.; Sarpong, N.O.; Alrabaa, R.G.; Cerpa, M.K.; Lehman, R.A.; Lenke, L.G.; Fischer, C.R. Instrumentation complication rates following spine surgery: A report from the Scoliosis Research Society (SRS) morbidity and mortality database. J. Spine Surg. 2019, 5, 110. [Google Scholar] [CrossRef]
- Demura, S.; Ohara, T.; Tauchi, R.; Takimura, K.; Watanabe, K.; Suzuki, S.; Uno, K.; Suzuki, T.; Yanagida, H.; Yamaguchi, T. Incidence and causes of instrument-related complications after primary definitive fusion for pediatric spine deformity. J. Neurosurg. Spine 2022, 38, 192–198. [Google Scholar] [CrossRef]
- Amankulor, N.M.; Xu, R.; Iorgulescu, J.B.; Chapman, T.; Reiner, A.S.; Riedel, E.; Lis, E.; Yamada, Y.; Bilsky, M.; Laufer, I. The incidence and patterns of hardware failure after separation surgery in patients with spinal metastatic tumors. Spine J. 2014, 14, 1850–1859. [Google Scholar] [CrossRef]
- Mikles, M.R.; Stchur, R.P.; Graziano, G.P. Posterior instrumentation for thoracolumbar fractures. JAAOS-J. Am. Acad. Orthop. Surg. 2004, 12, 424–435. [Google Scholar] [CrossRef]
- Mannen, E.M.; Friis, E.A.; Sis, H.L.; Wong, B.M.; Cadel, E.S.; Anderson, D.E. The rib cage stiffens the thoracic spine in a cadaveric model with body weight load under dynamic moments. J. Mech. Behav. Biomed. Mater. 2018, 84, 258–264. [Google Scholar] [CrossRef]
- McLain, R.F. The biomechanics of long versus short fixation for thoracolumbar spine fractures. Spine 2006, 31, S70–S79. [Google Scholar] [CrossRef]
- Galbusera, F.; Volkheimer, D.; Reitmaier, S.; Berger-Roscher, N.; Kienle, A.; Wilke, H.J. Pedicle screw loosening: A clinically relevant complication? Eur. Spine J. 2015, 24, 1005–1016. [Google Scholar] [CrossRef]
Variable | Value |
---|---|
Sex | |
Male | 37 (60.7%) |
Female | 24 (39.3%) |
Age; mean ± SD, range (years) | 61.7 ± 10.5, 31–83 |
<60 | 22 (36.1%) |
≥60 | 39 (63.9%) |
Body mass index (kg/m2) | |
<18.5 | 1 (0%) |
18.5–24.9 | 38 (62.3%) |
≥25 | 22 (37.7%) |
Primary tumor site | |
Lung | 14 (23.0%) |
Kidney | 12 (19.7%) |
Breast | 8 (13.1%) |
Liver | 6 (9.8%) |
Prostate | 5 (8.2%) |
Thyroid | 4 (6.6%) |
Colorectal | 2 (3.3%) |
Miscellaneous | 10 (16.4%) |
Number of involved vertebral bodies | |
1 | 49 (80.3%) |
2 | 7 (11.5%) |
≥3 | 5 (8.2%) |
SINS criteria * | |
Stable | 2 (3.3%) |
Potential unstable | 52 (85.2%) |
Unstable | 7 (11.5%) |
Location of metastases | |
At or above T10 | 27 (44.3%) |
Below T10 | 34 (55.7%) |
History of radiotherapy | |
Yes | 55 (90.2%) |
No | 6 (9.8%) |
Preoperative ECOG scale | |
0–2 | 40 (65.6%) |
3–4 | 21 (34.4%) |
Postoperative ECOG scale | |
0–2 | 54 (88.5%) |
3–4 | 7 (11.5%) |
Location of the LIV | |
At or above T10 | 23 (37.7%) |
Below T10 | 38 (62.3%) |
Type of surgical procedure | |
Posterior fixation only | 19 (31.1%) |
Posterior fixation with laminectomy | 25 (41.0%) |
Posterior fixation with debulking procedure | 17 (27.9%) |
Fixation length † | |
<3 | 35 (57.4%) |
≥3 | 26 (42.6%) |
Screw density | |
<0.67 | 24 (39.3%) |
≥0.67 | 37 (60.7%) |
Fixation method | |
Open | 46 (75.4%) |
Percutaneous | 15 (24.6%) |
Variable | No. of Patients | No. of Patients with IRCs | p-Value |
---|---|---|---|
Sex | 0.733 | ||
