Bone Health in Metabolic Syndrome—Is It a Neglected Aspect of Dysmetabolic-Related Diseases?
Abstract
1. Introduction
Methods
2. Bone Health in Metabolic Syndrome
3. Bone Turnover
4. Calcium–Phosphate Homeostasis
5. Bone Mass—Bone Mineral Density
6. Bone Quality—Trabecular Bone Score
7. Fragility Fractures
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Golden, S.H.; Robinson, K.A.; Saldanha, I.; Anton, B.; Ladenson, P.W. Clinical review: Prevalence and incidence of endocrine and metabolic disorders in the United States: A comprehensive review. J. Clin. Endocrinol. Metab. 2009, 94, 1853–1878. [Google Scholar] [CrossRef] [PubMed]
- Pucci, G.; Alcidi, R.; Tap, L.; Battista, F.; Mattace-Raso, F.; Schillaci, G. Sex- and gender-related prevalence, cardiovascular risk and therapeutic approach in metabolic syndrome: A review of the literature. Pharmacol. Res. 2017, 120, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Johnell, O.; Kanis, J.A. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos. Int. 2006, 17, 1726–1733. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, Q.; Yuan, X.; Wang, J.; Li, C.; Sheng, H.; Qu, S.; Li, H. Association between metabolic syndrome and osteoporosis: A meta-analysis. Bone 2013, 57, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Nguyen, N.D.; Center, J.R.; Eisman, J.A.; Nguyen, T.V. Association between abdominal obesity and fracture risk: A prospective study. J. Clin. Endocrinol. Metab. 2013, 98, 2478–2483. [Google Scholar] [CrossRef]
- Freitas, P.M.S.S.; Garcia Rosa, M.L.; Gomes, A.M.; Wahrlich, V.; Di Luca, D.G.; da Cruz Filho, R.A.; Correia, D.M.d.S.; Faria, C.A.; Yokoo, E.M. Central and peripheral fat body mass have a protective effect on osteopenia or osteoporosis in adults and elderly? Osteoporos. Int. 2016, 27, 1659–1663. [Google Scholar] [CrossRef]
- Hwang, D.K.; Choi, H.J. The relationship between low bone mass and metabolic syndrome in Korean women. Osteoporos. Int. 2010, 21, 425–431. [Google Scholar] [CrossRef]
- Cohen, A.; Dempster, D.W.; Recker, R.R.; Lappe, J.M.; Zhou, H.; Zwahlen, A.; Müller, R.; Zhao, B.; Guo, X.; Lang, T.; et al. Abdominal fat is associated with lower bone formation and inferior bone quality in healthy premenopausal women: A transiliac bone biopsy study. J. Clin. Endocrinol. Metab. 2013, 98, 2562–2572. [Google Scholar] [CrossRef]
- Albala, C.; Yáñez, M.; Devoto, E.; Sostin, C.; Zeballos, L.; Santos, J.L. Obesity as a protective factor for postmenopausal osteoporosis. Int. J. Obes. Relat. Metab. Disord. 1996, 20, 1027–1032. [Google Scholar]
- De Laet, C.; Kanis, J.A.; Odén, A.; Johanson, H.; Johnell, O.; Delmas, P.; Eisman, J.A.; Kroger, H.; Fujiwara, S.; Garnero, P.; et al. Body mass index as a predictor of fracture risk: A meta-analysis. Osteoporos. Int. 2005, 16, 1330–1338. [Google Scholar] [CrossRef]
- Schneider, G.; Kirschner, M.A.; Berkowitz, R.; Ertel, N.H. Increased estrogen production in obese men. J. Clin. Endocrinol. Metab. 1979, 48, 633–638. [Google Scholar] [CrossRef] [PubMed]
- Longo, M.; Zatterale, F.; Naderi, J.; Parrillo, L.; Formisano, P.; Raciti, G.A.; Beguinot, F.; Miele, C. Adipose Tissue Dysfunction as Determinant of Obesity-Associated Metabolic Complications. Int. J. Mol. Sci. 2019, 20, 2358. [Google Scholar] [CrossRef]
