Fundus Blood Flow in Patients with Sellar Lesions with Optic Nerve Bending and Chiasmal Compression
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PitNET | Pituitary Neuroendocrine Tumor. |
MRI | Magnetic Resonance Imaging. |
GCL + IPL | Ganglion Cell Layer plus Inner Plexiform Layer. |
OCTA | Optical Coherence Tomography Angiography. |
LSFG | Laser Speckle Flowgraphy. |
ONCBA | Optic Nerve-Canal Bending Angle. |
BCVA | Best-Corrected Visual Acuity. |
OCT | Optical Coherence Tomography. |
SVFIS | Simple Visual Field Impairment Score. |
ONH | Optic Nerve Head. |
MBR | Mean Blur Rate. |
ROI | Region of Interest. |
MV | Mean of Vascular Area. |
MT | Mean of Tissue Area. |
MA | Mean of All Areas. |
ICA | Internal Carotid Artery. |
References
- Ju, D.G.; Jeon, C.; Kim, K.H.; Park, K.A.; Hong, S.D.; Seoul, H.J.; Shin, H.J.; Nam, D.H.; Lee, J.I.; Kong, D.S. Clinical Significance of Tumor-Related Edema of Optic Tract Affecting Visual Function in Patients with Sellar and Suprasellar Tumors. World Neurosurg. 2019, 132, e862–e868. [Google Scholar] [CrossRef] [PubMed]
- Hawkes, R.; Holland, G.; Moore, W.; Corston, R.; Kean, D.; Worthington, B. The application of NMR imaging to the evaluation of pituitary and juxtasellar tumors. Am. J. Neuroradiol. 1983, 4, 221–222. [Google Scholar] [PubMed]
- Ntali, G.; Wass, J.A. Epidemiology, clinical presentation and diagnosis of non-functioning pituitary adenomas. Pituitary 2018, 21, 111–118. [Google Scholar] [CrossRef]
- Ferrante, E.; Ferraroni, M.; Castrignanò, T.; Menicatti, L.; Anagni, M.; Reimondo, G.; Del Monte, P.; Bernasconi, D.; Loli, P.; Faustini-Fustini, M.; et al. Non-functioning pituitary adenoma database: A useful resource to improve the clinical management of pituitary tumors. Eur. J. Endocrinol. 2006, 155, 823–829. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, M.L.; Zambon, B.K.; Cunha, L.P. Predictive factors for the development of visual loss in patients with pituitary macroadenomas and for visual recovery after optic pathway decompression. Can. J. Ophthalmol. 2010, 45, 404–408. [Google Scholar] [CrossRef]
- Wang, H.; Sun, W.; Fu, Z.; Si, Z.; Zhu, Y.; Zhai, G.; Zhao, G.; Xu, S.; Pang, Q. The pattern of visual impairment in patients with pituitary adenoma. J. Int. Med. Res. 2008, 36, 1064–1069. [Google Scholar] [CrossRef]
- Prieto, R.; Pascual, J.M.; Barrios, L. Optic chiasm distortions caused by craniopharyngiomas: Clinical and magnetic resonance imaging correlation and influence on visual outcome. World Neurosurg. 2015, 83, 500–529. [Google Scholar] [CrossRef]
- El-Mahdy, W.; Powell, M. Transsphenoidal management of 28 symptomatic Rathke’s cleft cysts, with special reference to visual and hormonal recovery. Neurosurgery 1998, 42, 7–16; discussion 16–17. [Google Scholar] [CrossRef]
- Fahlbusch, R.; Schott, W. Pterional surgery of meningiomas of the tuberculum sellae and planum sphenoidale: Surgical results with special consideration of ophthalmological and endocrinological outcomes. J. Neurosurg. 2002, 96, 235–243. [Google Scholar] [CrossRef]
- Yamaguchi, R.; Tosaka, M.; Miyagishima, T.; Osawa, T.; Horiguchi, K.; Honda, F.; Yoshimoto, Y. Sagittal bending of the optic nerve at the entrance from the intracranial to the optic canal and ipsilateral visual acuity in patients with sellar and suprasellar lesions. J. Neurosurg. 2019, 134, 180–188. [Google Scholar] [CrossRef]
- Shinohara, Y.; Todokoro, D.; Yamaguchi, R.; Tosaka, M.; Yoshimoto, Y.; Akiyama, H. Retinal ganglion cell analysis in patients with sellar and suprasellar tumors with sagittal bending of the optic nerve. Sci. Rep. 2022, 12, 11092. [Google Scholar] [CrossRef]
