Use of Continuous Positive Airway Pressure Ventilation as a Support During Coronary Angioplasty in Patients with Acute Myocardial Infarction: Safety and Feasibility
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Endpoints
2.2. Statistical Analysis
3. Results
4. Discussion
- -
- Importantly, CPAP did not prolong PCI duration; on the contrary, it may have facilitated procedures by improving respiratory function and patients’ tolerance of the supine position.
- -
- Recent advances in pre-hospital care have emphasized the early initiation of NIV, especially in cases of acute cardiogenic pulmonary edema, to avoid the progression of respiratory failure before hospital admission [31]. Several emergency medical systems now incorporate CPAP devices in ambulances, allowing stabilization of patients en route to definitive care facilities [23].
- -
- This proactive approach aligns with growing evidence from randomized controlled trials suggesting that early NIV application in acute heart failure syndromes significantly reduces the incidence of orotracheal intubation and associated complications, such as ventilator-associated pneumonia and sedation-related delirium.
- -
- Furthermore, data from multicenter registries have indicated that the adoption of non-invasive ventilatory strategies is associated with a reduction in in-hospital mortality and ICU length of stay, reinforcing the notion that early respiratory support should be integral to the acute coronary syndrome care pathway [14].
- -
- In our study, the favorable safety profile of CPAP may also be attributed to careful patient selection and stepwise titration protocols that minimized hemodynamic instability. Protocol-driven application of CPAP, supported by nursing staff trained specifically in cath lab respiratory management, likely contributed to the high tolerance observed.
- -
- The involvement of trained nurses in the management of CPAP during PCI reflects a growing trend toward task-sharing in cardiovascular interventions, where multidisciplinary collaboration has been shown to improve patient safety and procedural efficiency.
- -
- Several studies have advocated for structured training programs for nursing and allied healthcare personnel involved in acute cardiac care, particularly in non-invasive respiratory support, highlighting improvements in care quality and reductions in intervention-related complications [32].
- -
- Moreover, novel CPAP interface technologies, such as helmet CPAP, have emerged as potentially superior alternatives to traditional face masks, offering enhanced comfort, better sealing, and reduced aerosol dispersion—important considerations in contemporary clinical environments affected by infectious respiratory diseases [33].
- -
- As patient-centered care becomes increasingly emphasized, attention to tolerability and device ergonomics may play a role in improving adherence and outcomes in both emergency and prolonged applications of non-invasive ventilation.
- -
- It is also noteworthy that our findings support the feasibility of CPAP without anesthesiologic supervision during PCI—a relevant aspect in resource-limited or high-volume settings where immediate access to anesthesiology services may not be guaranteed.
- -
- This independence further underscores the role of cardiologists and interventional teams in managing acute respiratory compromise with non-invasive methods, facilitating uninterrupted procedural workflows.
- -
- However, future studies are needed to better define patient subgroups who might benefit most from this strategy. Stratification by biomarkers, echocardiographic profiles, or shock severity scores could help tailor respiratory support and maximize therapeutic benefit.
- -
- The integration of CPAP into cath lab protocols should be studied not only in terms of feasibility and safety, but also for its potential impact on longer-term outcomes, including 30-day mortality, readmission rates, and functional recovery.