- Romagnoli, E.; Lubrano, C.; Carnevale, V.; Costantini, D.; Nieddu, L.; Morano, S.; Migliaccio, S.; Gnessi, L.; Lenzi, A. Assessment of trabecular bone score (TBS) in overweight/obese men: Effect of metabolic and anthropometric factors. Endocrine 2016, 54, 342–347. [Google Scholar] [CrossRef] [PubMed]
- Totaro, M.; Barchetta, I.; Sentinelli, F.; Cimini, F.A.; Palazzi, S.; D’Alessandro, F.; Spagnolo, L.; Dule, S.; Barbonetti, A.; Cavallo, M.G.; et al. Waist circumference, among metabolic syndrome components, predicts degraded trabecular bone score: A retrospective study of a female population from the 2005-2008 NHANES cohorts. Front. Endocrinol. 2024, 15, 1476751. [Google Scholar] [CrossRef]
- Batsis, J.A.; Villareal, D.T. Sarcopenic obesity in older adults: Aetiology, epidemiology and treatment strategies. Nat. Rev. Endocrinol. 2018, 14, 513–537. [Google Scholar] [CrossRef]
- Gandham, A.; Mesinovic, J.; Jansons, P.; Zengin, A.; Bonham, M.P.; Ebeling, P.R.; Scott, D. Falls, fractures, and areal bone mineral density in older adults with sarcopenic obesity: A systematic review and meta-analysis. Obes. Rev. 2021, 22, e13187. [Google Scholar] [CrossRef]
- Miller, K.K.; Biller, B.M.K.; Lipman, J.G.; Bradwin, G.; Rifai, N.; Klibanski, A. Truncal adiposity, relative growth hormone deficiency, and cardiovascular risk. J. Clin. Endocrinol. Metab. 2005, 90, 768–774. [Google Scholar] [CrossRef] [PubMed]
- Glass, A.R. Endocrine aspects of obesity. Med. Clin. N. Am. 1989, 73, 139–160. [Google Scholar] [CrossRef]
- Ohlsson, C.; Mellström, D.; Carlzon, D.; Orwoll, E.; Ljunggren, O.; Karlsson, M.K.; Vandenput, L. Older men with low serum IGF-1 have an increased risk of incident fractures: The MrOS Sweden study. J. Bone Miner. Res. 2011, 26, 865–872. [Google Scholar] [CrossRef]
- Fulzele, K.; Riddle, R.C.; DiGirolamo, D.J.; Cao, X.; Wan, C.; Chen, D.; Faugere, M.-C.; Aja, S.; Hussain, M.; Brüning, J.C.; et al. Insulin Receptor Signaling in Osteoblasts Regulates Postnatal Bone Acquisition and Body Composition. Cell 2010, 142, 309–319. [Google Scholar] [CrossRef]
- Pramojanee, S.N.; Phimphilai, M.; Chattipakorn, N.; Chattipakorn, S.C. Possible roles of insulin signaling in osteoblasts. Endocr. Res. 2014, 39, 144–151. [Google Scholar] [CrossRef]
- Mussolino, M.E.; Gillum, R.F. Bone mineral density and hypertension prevalence in postmenopausal women: Results from the Third National Health and Nutrition Examination Survey. Ann. Epidemiol. 2006, 16, 395–399. [Google Scholar] [CrossRef]
- Rendina, D.; D’Elia, L.; Evangelista, M.; De Filippo, G.; Giaquinto, A.; Abate, V.; Barone, B.; Piccinocchi, G.; Prezioso, D.; Strazzullo, P.; et al. Metabolic syndrome is associated to an increased risk of low bone mineral density in free-living women with suspected osteoporosis. J. Endocrinol. Investig. 2021, 44, 1321–1326. [Google Scholar] [CrossRef]
- Nakagami, H.; Morishita, R. Hypertension, CKD and bone metabolism. Clin. Calcium 2011, 21, 685–689. [Google Scholar]
- Yamaguchi, T. Bone metabolism in dyslipidemia and metabolic syndrome. Clin. Calcium 2011, 21, 677–682. [Google Scholar] [PubMed]
