Sex Differences in Cardiovascular Risk and Diabetic Polyneuropathy: A Single-Center Retrospective Study in North-Eastern Hungary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population and Participant Enrollment
2.2. Data Collection and Variables Assessed
2.3. Sex-Specific Stratification
2.4. Neuropathy Screening and Diagnosis
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CIs | confidence intervals |
CPT | current perception threshold |
DN4 | Douleur Neuropathique en 4 Questions |
DSPN | diabetic sensorimotor polyneuropathy |
eGFR | estimated glomerular filtration rate |
HbA1c | hemoglobin A1c |
HDL-C | high-density lipoprotein cholesterol |
IQR | interquartile ranges |
LDL-C | low-density lipoprotein cholesterol |
NSS | Neuropathy Symptom Score |
T1D | type 1 diabetes |
T2D | type 2 diabetes |
References
- Ziegler, D.; Tesfaye, S.; Spallone, V.; Gurieva, I.; Al Kaabi, J.; Mankovsky, B.; Martinka, E.; Radulian, G.; Nguyen, K.T.; Stirban, A.O.; et al. Screening, diagnosis and management of diabetic sensorimotor polyneuropathy in clinical practice: International expert consensus recommendations. Diabetes Res. Clin. Pract. 2022, 186, 109063. [Google Scholar] [CrossRef] [PubMed]
- Tesfaye, S.; Stevens, L.K.; Stephenson, J.M.; Fuller, J.H.; Plater, M.; Ionescu-Tirgoviste, C.; Nuber, A.; Pozza, G.; Ward, J.D. Prevalence of diabetic peripheral neuropathy and its relation to glycaemic control and potential risk factors: The EURODIAB IDDM Complications Study. Diabetologia 1996, 39, 1377–1384. [Google Scholar] [CrossRef]
- Shillo, P.; Sloan, G.; Greig, M.; Hunt, L.; Selvarajah, D.; Elliott, J.; Gandhi, R.; Wilkinson, I.D.; Tesfaye, S. Painful and Painless Diabetic Neuropathies: What Is the Difference? Curr. Diab. Rep. 2019, 19, 32. [Google Scholar] [CrossRef]
- Martin, C.L.; Albers, J.W.; Pop-Busui, R.; Group, D.E.R. Neuropathy and related findings in the diabetes control and complications trial/epidemiology of diabetes interventions and complications study. Diabetes Care 2014, 37, 31–38. [Google Scholar] [CrossRef]
- UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998, 352, 837–853. [Google Scholar] [CrossRef]
- Ang, L.; Jaiswal, M.; Martin, C.; Pop-Busui, R. Glucose control and diabetic neuropathy: Lessons from recent large clinical trials. Curr. Diab. Rep. 2014, 14, 528. [Google Scholar] [CrossRef] [PubMed]
- Tesfaye, S.; Boulton, A.J.; Dyck, P.J.; Freeman, R.; Horowitz, M.; Kempler, P.; Lauria, G.; Malik, R.A.; Spallone, V.; Vinik, A.; et al. Diabetic neuropathies: Update on definitions, diagnostic criteria, estimation of severity, and treatments. Diabetes Care 2010, 33, 2285–2293. [Google Scholar] [CrossRef]
- ElSayed, N.A.; Aleppo, G.; Aroda, V.R.; Bannuru, R.R.; Brown, F.M.; Bruemmer, D.; Collins, B.S.; Gibbons, C.H.; Giurini, J.M.; Hilliard, M.E.; et al. 12. Retinopathy, Neuropathy, and Foot Care: Standards of Care in Diabetes-2023. Diabetes Care 2023, 46, S203–S215. [Google Scholar] [CrossRef]