Male | 37 | 16 (43.2%) | |
Female | 24 | 11 (45.8%) | |
Age (years) | 0.279 | ||
<60 | 22 | 8 (35.4%) | |
≥60 | 39 | 19 (48.7%) | |
Body mass index (kg/m2) | 0.777 | ||
<18.5 | 1 | 0 (0%) | |
18.5–24.9 | 38 | 17 (44.7%) | |
≥25 | 22 | 10 (45.4%) | |
Primary tumor site | 0.506 | ||
Lung | 14 | 5 (35.7%) | |
Kidney | 12 | 6 (50.0%) | |
Breast | 8 | 2 (25.0%) | |
Liver | 6 | 2 (33.3%) | |
Prostate | 5 | 2 (40.0%) | |
Thyroid | 4 | 3 (75.0%) | |
Colorectal | 2 | 2 (100%) | |
Miscellaneous | 10 | 5 (50.0%) | |
Number of involved vertebral bodies | 0.992 | ||
1 | 49 | 22 (44.9%) | |
2 | 7 | 3 (42.9%) | |
≥3 | 5 | 2 (40.0%) | |
SINS criteria † | 0.325 | ||
Stable | 2 | 0 (0%) | |
Potential unstable | 52 | 25 (48.1%) | |
Unstable | 7 | 2 (28.6%) | |
Location of metastases | 0.544 | ||
At or above T10 | 27 | 11 (40.7%) | |
Below T10 | 34 | 16 (47.1%) | |
History of radiotherapy | 0.042 * | ||
Yes | 55 | 27 (49.1%) | |
No | 6 | 0 (0%) | |
Preoperative ECOG scale | 0.374 | ||
0–2 | 40 | 16 (40.0%) | |
3–4 | 21 | 11 (52.4%) | |
Postoperative ECOG scale | 0.100 | ||
0–2 | 54 | 22 (40.7%) | |
3–4 | 7 | 5 (71.4%) | |
Location of the LIV | 0.210 | ||
At or above T10 | 23 | 8 (34.8%) | |
Below T10 | 38 | 19 (50.0%) | |
Type of surgical procedure | 0.073 | ||
Posterior fixation only | 19 | 12 (63.2%) | |
Posterior fixation with laminectomy | 25 | 10 (40.0%) | |
Posterior fixation with debulking procedure | 17 | 5 (29.4%) | |
Fixation length ‡ | 0.017 * | ||
<3 | 35 | 21 (60.0%) | |
≥3 | 26 | 6 (23.1%) | |
Screw density | 0.027 * | ||
<0.67 | 24 | 14 (66.7%) | |
≥0.67 | 37 | 13 (32.5%) | |
Fixation method | 0.074 | ||
Open | 46 | 18 (39.1%) | |
Percutaneous | 15 | 9 (60.0%) |
Location of the LIV | p-Value | ||
---|---|---|---|
At or Above T10 | Below T10 | ||
Fixation length † <3 | 7/11 (63.6%) | 14/24 (58.3%) | 0.770 |
Fixation length † ≥3 | 1/12 (8.3%) | 5/14 (35.7%) | 0.005 * |
p-value | 0.007 * | 0.105 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nam, Y.; Park, J.-S.; Kang, D.-H.; Lee, C.-S.; Suh, S.W.; Park, S.-J. Instrumentation-Related Complications Following Nonfusion Posterior Fixation in Patients with Metastatic Spinal Tumors: Incidence and Risk Factors. J. Clin. Med. 2025, 14, 4629. https://doi.org/10.3390/jcm14134629
Nam Y, Park J-S, Kang D-H, Lee C-S, Suh SW, Park S-J. Instrumentation-Related Complications Following Nonfusion Posterior Fixation in Patients with Metastatic Spinal Tumors: Incidence and Risk Factors. Journal of Clinical Medicine. 2025; 14(13):4629. https://doi.org/10.3390/jcm14134629
Chicago/Turabian StyleNam, Yunjin, Jin-Sung Park, Dong-Ho Kang, Chong-Suh Lee, Seung Woo Suh, and Se-Jun Park. 2025. "Instrumentation-Related Complications Following Nonfusion Posterior Fixation in Patients with Metastatic Spinal Tumors: Incidence and Risk Factors" Journal of Clinical Medicine 14, no. 13: 4629. https://doi.org/10.3390/jcm14134629
APA StyleNam, Y., Park, J.-S., Kang, D.-H., Lee, C.-S., Suh, S. W., & Park, S.-J. (2025). Instrumentation-Related Complications Following Nonfusion Posterior Fixation in Patients with Metastatic Spinal Tumors: Incidence and Risk Factors. Journal of Clinical Medicine, 14(13), 4629. https://doi.org/10.3390/jcm14134629