- Hidayat, K.; Du, X.; Wu, M.J.; Shi, B.M. The use of metformin, insulin, sulphonylureas, and thiazolidinediones and the risk of fracture: Systematic review and meta-analysis of observational studies. Obes. Rev. 2019, 20, 1494–1503. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Hu, Y.; Li, Y.Y.; Cao, X.; Bai, N.; Lu, T.T.; Li, G.; Li, N.; Wang, A.; Mao, X.; et al. Glucagon-like peptide-1 receptor agonists and risk of bone fracture in patients with type 2 diabetes: A meta-analysis of randomized controlled trials. Diabetes Metab. Res. Rev. 2019, 35, e3168. [Google Scholar] [CrossRef]
- Lv, F.; Cai, X.; Lin, C.; Yang, W.; Hu, S.; Ji, L. Proprotein Convertase Subtilisin/Kexin Type 9 Inhibitors and the Risk of Fracture: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Calcif. Tissue Int. 2023, 113, 175–185. [Google Scholar] [CrossRef]
- Nguyen, N.D.; Wang, C.Y.; Eisman, J.A.; Nguyen, T.V. On the association between statin and fracture: A Bayesian consideration. Bone 2007, 40, 813–820. [Google Scholar] [CrossRef]
- Liu, L.; Wang, Y.; Tan, B.; Huang, P. Association of β-adrenergic receptor blockers use with the risk of fracture in adults: A systematic review and meta-analysis. Osteoporos. Int. 2025, 36, 995–1005. [Google Scholar] [CrossRef]
- Ruanpeng, D.; Ungprasert, P.; Sangtian, J.; Harindhanavudhi, T. Sodium-glucose cotransporter 2 (SGLT2) inhibitors and fracture risk in patients with type 2 diabetes mellitus: A meta-analysis. Diabetes Metab. Res. Rev. 2017, 33, e2903. [Google Scholar] [CrossRef]
- Lin, S.M.; Yang, S.H.; Wang, C.Y.; Huang, H.K. Association between diuretic use and the risk of vertebral fracture after stroke: A population-based retrospective cohort study. BMC Musculoskelet. Disord. 2019, 20, 96. [Google Scholar] [CrossRef] [PubMed]
- Schini, M.; Vilaca, T.; Gossiel, F.; Salam, S.; Eastell, R. Bone Turnover Markers: Basic Biology to Clinical Applications. Endocr. Rev. 2023, 44, 417–473. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.K.; Chin, K.Y.; Suhaimi, F.H.; Ahmad, F.; Ima-Nirwana, S. Effects of metabolic syndrome on bone mineral density, histomorphometry and remodelling markers in male rats. PLoS ONE 2018, 13, e0192416. [Google Scholar] [CrossRef]
- Holloway-Kew, K.L.; De Abreu, L.L.F.; Kotowicz, M.A.; Sajjad, M.A.; Pasco, J.A. Bone Turnover Markers in Men and Women with Impaired Fasting Glucose and Diabetes. Calcif. Tissue Int. 2019, 104, 599–604. [Google Scholar] [CrossRef]
- Laurent, M.R.; Cook, M.J.; Gielen, E.; Ward, K.A.; Antonio, L.; Adams, J.E.; Decallonne, B.; Bartfai, G.; Casanueva, F.F.; Forti, G.; et al. Lower bone turnover and relative bone deficits in men with metabolic syndrome: A matter of insulin sensitivity? The European Male Ageing Study. Osteoporos. Int. 2016, 27, 3227–3237. [Google Scholar] [CrossRef] [PubMed]
- Olmos, J.M.; Hernández, J.L.; Martínez, J.; Castillo, J.; Valero, C.; Pérez Pajares, I.; Nan, D.; González-Macías, J. Bone turnover markers and bone mineral density in hypertensive postmenopausal women on treatment. Maturitas 2010, 65, 396–402. [Google Scholar] [CrossRef]
- Bezerra dos Santos Magalhães, K.; Magalhães, M.M.; Diniz, E.T.; Lucena, C.S.; Griz, L.; Bandeira, F. Metabolic syndrome and central fat distribution are related to lower serum osteocalcin concentrations. Ann. Nutr. Metab. 2013, 62, 183–188. [Google Scholar] [CrossRef]