- Kempler, P.; Tesfaye, S.; Chaturvedi, N.; Stevens, L.K.; Webb, D.J.; Eaton, S.; Kerényi, Z.; Tamás, G.; Ward, J.D.; Fuller, J.H.; et al. Autonomic neuropathy is associated with increased cardiovascular risk factors: The EURODIAB IDDM Complications Study. Diabet Med 2002, 19, 900–909. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Xu, Y.; An, M.; Zeng, Q. The risk factors for diabetic peripheral neuropathy: A meta-analysis. PLoS ONE 2019, 14, e0212574. [Google Scholar] [CrossRef]
- Li, J.; Yang, F.; Wang, J.; Tao, Y. Effect of community-based nurse-led support intervention in the reduction of HbA1c levels. Public Health Nurs. 2022, 39, 1318–1333. [Google Scholar] [CrossRef]
- Misra, R.; Adelman, M.M.; Kirk, B.; Sambamoorthi, U. Relationship Among Diabetes Distress, Health Literacy, Diabetes Education, Patient-Provider Communication and Diabetes Self-Care. Am. J. Health Behav. 2022, 46, 528–540. [Google Scholar] [CrossRef] [PubMed]
- Cardinez, N.; Lovblom, L.E.; Bai, J.W.; Lewis, E.; Abraham, A.; Scarr, D.; Lovshin, J.A.; Lytvyn, Y.; Boulet, G.; Farooqi, M.A.; et al. Sex differences in neuropathic pain in longstanding diabetes: Results from the Canadian Study of Longevity in Type 1 Diabetes. J. Diabetes Complicat. 2018, 32, 660–664. [Google Scholar] [CrossRef]
- Merlin, E.; Salio, C.; Ferrini, F. Painful Diabetic Neuropathy: Sex-Specific Mechanisms and Differences from Animal Models to Clinical Outcomes. Cells 2024, 13, 2024. [Google Scholar] [CrossRef] [PubMed]
- Elliott, J.; Sloan, G.; Stevens, L.; Selvarajah, D.; Cruccu, G.; Gandhi, R.A.; Kempler, P.; Fuller, J.H.; Chaturvedi, N.; Tesfaye, S.; et al. Female sex is a risk factor for painful diabetic peripheral neuropathy: The EURODIAB prospective diabetes complications study. Diabetologia 2024, 67, 190–198. [Google Scholar] [CrossRef]
- Aaberg, M.L.; Burch, D.M.; Hud, Z.R.; Zacharias, M.P. Gender differences in the onset of diabetic neuropathy. J. Diabetes Complicat. 2008, 22, 83–87. [Google Scholar] [CrossRef] [PubMed]
- Van Acker, K.; Bouhassira, D.; De Bacquer, D.; Weiss, S.; Matthys, K.; Raemen, H.; Mathieu, C.; Colin, I.M. Prevalence and impact on quality of life of peripheral neuropathy with or without neuropathic pain in type 1 and type 2 diabetic patients attending hospital outpatients clinics. Diabetes Metab. 2009, 35, 206–213. [Google Scholar] [CrossRef]
- Abbott, C.A.; Malik, R.A.; van Ross, E.R.; Kulkarni, J.; Boulton, A.J. Prevalence and characteristics of painful diabetic neuropathy in a large community-based diabetic population in the U.K. Diabetes Care 2011, 34, 2220–2224. [Google Scholar] [CrossRef]