5. Limitations
6. Conclusions
7. Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bahit, M.C.; Kochar, A.; Granger, C.B. Post-Myocardial Infarction Heart Failure. JACC Heart Fail. 2018, 6, 179–186. [Google Scholar] [CrossRef]
- Juillière, Y.; Cambou, J.P.; Bataille, V.; Mulak, G.; Galinier, M.; Gibelin, P.; Benamer, H.; Bouvaist, H.; Méneveau, N.; Tabone, X.; et al. FAST-MI Investigators. Heart failure in acute myocardial infarction: A comparison between patients with or without heart failure criteria from the FAST-MI registry. Rev. Esp. Cardiol. (Engl. Ed.) 2012, 65, 326–333. [Google Scholar] [CrossRef]
- Itzahki Ben Zadok, O.; Ben-Gal, T.; Abelow, A.; Shechter, A.; Zusman, O.; Iakobishvili, Z.; Cohen, T.; Shlomo, N.; Kornowski, R.; Eisen, A. Temporal Trends in the Characteristics, Management and Outcomes of Patients with Acute Coronary Syndrome According to Their Killip Class. Am. J. Cardiol. 2019, 124, 1862–1868. [Google Scholar] [CrossRef]
- Petersen, L.T.; Riddersholm, S.; Andersen, D.C.; Polcwiartek, C.; Lee, C.J.-Y.; Lauridsen, M.D.; Fosbøl, E.; Christiansen, C.F.; Pareek, M.; Søgaard, P.; et al. Temporal trends in patient characteristics, presumed causes, and outcomes following cardiogenic shock between 2005 and 2017: A Danish registry based cohort study. Eur. Heart J. Acute Cardiovasc. Care 2021, 10, 1074–1083. [Google Scholar] [CrossRef]
- Wang, K.; Wang, L.; Ma, J.; Xie, H.; Li, C.; Hao, X.; Du, Z.; Wang, H.; Hou, X. Intra-aortic balloon pump after VA-ECMO reduces mortality in patients with cardiogenic shock: An analysis of the Chinese extracorporeal life support registry. Crit. Care 2024, 28, 394. [Google Scholar] [CrossRef]
- Parlow, S.; Fernando, S.M.; Pugliese, M.; Qureshi, D.; Talarico, R.; Sterling, L.H.; van Diepen, S.; Herridge, M.S.; Price, S.; Brodie, D.; et al. Resource Utilization and Costs Associated with Cardiogenic Shock Complicating Myocardial Infarction: A Population-Based Cohort Study. JACC Adv. 2024, 3, 101047. [Google Scholar] [CrossRef]
- Taleb, I.; Giannouchos, T.V.; Kyriakopoulos, C.P.; Clawson, A.; Davis, E.S.; Sideris, K.; Tseliou, E.; Shah, K.S.; Tonna, J.E.; Dranow, E.; et al. Cost-Effectiveness of a Shock Team Approach in Refractory Cardiogenic Shock. Circ. Heart Fail. 2024, 17, e011709. [Google Scholar] [CrossRef]
- Malik, A.; Basu, T.; VanAken, G.; Aggarwal, V.; Lee, R.; Abdul-Aziz, A.; Birati, E.Y.; Basir, M.B.; Nallamothu, B.K.; Shore, S. National Trends for Temporary Mechanical Circulatory Support Utilization in Patients with Cardiogenic Shock from Decompensated Chronic Heart Failure: Incidence, Predictors, Outcomes, and Cost. J. Soc. Cardiovasc. Angiogr. Interv. 2023, 2, 101177. [Google Scholar] [CrossRef] [PubMed]
- Byrne, R.A.; Rossello, X.; Coughlan, J.J.; Barbato, E.; Berry, C.; Chieffo, A.; Claeys, M.J.; Dan, G.A.; Dweck, M.R.; Galbraith, M.; et al. 2023 ESC Guidelines for the management of acute coronary syndromes. Eur. Heart J. 2023, 44, 3720–3826. [Google Scholar] [CrossRef]
- Gartner, B.A.; Fehlmann, C.; Suppan, L.; Niquille, M.; Rutschmann, O.T.; Sarasin, F. Effect of noninvasive ventilation on intubation risk in prehospital patients with acute cardiogenic pulmonary edema: A retrospective study. Eur. J. Emerg. Med. 2020, 27, 54–58. [Google Scholar] [CrossRef]
- Carrillo-Aleman, L.; Agamez-Luengas, A.A.; Guia, M.; Renedo-Villarroya, A.; Alonso-Fernández, N.; Lopez-Gomez, L.; Bayoumy-Delis, P.; Sanchez-Nieto, J.M.; Pascual-Figal, D.; Carrillo-Alcaraz, A. Effectiveness and safety of non-invasive ventilation in the management of cardiogenic shock. Rev. Port. Cardiol. 2024, 43, 259–273. [Google Scholar] [CrossRef]
- Zanza, C.; Saglietti, F.; Tesauro, M.; Longhitano, Y.; Savioli, G.; Balzanelli, M.G.; Romenskaya, T.; Cofone, L.; Pindinello, I.; Racca, G.; et al. Cardiogenic Pulmonary Edema in Emergency Medicine. Adv. Respir. Med. 2023, 91, 445–463. [Google Scholar] [CrossRef]
- Marjanovic, N.; Piton, M.; Lamarre, J.; Alleyrat, C.; Couvreur, R.; Guenezan, J.; Mimoz, O.; Frat, J.-P. High-flow nasal cannula oxygen versus noninvasive ventilation for the management of acute cardiogenic pulmonary edema: A randomized controlled pilot study. Eur. J. Emerg. Med. 2024, 31, 267–275. [Google Scholar] [CrossRef]
- Weng, C.-L.; Zhao, Y.-T.; Liu, Q.-H.; Fu, C.-J.; Sun, F.; Ma, Y.-L.; Chen, Y.-W.; He, Q.-Y. Meta-analysis: Noninvasive ventilation in acute cardiogenic pulmonary edema. Ann. Intern. Med. 2010, 152, 590–600. [Google Scholar] [CrossRef]
- Joseph, A.; Petit, M.; Vieillard-Baron, A. Hemodynamic effects of positive end-expiratory pressure. Curr. Opin. Crit. Care 2024, 30, 10–19. [Google Scholar] [CrossRef]
- Masip, J.; Peacock, W.F.; Price, S.; Cullen, L.; Martin-Sanchez, F.J.; Seferovic, P.; Maisel, A.S.; Miro, O.; Filippatos, G.; Vrints, C.; et al. Acute Heart Failure Study Group of the Acute Cardiovascular Care Association and the Committee on Acute Heart Failure of the Heart Failure Association of the European Society of Cardiology. Indications and practical approach to non-invasive ventilation in acute heart failure. Eur. Heart J. 2018, 39, 17–25. [Google Scholar]
- Acute Heart Failure: Diagnosis and Management; NICE Clinical Guidelines, No. 187; National Institute for Health and Care Excellence (NICE): London, UK, 2021.