- Fodor, D.; Vesa, S.; Albu, A.; Simon, S.; Craciun, A.; Muntean, L. The relationship between the metabolic syndrome and its components and bone status in postmenopausal women. Acta Physiol. Hung. 2014, 101, 216–227. [Google Scholar] [CrossRef]
- Terzi, R.; Dindar, S.; Terzi, H.; Demirtaş, Ö. Relationships among the metabolic syndrome, bone mineral density, bone turnover markers, and hyperglycemia. Metab. Syndr. Relat. Disord. 2015, 13, 78–83. [Google Scholar] [CrossRef]
- Bendotti, G.; Biamonte, E.; Leporati, P.; Goglia, U.; Ruggeri, R.M.; Gallo, M. Vitamin D Supplementation: Practical Advice in Different Clinical Settings. Nutrients 2025, 17, 783. [Google Scholar] [CrossRef]
- Alfadda, A.A.; Sallam, R.M. Reactive Oxygen Species in Health and Disease. J. Biomed. Biotechnol. 2012, 2012, 936486. [Google Scholar] [CrossRef] [PubMed]
- Chin, K.Y.; Wong, S.K.; Ekeuku, S.O.; Pang, K.L. Relationship Between Metabolic Syndrome and Bone Health—An Evaluation of Epidemiological Studies and Mechanisms Involved. Diabetes Metab. Syndr. Obes. 2020, 13, 3667–3690. [Google Scholar] [CrossRef]
- Cipriani, C.; Colangelo, L.; Santori, R.; Renella, M.; Mastrantonio, M.; Minisola, S.; Pepe, J. The Interplay Between Bone and Glucose Metabolism. Front. Endocrinol. 2020, 11, 122. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.; Chin, K.Y.; Suhaimi, F.; Ahmad, F.; Ima-Nirwana, S. The Relationship between Metabolic Syndrome and Osteoporosis: A Review. Nutrients 2016, 8, 347. [Google Scholar] [CrossRef]
- Schneider, D.; Gauthier, B.; Trachtman, H. Hypercalciuria in children with renal glycosuria: Evidence of dual renal tubular reabsorptive defects. J. Pediatr. 1992, 121, 715–719. [Google Scholar] [CrossRef] [PubMed]
- Strazzullo, P.; Barbato, A.; Galletti, F.; Barba, G.; Siani, A.; Iacone, R.; D’Elia, L.; Russo, O.; Versiero, M.; Farinaro, E.; et al. Abnormalities of renal sodium handling in the metabolic syndrome. Results of the Olivetti Heart Study. J. Hypertens. 2006, 24, 1633–1639. [Google Scholar] [CrossRef]
- Christakos, S.; Dhawan, P.; Verstuyf, A.; Verlinden, L.; Carmeliet, G. Vitamin D: Metabolism, Molecular Mechanism of Action, and Pleiotropic Effects. Physiol. Rev. 2016, 96, 365–408. [Google Scholar] [CrossRef]
- Pittas, A.G.; Kawahara, T.; Jorde, R.; Dawson-Hughes, B.; Balk, E.M. Vitamin D and Risk for Type 2 Diabetes in People With Prediabetes. Ann. Intern. Med. 2023, 176, eL230202. [Google Scholar] [CrossRef]
- Grammatiki, M.; Rapti, E.; Karras, S.; Ajjan, R.A.; Kotsa, K. Vitamin D and diabetes mellitus: Causal or casual association? Rev. Endocr. Metab. Disord. 2017, 18, 227–241. [Google Scholar] [CrossRef]
- Asbaghi, O.; Khosroshahi, M.; Kashkooli, S.; Abbasnezhad, A. Effect of Calcium-Vitamin D Co-Supplementation on Insulin, Insulin Sensitivity, and Glycemia: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Horm. Metab. Res. 2019, 51, 288–295. [Google Scholar] [CrossRef]
- Schousboe, J.T.; Shepherd, J.A.; Bilezikian, J.P.; Baim, S. Executive summary of the 2013 International Society for Clinical Densitometry Position Development Conference on bone densitometry. J. Clin. Densitom. 2013, 16, 455–466. [Google Scholar] [CrossRef]