- Davies, M.; Brophy, S.; Williams, R.; Taylor, A. The prevalence, severity, and impact of painful diabetic peripheral neuropathy in type 2 diabetes. Diabetes Care 2006, 29, 1518–1522. [Google Scholar] [CrossRef]
- Vági, O.E.; Svébis, M.M.; Domján, B.A.; Körei, A.E.; Istenes, I.; Putz, Z.; Mészáros, S.; Hajdú, N.; Békeffy, M.; Tesfaye, S.; et al. Association of Cardiovascular Autonomic Neuropathy and Distal Symmetric Polyneuropathy with All-Cause Mortality: A Retrospective Cohort Study. J. Diabetes Res. 2021, 2021, 6662159. [Google Scholar] [CrossRef]
- Peto, A.; Toth, L.I.; Hernyak, M.; Lorincz, H.; Molnar, A.; Nagy, A.C.; Lukacs, M.; Kempler, P.; Paragh, G.; Harangi, M.; et al. Correlations between distal sensorimotor polyneuropathy and cardiovascular complications in diabetic patients in the North-Eastern region of Hungary. PLoS ONE 2024, 19, e0306482. [Google Scholar] [CrossRef]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P.; Initiative, S. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. Lancet 2007, 370, 1453–1457. [Google Scholar] [CrossRef]
- AAEM Equipment and Computer Committee; American Association of Electrodiagnostic Medicine. Technology review: The Neurometer Current Perception Threshold (CPT). Muscle Nerve 1999, 22, 523–531. [Google Scholar]
- Yeung, R.O.; Zhang, Y.; Luk, A.; Yang, W.; Sobrepena, L.; Yoon, K.H.; Aravind, S.R.; Sheu, W.; Nguyen, T.K.; Ozaki, R.; et al. Metabolic profiles and treatment gaps in young-onset type 2 diabetes in Asia (the JADE programme): A cross-sectional study of a prospective cohort. Lancet Diabetes Endocrinol. 2014, 2, 935–943. [Google Scholar] [CrossRef] [PubMed]
- Unnikrishnan, R.; Anjana, R.M.; Amutha, A.; Ranjani, H.; Jebarani, S.; Ali, M.K.; Narayan, K.; Mohan, V. Younger-onset versus older-onset type 2 diabetes: Clinical profile and complications. J. Diabetes Complicat. 2017, 31, 971–975. [Google Scholar] [CrossRef] [PubMed]
- Nanayakkara, N.; Ranasinha, S.; Gadowski, A.; Heritier, S.; Flack, J.R.; Wischer, N.; Wong, J.; Zoungas, S. Age, age at diagnosis and diabetes duration are all associated with vascular complications in type 2 diabetes. J. Diabetes Complicat. 2018, 32, 279–290. [Google Scholar] [CrossRef]
- Kautzky-Willer, A.; Stich, K.; Hintersteiner, J.; Kautzky, A.; Kamyar, M.R.; Saukel, J.; Johnson, J.; Lemmens-Gruber, R. Sex-specific-differences in cardiometabolic risk in type 1 diabetes: A cross-sectional study. Cardiovasc. Diabetol. 2013, 12, 78. [Google Scholar] [CrossRef]
- Zhou, R.; Li, F.; Chen, G.; Fu, Q.; Gu, S.; Wu, X. Associations between general and abdominal obesity and incident diabetic neuropathy in participants with type 2 diabetes mellitus. J. Diabetes 2021, 13, 33–42. [Google Scholar] [CrossRef]
- Xiong, X.F.; Yang, Y.; Wei, L.; Xiao, Y.; Li, L.; Sun, L. Identification of two novel subgroups in patients with diabetes mellitus and their association with clinical outcomes: A two-step cluster analysis. J. Diabetes Investig. 2021, 12, 1346–1358. [Google Scholar] [CrossRef]