- Teramoto, S.; Tahara, S.; Goto, H.; Kodama, T.; Watada, H.; Kondo, A. Investigation of predictors of latent visual impairment in patients with sellar lesions. J. Neurosurg. 2024, 142, 1349–1356. [Google Scholar] [CrossRef]
- Ergen, A.; Kaya Ergen, S.; Gunduz, B.; Subasi, S.; Caklili, M.; Cabuk, B.; Anik, I.; Ceylan, S. Retinal vascular and structural recovery analysis by optical coherence tomography angiography after endoscopic decompression in sellar/parasellar tumors. Sci. Rep. 2023, 13, 14371. [Google Scholar] [CrossRef] [PubMed]
- Toumi, E.; Almairac, F.; Mondot, L.; Themelin, A.; Decoux-Poullot, A.G.; Paquis, P.; Chevalier, N.; Baillif, S.; Nahon-Esteve, S.; Martel, A. Benefit of Optical Coherence Tomography-Angiography in Patients Undergoing Transsphenoidal Pituitary Adenoma Surgery: A Prospective Controlled Study. Diagnostics 2024, 14, 1747. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Jia, W.; Xue, Z.; Yuan, L.; Qu, Y.; Yang, L.; Wang, L.; Ma, X.; Wang, M.; Meng, L.; et al. Prognostic value of radial peripapillary capillary density for visual field outcomes in pituitary adenoma: A case-control study. J. Clin. Neurosci. 2022, 100, 113–119. [Google Scholar] [CrossRef]
- Lee, G.I.; Park, K.A.; Oh, S.Y.; Kong, D.S. Analysis of Optic Chiasmal Compression Caused by Brain Tumors Using Optical Coherence Tomography Angiography. Sci. Rep. 2020, 10, 2088. [Google Scholar] [CrossRef]
- Kiyota, N.; Shiga, Y.; Omodaka, K.; Pak, K.; Nakazawa, T. Time-Course Changes in Optic Nerve Head Blood Flow and Retinal Nerve Fiber Layer Thickness in Eyes with Open-angle Glaucoma. Ophthalmology 2021, 128, 663–671. [Google Scholar] [CrossRef]
- Shinohara, Y.; Kashima, T.; Akiyama, H.; Shimoda, Y.; Li, D.; Kishi, S. Evaluation of Fundus Blood Flow in Normal Individuals and Patients with Internal Carotid Artery Obstruction Using Laser Speckle Flowgraphy. PLoS ONE 2017, 12, e0169596. [Google Scholar] [CrossRef]
- Maekubo, T.; Chuman, H.; Nao, I.N. Laser speckle flowgraphy for differentiating between nonarteritic ischemic optic neuropathy and anterior optic neuritis. Jpn. J. Ophthalmol. 2013, 57, 385–390. [Google Scholar] [CrossRef]
- Mwanza, J.C.; Durbin, M.K.; Budenz, D.L.; Sayyad, F.E.; Chang, R.T.; Neelakantan, A.; Godfrey, D.G.; Carter, R.; Crandall, A.S. Glaucoma diagnostic accuracy of ganglion cell-inner plexiform layer thickness: Comparison with nerve fiber layer and optic nerve head. Ophthalmology 2012, 119, 1151–1158. [Google Scholar] [CrossRef]
- Yamaguchi, R.; Tosaka, M.; Shinohara, Y.; Todokoro, D.; Mukada, N.; Miyagishima, T.; Akiyama, H.; Yoshimoto, Y. Analysis of visual field disturbance in patients with sellar and suprasellar lesions: Relationship with magnetic resonance imaging findings and sagittal bending of the optic nerve. Acta Neurol. Belg. 2022, 122, 1031–1041. [Google Scholar] [CrossRef] [PubMed]
- van Overbeeke, J.; Sekhar, L. Microanatomy of the blood supply to the optic nerve. Orbit 2003, 22, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Clifford-Jones, R.E.; McDonald, W.I.; Landon, D.N. Chronic optic nerve compression. An experimental study. Brain 1985, 108, 241–262. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, C.; Kiyota, N.; Himori, N.; Omodaka, K.; Tsuda, S.; Nakazawa, T. Differentiating optic neuropathies using laser speckle flowgraphy: Evaluating blood flow patterns in the optic nerve head and peripapillary choroid. Acta Ophthalmol. 2025, 103, e49–e57. [Google Scholar] [CrossRef]
- Akashi, A.; Kanamori, A.; Ueda, K.; Matsumoto, Y.; Yamada, Y.; Nakamura, M. The detection of macular analysis by SD-OCT for optic chiasmal compression neuropathy and nasotemporal overlap. Investig. Ophthalmol. Vis. Sci. 2014, 55, 4667–4672. [Google Scholar] [CrossRef]