- Rochwerg, B.; Brochard, L.; Elliott, M.W.; Hess, D.; Hill, N.S.; Nava, S.; Paolo Navalesi Members of The Steering Committee; Antonelli, M.; Brozek, J.; Conti, G.; et al. Official ERS/ATS clinical practice guidelines: Noninvasive ventilation for acute respiratory failure. Eur. Respir. J. 2017, 50, 1602426. [Google Scholar] [CrossRef]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef]
- Teramoto, S.; Ouchi, Y. Clinical significance of arterial blood gas analysis for detection and/or treatment of central sleep apnea in patients with heart failure. Circulation 1999, 99, 2709–2712. [Google Scholar] [CrossRef]
- Baran, D.A.; Grines, C.L.; Bailey, S.; Burkhoff, D.; Hall, S.A.; Henry, T.D.; Hollenberg, S.M.; Kapur, N.K.; O’Neill, W.; Ornato, J.P.; et al. SCAI clinical expert consensus statement on the classification of cardiogenic shock: This document was endorsed by the American College of Cardiology (ACC), the American Heart Association (AHA), the Society of Critical Care Medicine (SCCM), and the Society of Thoracic Surgeons (STS) in April 2019. Catheter. Cardiovasc. Interv. 2019, 94, 29–37. [Google Scholar]
- Metkus, T.; Miller, P.E.; Alviar, C.L.; Jentzer, J.C.; van Diepen, S.; Katz, J.N.; Morrow, D.A.; Schulman, S.; Eid, S. Incidence, predictors and prognosis of respiratory support in non-ST segment elevation myocardial infarction. Eur. Heart J. Acute Cardiovasc. Care 2021, 10, 200–206. [Google Scholar] [CrossRef]
- Abubacker, A.P.; Ndakotsu, A.; Chawla, H.V.; Iqbal, A.; Grewal, A.; Myneni, R.; Vivekanandan, G.; Khan, S. Non-invasive Positive Pressure Ventilation for Acute Cardiogenic Pulmonary Edema and Chronic Obstructive Pulmonary Disease in Prehospital and Emergency Settings. Cureus 2021, 13, e15624. [Google Scholar] [CrossRef]
- Berbenetz, N.; Wang, Y.; Brown, J.; Godfrey, C.; Ahmad, M.; Vital, F.; Lambiase, P.; Banerjee, A.; Bakhai, A.; Chong, M. Non-invasive positive pressure ventilation (CPAP or bilevel NPPV) for cardiogenic pulmonary oedema. Cochrane Database Syst. Rev. 2019, 4, CD005351. [Google Scholar] [CrossRef]
- Hanson, I.D.; Tagami, T.; Mando, R.; Kara Balla, A.; Dixon, S.R.; Timmis, S.; Almany, S.; Naidu, S.S.; Baran, D.; Lemor, A.; et al. National Cardiogenic Shock Investigators. SCAI shock classification in acute myocardial infarction: Insights from the National Cardiogenic Shock Initiative. Catheter. Cardiovasc. Interv. 2020, 96, 1137–1142. [Google Scholar]
- Räsänen, J.; Väisänen, I.T.; Heikkilä, J.; Nikki, P. Acute myocardial infarction complicated by left ventricular dysfunction and respiratory failure. The effects of continuous positive airway pressure. Chest 1985, 87, 158–162. [Google Scholar] [CrossRef]
- Alshibani, M.; Alshehri, S.; Bakhaider, A.; Atbani, A.; Ismail, M.; Jazzar, B.; Eljaaly, K.; Althagafi, A.; Aljabri, A. The impact of the first 24 h of loop diuretic on kidney function in acute decompensated heart failure. Ir. J. Med. Sci. 2021, 190, 987–992. [Google Scholar] [CrossRef]