- Nattero-Chavez, L.; Insenser, M.; Quintero Tobar, A.; Fernandez-Duran, E.; Dorado Avendano, B.; Fiers, T.; Kaufman, J.M.; Luque-Ramirez, M.; Escobar-Morreale, H.F. Sex differences and sex steroids influence on the presentation and severity of cardiovascular autonomic neuropathy of patients with type 1 diabetes. Cardiovasc. Diabetol. 2023, 22, 32. [Google Scholar] [CrossRef] [PubMed]
- Tesfaye, S.; Chaturvedi, N.; Eaton, S.E.; Ward, J.D.; Manes, C.; Ionescu-Tirgoviste, C.; Witte, D.R.; Fuller, J.H.; Group, E.P.C.S. Vascular risk factors and diabetic neuropathy. N. Engl. J. Med. 2005, 352, 341–350. [Google Scholar] [CrossRef] [PubMed]
- Pai, Y.W.; Tang, C.L.; Lin, C.H.; Lin, S.Y.; Lee, I.T.; Chang, M.H. Glycaemic control for painful diabetic peripheral neuropathy is more than fasting plasma glucose and glycated haemoglobin. Diabetes Metab. 2021, 47, 101158. [Google Scholar] [CrossRef]
- Callaghan, B.C.; Little, A.A.; Feldman, E.L.; Hughes, R.A. Enhanced glucose control for preventing and treating diabetic neuropathy. Cochrane Database Syst. Rev. 2012, 2012, CD007543. [Google Scholar] [CrossRef]
- Geng, T.; Zhu, K.; Lu, Q.; Wan, Z.; Chen, X.; Liu, L.; Pan, A.; Liu, G. Healthy lifestyle behaviors, mediating biomarkers, and risk of microvascular complications among individuals with type 2 diabetes: A cohort study. PLoS Med. 2023, 20, e1004135. [Google Scholar] [CrossRef]
- Hukportie, D.N.; Li, F.R.; Zhou, R.; Zheng, J.Z.; Wu, X.X.; Zou, M.C.; Wu, X.B. Lipid variability and risk of microvascular complications in Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial: A post hoc analysis. J. Diabetes 2022, 14, 365–376. [Google Scholar] [CrossRef]
- Alshammari, N.A.; Alodhayani, A.A.; Joy, S.S.; Isnani, A.; Mujammami, M.; Alfadda, A.A.; Siddiqui, K. Evaluation of Risk Factors for Diabetic Peripheral Neuropathy Among Saudi Type 2 Diabetic Patients with Longer Duration of Diabetes. Diabetes Metab. Syndr. Obes. 2022, 15, 3007–3014. [Google Scholar] [CrossRef]
- Sempere-Bigorra, M.; Julian-Rochina, I.; Cauli, O. Differences and Similarities in Neuropathy in Type 1 and 2 Diabetes: A Systematic Review. J. Pers. Med. 2021, 11, 230. [Google Scholar] [CrossRef] [PubMed]
- Singh, H.; Singh, R.; Singh, A.; Singh, G.; Kaur, S.; Singh, B. Role of oxidative stress in diabetes-induced complications and their management with antioxidants. Arch. Physiol. Biochem. 2023, 130, 616–641. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Shen, X.; Yan, S.; Wu, P. Identification of independent risk factors for diabetic neuropathy progression in patients with type 2 diabetes mellitus. J. Int. Med. Res. 2021, 49, 3000605211044366. [Google Scholar] [CrossRef]