- Kinjo, M.; Setoguchi, S.; Solomon, D.H. Bone mineral density in adults with the metabolic syndrome: Analysis in a population-based U.S. sample. J. Clin. Endocrinol. Metab. 2007, 92, 4161–4164. [Google Scholar] [CrossRef]
- Wani, K.; Yakout, S.M.; Ansari, M.G.A.; Sabico, S.; Hussain, S.D.; Alokail, M.S.; Sheshah, E.; Aljohani, N.J.; Al-Saleh, Y.; Reginster, J.-Y.; et al. Metabolic Syndrome in Arab Adults with Low Bone Mineral Density. Nutrients 2019, 11, 1405. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.J.; Ahn, S.H.; Bae, S.J.; Kim, E.H.; Kim, T.H.; Lee, S.H.; Kim, H.-K.; Choe, J.W.; Kim, S.-Y.; Koh, J.-M.; et al. Association between metabolic syndrome and bone loss at various skeletal sites in postmenopausal women: A 3-year retrospective longitudinal study. Osteoporos. Int. 2013, 24, 2243–2252. [Google Scholar] [CrossRef] [PubMed]
- Xue, P.; Gao, P.; Li, Y. The association between metabolic syndrome and bone mineral density: A meta-analysis. Endocrine 2012, 42, 546–554. [Google Scholar] [CrossRef]
- Bagherzadeh, M.; Sajjadi-Jazi, S.M.; Sharifi, F.; Ebrahimpur, M.; Amininezhad, F.; Ostovar, A.; Shafiee, G.; Heshmat, R.; Mehrdad, N.; Razi, F.; et al. Effects of metabolic syndrome on bone health in older adults: The Bushehr Elderly Health (BEH) program. Osteoporos. Int. 2020, 31, 1975–1984. [Google Scholar] [CrossRef]
- Napoli, N.; Conte, C.; Pedone, C.; Strotmeyer, E.S.; Barbour, K.E.; Black, D.M.; Samelson, E.J.; Schwartz, A.V. Effect of Insulin Resistance on BMD and Fracture Risk in Older Adults. J. Clin. Endocrinol. Metab. 2019, 104, 3303–3310. [Google Scholar] [CrossRef] [PubMed]
- Binkley, N.; Krueger, D.; Vallarta-Ast, N. An overlying fat panniculus affects femur bone mass measurement. J. Clin. Densitom. 2003, 6, 199–204. [Google Scholar] [CrossRef]
- Ye, Z.; Lu, H.; Liu, P. Association between essential hypertension and bone mineral density: A systematic review and meta-analysis. Oncotarget 2017, 8, 68916–68927. [Google Scholar] [CrossRef]
- Shevroja, E.; Reginster, J.Y.; Lamy, O.; Al-Daghri, N.; Chandran, M.; Demoux-Baiada, A.L.; Kohlmeier, L.; Lecart, M.-P.; Messina, D.; Camargos, B.M.; et al. Update on the clinical use of trabecular bone score (TBS) in the management of osteoporosis: Results of an expert group meeting organized by the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO), and the International Osteoporosis Foundation (IOF) under the auspices of WHO Collaborating Center for Epidemiology of Musculoskeletal Health and Aging. Osteoporos. Int. 2023, 34, 1501–1529. [Google Scholar] [CrossRef]
- Palomo, T.; Muszkat, P.; Weiler, F.G.; Dreyer, P.; Brandão, C.M.A.; Silva, B.C. Update on trabecular bone score. Arch. Endocrinol. Metab. 2022, 66, 694–706. [Google Scholar] [CrossRef]
- Sartori, G.; Bertoldo, F.; Gretter, A.; Lovati, F.M.; Caprino, R.; Viterale, G.; Crisafulli, E. Impact of the visceral adipose tissue on bone quality in patients with untreated mild-to-severe obstructive sleep apnea. J. Sleep Res. 2024, 34, e14397. [Google Scholar] [CrossRef] [PubMed]
- Jose, A.; Cherian, K.E.; Nandyal, M.B.; Jiwanmall, S.A.; Kattula, D.; Paul, T.V.; Kapoor, N. Trabecular Bone Score and Bone Mineral Density in Postmenopausal Women with Morbid Obesity-A Clinical Paradox. Med. Sci. 2021, 9, 69. [Google Scholar] [CrossRef] [PubMed]