- Kiryu, J.; Asrani, S.; Shahidi, M.; Mori, M.; Zeimer, R. Local response of the primate retinal microcirculation to increased metabolic demand induced by flicker. Investig. Ophthalmol. Vis. Sci. 1995, 36, 1240–1246. [Google Scholar]
- Suzuki, A.C.F.; Zacharias, L.C.; Preti, R.C.; Cunha, L.P.; Monteiro, M.L.R. Circumpapillary and macular vessel density assessment by optical coherence tomography angiography in eyes with temporal hemianopia from chiasmal compression. Correlation with retinal neural and visual field loss. Eye 2020, 34, 695–703. [Google Scholar] [CrossRef]
- Moon, C.H.; Hwang, S.C.; Ohn, Y.H.; Park, T.K. The time course of visual field recovery and changes of retinal ganglion cells after optic chiasmal decompression. Invest. Ophthalmol. Vis. Sci. 2011, 52, 7966–7973. [Google Scholar] [CrossRef]
- Moon, C.H.; Hwang, S.C.; Kim, B.T.; Ohn, Y.H.; Park, T.K. Visual prognostic value of optical coherence tomography and photopic negative response in chiasmal compression. Invest. Ophthalmol. Vis. Sci. 2011, 52, 8527–8533. [Google Scholar] [CrossRef]
- Rey-Dios, R.; Payner, T.D.; Cohen-Gadol, A.A. Pituitary macroadenoma causing symptomatic internal carotid artery compression: Surgical treatment through transsphenoidal tumor resection. J. Clin. Neurosci. 2014, 21, 541–546. [Google Scholar] [CrossRef]
- Teramoto, S.; Tahara, S.; Kondo, A.; Morita, A. Key Factors Related to Internal Carotid Artery Stenosis Associated with Pituitary Apoplexy. World Neurosurg. 2021, 149, e447–e454. [Google Scholar] [CrossRef]
Participant (n = 16) | |||
---|---|---|---|
Optic Nerve Bending (+) | Optic Nerve Bending (−) | p-Value | |
Number of eyes (n) | 16 | 16 | |
Age (years) | 58.9 ± 10.7 | ||
Male–Female (n) | 11:5 | ||
Right eye (n) | 8 | 8 | 1 |
ONCBA (°) | 60.2 ± 9.7 | 27.1 ± 11.7 | <0.0001 |
Pathology | |||
Pituitary neuroendocrine tumor | 9 | ||
Craniopharyngioma | 3 | ||
Rathke’s cleft cyst | 1 | ||
Meningioma | 3 |
R | p-Value | |
---|---|---|
ONCBA | −0.56 | <0.001 |
Preoperative examination | ||
GCL + IPL | ||
Superior | −0.10 | 0.59 |
Superior nasal | −0.07 | 0.72 |
Inferior nasal | −0.06 | 0.75 |
Inferior | −0.10 | 0.60 |
Inferior temporal | −0.18 | 0.33 |
Superior temporal | −0.22 | 0.23 |
BCVA (LogMAR) | −0.16 | 0.38 |
SVFIS | −0.18 | 0.33 |
R | p-Value | |
---|---|---|
ONCBA | −0.27 | 0.14 |
Postoperative examination | ||
GCL + IPL | ||
Superior | 0.39 | 0.03 |
Superior nasal | 0.49 | 0.005 |
Inferior nasal | 0.42 | 0.02 |
Inferior | 0.35 | 0.047 |
Inferior temporal | 0.13 | 0.47 |
Superior temporal | 0.16 | 0.39 |
BCVA (LogMAR) | −0.01 | 0.97 |
SVFIS | −0.10 | 0.59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shinohara, Y.; Yamaguchi, R.; Tosaka, M.; Oya, S.; Akiyama, H. Fundus Blood Flow in Patients with Sellar Lesions with Optic Nerve Bending and Chiasmal Compression. J. Clin. Med. 2025, 14, 5790. https://doi.org/10.3390/jcm14165790
Shinohara Y, Yamaguchi R, Tosaka M, Oya S, Akiyama H. Fundus Blood Flow in Patients with Sellar Lesions with Optic Nerve Bending and Chiasmal Compression. Journal of Clinical Medicine. 2025; 14(16):5790. https://doi.org/10.3390/jcm14165790
Chicago/Turabian StyleShinohara, Yoichiro, Rei Yamaguchi, Masahiko Tosaka, Soichi Oya, and Hideo Akiyama. 2025. "Fundus Blood Flow in Patients with Sellar Lesions with Optic Nerve Bending and Chiasmal Compression" Journal of Clinical Medicine 14, no. 16: 5790. https://doi.org/10.3390/jcm14165790
APA StyleShinohara, Y., Yamaguchi, R., Tosaka, M., Oya, S., & Akiyama, H. (2025). Fundus Blood Flow in Patients with Sellar Lesions with Optic Nerve Bending and Chiasmal Compression. Journal of Clinical Medicine, 14(16), 5790. https://doi.org/10.3390/jcm14165790