- Kostev, K.; Jockwig, A.; Hallwachs, A.; Rathmann, W. Prevalence and risk factors of neuropathy in newly diagnosed type 2 diabetes in primary care practices: A retrospective database analysis in Germany and U.K. Prim. Care Diabetes 2014, 8, 250–255. [Google Scholar] [CrossRef]
- Xu, L.; Lin, X.; Guan, M.; Liu, Y. Correlation Between Different Stages of Diabetic Nephropathy and Neuropathy in Patients with T2DM: A Cross-Sectional Controlled Study. Diabetes Ther. 2018, 9, 2335–2346. [Google Scholar] [CrossRef]
- Lindholm, E.; Ekman, L.; Elgzyri, T.; Lindholm, B.; Löndahl, M.; Dahlin, L. Diabetic Neuropathy Assessed with Multifrequency Vibrometry Develops Earlier than Nephropathy but Later than Retinopathy. Exp. Clin. Endocrinol. Diabetes 2023, 131, 187–193. [Google Scholar] [CrossRef]
- Brownrigg, J.R.; de Lusignan, S.; McGovern, A.; Hughes, C.; Thompson, M.M.; Ray, K.K.; Hinchliffe, R.J. Peripheral neuropathy and the risk of cardiovascular events in type 2 diabetes mellitus. Heart 2014, 100, 1837–1843. [Google Scholar] [CrossRef]
- Wang, W.; Ji, Q.; Ran, X.; Li, C.; Kuang, H.; Yu, X.; Fang, H.; Yang, J.; Liu, J.; Xue, Y.; et al. Prevalence and risk factors of diabetic peripheral neuropathy: A population-based cross-sectional study in China. Diabetes Metab. Res. Rev. 2023, 39, e3702. [Google Scholar] [CrossRef] [PubMed]
- Vinik, A.I.; Casellini, C.; Parson, H.K.; Colberg, S.R.; Nevoret, M.L. Cardiac Autonomic Neuropathy in Diabetes: A Predictor of Cardiometabolic Events. Front. Neurosci. 2018, 12, 591. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Huang, Y.; Zhuang, X.; Guo, Y.; Xie, P.; Xiong, Z.; Liu, M.; Zhang, W.; Zhong, J.; Li, Y.; et al. Sex Differences in the Association Between Cardiovascular Autonomic Neuropathy and Mortality in Patients with Type 2 Diabetes: The ACCORD Study. J. Am. Heart Assoc. 2025, 14, e034626. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.; Srinivasan, A.; Sabb, B.; Feldman, E.L.; Pop-Busui, R. Diffusion tensor imaging of the sural nerve in normal controls. Clin. Imaging 2014, 38, 648–654. [Google Scholar] [CrossRef]
- Pušnik, L.; Gabor, A.; Radochová, B.; Janáček, J.; Saudek, F.; Alibegović, A.; Serša, I.; Cvetko, E.; Umek, N.; Snoj, Ž. High-Field Diffusion Tensor Imaging of Median, Tibial, and Sural Nerves in Type 2 Diabetes with Morphometric Analysis. J. Neuroimaging 2025, 35, e70025. [Google Scholar] [CrossRef] [PubMed]
Variable | Study Population N = 621 |
---|---|
Age (years), median [IQR] | 67.0 [60.0−74.0] |
Duration of diabetes (years), median [IQR] | 14.0 [6.0–27.0] |
Gender | |
Male, n (%) | 251 (40.4) |
Female, n (%) | 370 (59.6) |
Type of diabetes | |
T1D, n (%) | 55 (8.7) |
T2D, n (%) | 566 (91.1) |
Hepatopathy | |
Yes, n (%) | 67 (10.8) |
No, n (%) | 554 (89.2) |
Hypertension | |
Yes, n (%) | 536 (86.3) |
No, n (%) | 85 (13.7) |
Smoking | |
Yes, n (%) | 78 (12.6) |
No, n (%) | 543 (87.4) |
Retinopathy | |