- Alviar, C.L.; Miller, P.E.; McAreavey, D.; Katz, J.N.; Lee, B.; Moriyama, B.; Soble, J.; van Diepen, S.; Solomon, M.A.; Morrow, D.A. Positive Pressure Ventilation in the Cardiac Intensive Care Unit. J. Am. Coll. Cardiol. 2018, 72, 1532–1553. [Google Scholar] [CrossRef]
- Räsänen, J.; Heikkilä, J.; Downs, J.; Nikki, P.; Väisänen, I.; Viitanen, A. Continuous positive airway pressure by face mask in acute cardiogenic pulmonary edema. Am. J. Cardiol. 1985, 55, 296–300. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.F.; Ye, M.; Yan, D.; Zhang, H.M.; Jia, P.; Ren, X.J.; Zeng, Y.J. Non-invasive ventilation improves hemorheology status in hypoxemic patients with acute myocardial infarction after PCI. J. Geriatr. Cardiol. 2017, 14, 274–279. [Google Scholar] [PubMed]
- Adi, O.; Fong, C.P.; Keong, Y.Y.; Apoo, F.N.; Roslan, N.L. Helmet CPAP in the emergency department: A narrative review. Am. J. Emerg. Med. 2023, 67, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Karim, H.M.R.; Burns, K.E.A.; Ciobanu, L.D.; El-Khatib, M.; Nicolini, A.; Vargas, N.; Hernández-Gilsoul, T.; Skoczyński, S.; Falcone, V.A.; Arnal, J.M.; et al. Noninvasive ventilation: Education and training. A narrative analysis and an international consensus document. Adv. Respir. Med. 2019, 87, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Bellani, G.; Patroniti, N.; Greco, M.; Foti, G.; Pesenti, A. The use of helmets to deliver non-invasive continuous positive airway pressure in hypoxemic acute respiratory failure. Minerva Anestesiol. 2008, 74, 651–656. [Google Scholar] [PubMed]
- Fuller, G.W.; Keating, S.; Goodacre, S.; Herbert, E.; Perkins, G.D.; Rosser, A.; Gunson, I.; Miller, J.; Ward, M.; Bradburn, M.; et al. Prehospital continuous positive airway pressure for acute respiratory failure: The ACUTE feasibility RCT. Health Technol. Assess. 2021, 25, 1–92. [Google Scholar] [CrossRef] [PubMed]
- Biondi-Zoccai, G.; D’Ascenzo, F.; Giordano, S.; Mirzoyev, U.; Erol, Ç.; Cenciarelli, S.; Leone, P.; Versaci, F. Artificial intelligence in cardiology: General perspectives and focus on interventional cardiology. Anatol. J. Cardiol. 2025, 29, 152–163. [Google Scholar] [CrossRef]
- Viderman, D.; Ayazbay, A.; Kalzhan, B.; Bayakhmetova, S.; Tungushpayev, M.; Abdildin, Y. Artificial Intelligence in the Management of Patients with Respiratory Failure Requiring Mechanical Ventilation: A Scoping Review. J. Clin. Med. 2024, 13, 7535. [Google Scholar] [CrossRef]
History | N = 25 |
---|---|
Age [years, IQR] | 78 (70–86) |
Female sex (%) | 12 (48) |
BMI | 25 ± 4 |
Hypertension (%) | 18 (72) |
Diabetes (%) | 7 (28) |
Dyslipidemia (%) | 13 (52) |
COPD (%) | 2 (8) |
Smoke (%) | 8 (32) |
History of CAD (%) | 5 (20) |
Presentation | |
STEMI (%) | 16 (64) |
-anterior | 13 (81) |
-inferior | 3 (19) |
NSTEMI (%) | 9 (36) |
Killip class (%) | |
II | 1 (4) |
III | 15 (60) |
IV | 9 (36) |
Troponin peak [ng/L] | 115,814 (10,816–113,754) |
Ejection fraction (%) | 35 ± 10 |
Moderate–severe MR (%) | 8/24 (32) |
Systolic blood pressure [mmHg] | 130 ± 30 |
Diastolic blood pressure [mmHg] | 80 ± 18 |
Heart rate [bpm] | 100 ± 20 |
Hemoglobin [mg/dL] | 14.6 ± 2.7 |
eGFR [mL/min] | 42 (35–71) |