- Palermo, A.; Tuccinardi, D.; Defeudis, G.; Watanabe, M.; D’Onofrio, L.; Lauria Pantano, A.; Napoli, N.; Pozzilli, P.; Manfrini, S. BMI and BMD: The Potential Interplay between Obesity and Bone Fragility. Int. J. Environ. Res. Public Health 2016, 13, 544. [Google Scholar] [CrossRef] [PubMed]
- Dent, E.; Daly, R.M.; Hoogendijk, E.O.; Scott, D. Exercise to Prevent and Manage Frailty and Fragility Fractures. Curr. Osteoporos. Rep. 2023, 21, 205–215. [Google Scholar] [CrossRef]
- Ahmed, L.A.; Schirmer, H.; Berntsen, G.K.; Fønnebø, V.; Joakimsen, R.M. Features of the metabolic syndrome and the risk of non-vertebral fractures: The Tromsø study. Osteoporos. Int. 2006, 17, 426–432. [Google Scholar] [CrossRef]
- Wang, D.; Liu, N.; Gao, Y.; Li, P.; Tian, M. Association between metabolic syndrome and osteoporotic fracture in middle-aged and elderly Chinese peoples. Cell Biochem. Biophys. 2014, 70, 1297–1303. [Google Scholar] [CrossRef]
- von Muhlen, D.; Safii, S.; Jassal, S.K.; Svartberg, J.; Barrett-Connor, E. Associations between the metabolic syndrome and bone health in older men and women: The Rancho Bernardo Study. Osteoporos. Int. 2007, 18, 1337–1344. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Kanazawa, I.; Yamamoto, M.; Kurioka, S.; Yamauchi, M.; Yano, S.; Sugimoto, T. Associations between components of the metabolic syndrome versus bone mineral density and vertebral fractures in patients with type 2 diabetes. Bone 2009, 45, 174–179. [Google Scholar] [CrossRef]
- Napoli, N.; Strotmeyer, E.S.; Ensrud, K.E.; Sellmeyer, D.E.; Bauer, D.C.; Hoffman, A.R.; Dam, T.-T.L.; Barrett-Connor, E.; Palermo, L.; Orwoll, E.S.; et al. Fracture risk in diabetic elderly men: The MrOS study. Diabetologia 2014, 57, 2057–2065. [Google Scholar] [CrossRef]
- Johansson, H.; Kanis, J.A.; Odén, A.; McCloskey, E.; Chapurlat, R.D.; Christiansen, C.; Cummings, S.R.; Diez-Perez, A.; A Eisman, J.; Fujiwara, S.; et al. A meta-analysis of the association of fracture risk and body mass index in women. J. Bone Miner. Res. 2014, 29, 223–233. [Google Scholar] [CrossRef]
- Compston, J.E.; Watts, N.B.; Chapurlat, R.; Cooper, C.; Boonen, S.; Greenspan, S.; Pfeilschifter, J.; Silverman, S.; Díez-Pérez, A.; Lindsay, R.; et al. Obesity is not protective against fracture in postmenopausal women: GLOW. Am. J. Med. 2011, 124, 1043–1050. [Google Scholar] [CrossRef]
- Prieto-Alhambra, D.; Premaor, M.O.; Fina Avilés, F.; Hermosilla, E.; Martinez-Laguna, D.; Carbonell-Abella, C.; Nogués, X.; E Compston, J.; Díez-Pérez, A. The association between fracture and obesity is site-dependent: A population-based study in postmenopausal women. J. Bone Miner. Res. 2012, 27, 294–300. [Google Scholar] [CrossRef]
- Sun, K.; Liu, J.; Lu, N.; Sun, H.; Ning, G. Association between metabolic syndrome and bone fractures: A meta-analysis of observational studies. BMC Endocr. Disord. 2014, 14, 13. [Google Scholar] [CrossRef]
- Premaor, M.O.; Compston, J.E.; Fina Avilés, F.; Pagès-Castellà, A.; Nogués, X.; Díez-Pérez, A.; Prieto-Alhambra, D. The association between fracture site and obesity in men: A population-based cohort study. J. Bone Miner. Res. 2013, 28, 1771–1777. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Gong, X.; Jiang, W. Abdominal obesity and risk of hip fracture: A meta-analysis of prospective studies. Osteoporos. Int. 2017, 28, 2747–2757. [Google Scholar] [CrossRef] [PubMed]