Yes, n (%), | 39 (6.3) |
No, n (%) | 582 (93.7) |
Ischemic heart disease | |
Yes, n (%) | 138 (22.2) |
No, n (%) | 483 (77.8) |
History of acute myocardial infarction | |
Yes, n (%) | 41 (6.6) |
No, n (%) | 580 (93.4) |
History of stroke | |
Yes, n (%) | 50 (8.1) |
No, n (%) | 571 (92.0) |
History of heart failure | |
Yes, n (%) | 90 (14.2) |
No, n (%) | 531 (85.5) |
History of peripheral artery disease | |
Yes, n (%) | 53 (8.5) |
No, n (%) | 568 (91.5) |
History of atherosclerosis | |
Yes, n (%) | 147 (23.7) |
No, n (%) | 474 (76.3) |
History of cardiovascular disease | |
Yes, n (%) | 196 (31.6) |
No, n (%) | 425 (68.4) |
Insulin treatment | |
Yes, n (%) | 354 (57.0) |
No, n (%) | 267 (43) |
Oral antidiabetic drugs | |
Yes, n (%) | 568 (91.5) |
No, n (%) | 53 (8.5) |
Statin treatment | |
Yes, n (%) | 511 (82.3) |
No, n (%) | 110 (17.7) |
eGFR (ml/min/1.73 m2), median [IQR] | 80.0 [72.0, 90.0] |
HbA1c (%), median [IQR] | 7.3 [6.7, 8.0] |
Triglyceride (mmol/L), median [IQR] | 1.6 [1.1, 2.5] |
Total cholesterol (mmol/L), median [IQR] | 4.6 [3.8, 5.6] |
HDL-C (mmol/L), median [IQR] | 1.3 [1.0, 1.5] |
LDL-C (mmol/L), median [IQR] | 2.7 [1.9, 3.3] |
Variable | Male Patients with DSPN | Female Patients with DSPN | p-Value |
---|---|---|---|
n = 185 (41.8%) | n = 259 (58.2%) | ||
Age (years), median [IQR] | 67.0 [61.0, 73.0] | 69.0 [62.0, 76.0] | 0.058 |
Duration of diabetes (years), median [IQR] | 14.0 [9.0, 21.0] | 13.0 [7.0, 22.0] | 0.271 |
Type of diabetes (total) | |||
T1D: n (%) | 17 (9.19) | 22 (8.49) | 0.799 |
T2D: n (%) | 168 (90.81) | 237 (91.51) | |
eGFR (ml/min/1.73m2), median [IQR] | 76.5 [67.0, 84.0] | 78.0 [69.0, 86.0] | 0.255 |
HbA1c (%) | 7.81 (±1.16) | 7.65 (± 1.06) | 0.297 |
Albumin/creatinine ratio (mg/mmol), median [IQR] | 3.0 [2.0, 5.0] | 3.0 [2.0, 5.0] | 0.724 |
Triglyceride (mmol/L), median [IQR] | 2.0 [1.0, 3.0] | 2.0 [1.0, 3.0] | 0.832 |
Total cholesterol (mmol/L), median [IQR] | 4.0 [4.0, 5.0] | 4.0 [4.0, 6.0] | <0.001 |
HDL-C (mmol/L), median [IQR] | 1.0 [1.0, 1.0] | 1.0 [1.0, 2.0] | <0.001 |
LDL-C (mmol/L), median [IQR] | 2.0 [2.0, 3.0] | 3.0 [2.0, 4.0] | 0.021 |
Hepatopathy, n (%) | 35 (18.8%) | 16 (6.1%) | <0.001 |
Dyslipidemia, n (%) | 150 (80.7%) | 205 (79.2%) | 0.699 |
Insulin treatment, n (%) | 84 (45.2%) | 126 (48.7%) | 0.467 |
Hypertension, n (%) | 169 (90.9%) | 226 (87.6%) | 0.279 |
Smoking, n (%) | 30 (16.2%) | 28 (11.0%) | 0.113 |
Retinopathy, n (%) | 18 (9.7%) | 19 (7.3%) | 0.378 |
Ischemic heart disease, n (%) | 53 (28.5%) | 65 (25.1%) | 0.423 |
History of acute myocardial infarction, n (%) | 22 (11.8%) | 13(5.0%) | 0.008 |
History of stroke, n (%) | 12 (6.5%) | 24 (9.3%) | 0.283 |
History of heart failure, n (%) | 36 (19.4%) | 43 (16.6%) | 0.454 |
History of peripheral vascular disease, n (%) | 37 (19.9%) | 33 (12.7%) | 0.041 |