NT-proBNP [pg/mL, IQR] | 9454 (4588–27,036) |
SCAI classification (%) | |
SCAI A | 2/25 (8) |
SCAI B | 10/25 (40) |
SCAI C | 11/25 (44) |
SCAI D | 2/25 (8) |
Baseline | After PCI | p-Value | |
---|---|---|---|
pH (SD) | 7.35 ± 0.12 | 7.37 ± 0.08 | 0.095 |
pO2 [mmHg, IQR] | 59 (50–75) | 114 (90–172) | <0.001 |
pCO2 [mmHg, IQR] | 34 (28–47) | 40 (33–47) | 0.334 |
pO2/FiO2 (IQR) | 183 (141–261) | 230 (175–356) | 0.007 |
HCO3− [mmol/L, IQR] | 21 (17–24) | 23 (20–25) | 0.334 |
Lactate [mmol/L, IQR] | 2.4 (1.3–3.8) | 1.5 (1.0–1) | 0.002 |
Systolic blood pressure [mmHg, SD] | 124 ± 28 | 133 ± 24 | 0.107 |
Diastolic blood pressure [mmHg, SD] | 77 ± 18 | 71 ± 15 | 0.530 |
Procedure | N = 25 |
---|---|
Duration [min, IQR] | 56 (40–81) |
Radial access (%) | 16 (64) |
IABP (%) | 7 (28) |
CPAP | |
FiO2 [%, SD] | 53 ± 13 |
PEEP [mmHg, SD] | 7.5 ± 2.0 |
Need for inotropes (%) | 13 (52) |
Need for vasodilators (%) | 11 (44) |
Anesthesiologist intervention (%) | 4 (16) |
Outcomes | N = 25 |
---|---|
Compliance to CPAP (%) | 22 (88) |
Nurse management (%) | 25 (100) |
OTI during procedure (%) | 0 (0) |
OTI during hospitalization (%) | 1 (4) |
Death in-hospital (%) | 1 (4) |
Death at 30 days (%) | 1 (4) |
Acute kidney failure (%) | 8 (32) |
ICU hospitalization length [days, IQR] | 7 (5–10) |
Total hospitalization [days, IQR] | 10 (7–14) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giordana, F.; Angelini, F.; Gribaudo, M.; Baralis, G.; Cinconze, S.A.; De Benedetto Fabrizi, M.; Battaglia, C.; De Stefanis, A.; Verra, A.; Rossini, R. Use of Continuous Positive Airway Pressure Ventilation as a Support During Coronary Angioplasty in Patients with Acute Myocardial Infarction: Safety and Feasibility. J. Clin. Med. 2025, 14, 5756. https://doi.org/10.3390/jcm14165756
Giordana F, Angelini F, Gribaudo M, Baralis G, Cinconze SA, De Benedetto Fabrizi M, Battaglia C, De Stefanis A, Verra A, Rossini R. Use of Continuous Positive Airway Pressure Ventilation as a Support During Coronary Angioplasty in Patients with Acute Myocardial Infarction: Safety and Feasibility. Journal of Clinical Medicine. 2025; 14(16):5756. https://doi.org/10.3390/jcm14165756
Chicago/Turabian StyleGiordana, Francesca, Filippo Angelini, Marisa Gribaudo, Giorgio Baralis, Sebastian Andrea Cinconze, Mauro De Benedetto Fabrizi, Cristina Battaglia, Andrea De Stefanis, Allison Verra, and Roberta Rossini. 2025. "Use of Continuous Positive Airway Pressure Ventilation as a Support During Coronary Angioplasty in Patients with Acute Myocardial Infarction: Safety and Feasibility" Journal of Clinical Medicine 14, no. 16: 5756. https://doi.org/10.3390/jcm14165756
APA StyleGiordana, F., Angelini, F., Gribaudo, M., Baralis, G., Cinconze, S. A., De Benedetto Fabrizi, M., Battaglia, C., De Stefanis, A., Verra, A., & Rossini, R. (2025). Use of Continuous Positive Airway Pressure Ventilation as a Support During Coronary Angioplasty in Patients with Acute Myocardial Infarction: Safety and Feasibility. Journal of Clinical Medicine, 14(16), 5756. https://doi.org/10.3390/jcm14165756