- Pirro, M.; Fabbriciani, G.; Leli, C.; Callarelli, L.; Manfredelli, M.R.; Fioroni, C.; Mannarino, M.R.; Scarponi, A.M.; Mannarino, E. High weight or body mass index increase the risk of vertebral fractures in postmenopausal osteoporotic women. J. Bone Miner. Metab. 2010, 28, 88–93. [Google Scholar] [CrossRef]
- Laslett, L.L.; Just Nee Foley, S.J.; Quinn, S.J.; Winzenberg, T.M.; Jones, G. Excess body fat is associated with higher risk of vertebral deformities in older women but not in men: A cross-sectional study. Osteoporos. Int. 2012, 23, 67–74. [Google Scholar] [CrossRef]
- Boicean, A.; Ichim, C.; Sasu, S.-M.; Todor, S.B. Key Insights into Gut Alterations in Metabolic Syndrome. J. Clin. Med. 2025, 14, 2678. [Google Scholar] [CrossRef] [PubMed]
- Popa, M.L.; Ichim, C.; Anderco, P.; Todor, S.B.; Pop-Lodromanean, D. MicroRNAs in the Diagnosis of Digestive Diseases: A Comprehensive Review. J. Clin. Med. 2025, 14, 2054. [Google Scholar] [CrossRef] [PubMed]
Diagnosis of MetS if ≥3 of the Following Criteria: | |
---|---|
Waist Circumference | ≥102 cm in men ≥88 cm in women |
Triglycerides | ≥150 mg/dL |
HDL Cholesterol | <40 mg/dL in men <50 mg/dL in women |
Blood Pressure | ≥130/85 mmHg or on antihypertensive medications |
Fasting Glucose | ≥100 mg/dL or on antidiabetic treatment |
Drugs | Fracture Risk |
---|---|
Antidiabetic Drugs | |
Metformin | Reduction [26] |
Thiazolidinediones (PPAR-γ agonists) | Increase [26] |
Sulfonylures | Neutral [26] |
GLP-1 receptor agonists | Reduction [27] |
GLP-1/GIP receptor agonists | No data available |
DPP-4 i | Neutral [27] |
SGLT2 i | Neutral [31] |
Insulin | Neutral? [26] |
Antihypertensive drugs | |
Loop diuretics | Increase [32] |
Thiazide diuretics | Reduction [32] |
Beta-blockers | Reduction [30] |
Hypolipidemic drugs | |
Statins | Reduction [29] |
Ezetimibe | No data available |
Bempedoic acid | No data available |
PCSK9 i | Neutral [28] |
Parameter | Role in Bone Health Evaluation of MetS Patients |
---|---|
Bone turnover |
|
Ca-P homeostasis |
|
Bone mass (BMD) |
|
Bone quality (TBS) |
|
Fragility fractures |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biamonte, E.; Bendotti, G.; Nigro, G.; Cavigiolo, B.; Gallo, M. Bone Health in Metabolic Syndrome—Is It a Neglected Aspect of Dysmetabolic-Related Diseases? J. Clin. Med. 2025, 14, 5785. https://doi.org/10.3390/jcm14165785
Biamonte E, Bendotti G, Nigro G, Cavigiolo B, Gallo M. Bone Health in Metabolic Syndrome—Is It a Neglected Aspect of Dysmetabolic-Related Diseases? Journal of Clinical Medicine. 2025; 14(16):5785. https://doi.org/10.3390/jcm14165785
Chicago/Turabian StyleBiamonte, Emilia, Giulia Bendotti, Giulia Nigro, Beatrice Cavigiolo, and Marco Gallo. 2025. "Bone Health in Metabolic Syndrome—Is It a Neglected Aspect of Dysmetabolic-Related Diseases?" Journal of Clinical Medicine 14, no. 16: 5785. https://doi.org/10.3390/jcm14165785
APA StyleBiamonte, E., Bendotti, G., Nigro, G., Cavigiolo, B., & Gallo, M. (2025). Bone Health in Metabolic Syndrome—Is It a Neglected Aspect of Dysmetabolic-Related Diseases? Journal of Clinical Medicine, 14(16), 5785. https://doi.org/10.3390/jcm14165785