History of atherosclerosis, n (%) | 59 (31.7%) | 57 (22.0%) | 0.021 |
Alcohol consumption, n (%) | 27 (14.7%) | 5 (2.0%) | <0.001 |
NTTS score, mean (SD) | 11.23 (±5.98) | 11.76 (±6.38) | 0.387 |
DN4 score, mean (SD) | 3.08 (±1.54) | 3.18 (±1.62) | 0.456 |
N. peroneus left (mA), median [IQR] | 538.0 [415.0, 769.0] | 495.5 [422.0, 604.0] | 0.055 |
N. peroneus right (mA), median [IQR] | 579.0 [446.0, 826.0] | 535.0 [427.0, 668.0] | 0.015 |
N. medianus left (mA), median [IQR] | 293.5 [248.0, 346.0] | 279.0 [239.0, 333.0] | 0.036 |
N. medianus right (mA), median [IQR] | 315.5 [262.0, 376.0] | 305.0 [260.0, 373.0] | 0.578 |
Monofilament test, left, n (%) | 31 (16.67) | 39 (15.12) | 0.658 |
Monofilament test, right, n (%) | 33 (17.74) | 40 (15.50) | 0.530 |
Tuning fork, left, median [IQR] | 4.0 [1.0, 5.0] | 4.0 [2.0, 5.0] | 0.015 |
Tuning fork, right, median [IQR] | 3.5 [1.0, 5.0] | 4.0 [2.0, 5.0] | 0.017 |
Factors | Odds Ratio (OR) | 95% Confidence Interval | p-Value |
---|---|---|---|
Age (years) | 1.014 | 0.989–1.040 | 0.272 |
Gender (female/male) | 0.592 | 0.369–0.950 | 0.030 |
Duration of diabetes (years) | 1.020 | 0.995–1.045 | 0.111 |
HbA1c (%) | 1.143 | 0.915–1.428 | 0.238 |
Albumin/creatinine ratio (mg/mmol) | 0.988 | 0.970–1.007 | 0.202 |
Hypertension | 2.202 | 0.842–5.758 | 0.108 |
Smoking | 1.654 | 0.868–3.151 | 0.126 |
Retinopathy | 2.728 | 1.300–5.725 | 0.008 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sztanek, F.; Pető, A.; Tóth, L.I.; Lőrincz, H.; Molnár, Á.; Lukács, M.; Menyhárt, A.; Kempler, P.; Paragh, G.; Harangi, M.; et al. Sex Differences in Cardiovascular Risk and Diabetic Polyneuropathy: A Single-Center Retrospective Study in North-Eastern Hungary. J. Clin. Med. 2025, 14, 5780. https://doi.org/10.3390/jcm14165780
Sztanek F, Pető A, Tóth LI, Lőrincz H, Molnár Á, Lukács M, Menyhárt A, Kempler P, Paragh G, Harangi M, et al. Sex Differences in Cardiovascular Risk and Diabetic Polyneuropathy: A Single-Center Retrospective Study in North-Eastern Hungary. Journal of Clinical Medicine. 2025; 14(16):5780. https://doi.org/10.3390/jcm14165780
Chicago/Turabian StyleSztanek, Ferenc, Attila Pető, László Imre Tóth, Hajnalka Lőrincz, Ágnes Molnár, Miklós Lukács, Adrienn Menyhárt, Péter Kempler, György Paragh, Mariann Harangi, and et al. 2025. "Sex Differences in Cardiovascular Risk and Diabetic Polyneuropathy: A Single-Center Retrospective Study in North-Eastern Hungary" Journal of Clinical Medicine 14, no. 16: 5780. https://doi.org/10.3390/jcm14165780
APA StyleSztanek, F., Pető, A., Tóth, L. I., Lőrincz, H., Molnár, Á., Lukács, M., Menyhárt, A., Kempler, P., Paragh, G., Harangi, M., & Nagy, A. C. (2025). Sex Differences in Cardiovascular Risk and Diabetic Polyneuropathy: A Single-Center Retrospective Study in North-Eastern Hungary. Journal of Clinical Medicine, 14(16), 5780. https://doi.org/10.3390/jcm14165780