The Effect of Eccentric Cycling on Cerebral and Muscle Tissue Oxygenation in Patients with Pulmonary Hypertension and Healthy Individuals: A Randomized Controlled Crossover Trial
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design, Randomization, Allocation, and Participants
2.2. Ethics and Registration
2.3. Cycling Exercise
2.4. Near-Infrared Spectroscopy
2.5. Data Presentation and Statistical Analysis
3. Results
3.1. Cerebral Tissue Oxygenation and Hemoglobin Concentrations
3.2. Muscle Tissue Oxygenation and Hemoglobin Concentrations
3.3. Comparing Patients and Healthy Individuals
3.4. Peripheral Oxygen Saturation
4. Discussion
4.1. Limitations
4.2. Projections
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morris, N.R.; Kermeen, F.D.; Jones, A.W.; Lee, J.Y.T.; Holland, A.E. Exercise-based rehabilitation programmes for pulmonary hypertension. Cochrane Database Syst. Rev. 2023, 3, CD011285. [Google Scholar] [CrossRef]
- Mélot, C.; Naeije, R. Pulmonary vascular diseases. Compr. Physiol. 2011, 1, 593–619. [Google Scholar] [CrossRef]
- Naeije, R.; Richter, M.J.; Rubin, L.J. The physiological basis of pulmonary arterial hypertension. Eur. Respir. J. 2022, 59, 2102334. [Google Scholar] [CrossRef] [PubMed]
- Tello, K.; Dalmer, A.; Vanderpool, R.; Ghofrani, H.A.; Naeije, R.; Roller, F.; Seeger, W.; Dumitrescu, D.; Sommer, N.; Bruns, A.; et al. Impaired right ventricular lusitropy is associated with ventilatory inefficiency in pulmonary arterial hypertension. Eur. Respir. J. 2019, 54, 1900342. [Google Scholar] [CrossRef]
- Theodore, J.; Robin, E.D.; Morris, A.J.R.; Burke, C.M.; Jamieson, S.W.; Van Kessel, A.; Stinson, E.B.; Shumway, N.E. Augmented ventilatory response to exercise in pulmonary hypertension. Chest 1986, 89, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Vallerand, J.R.; Weatherald, J.; Laveneziana, P. Pulmonary Hypertension and Exercise. Clin. Chest Med. 2019, 40, 459–469. [Google Scholar] [CrossRef] [PubMed]
- Grünig, E.; Eichstaedt, C.; Barberà, J.A.; Benjamin, N.; Blanco, I.; Bossone, E.; Cittadini, A.; Coghlan, G.; Corris, P.; D’Alto, M.; et al. ERS statement on exercise training and rehabilitation in patients with severe chronic pulmonary hypertension. Eur. Respir. J. 2019, 53, 1800332. [Google Scholar] [CrossRef]
- Müller, J.; Schneider, S.R.; Titz, A.; Thalmann, C.; Schwarz, E.I.; Bauer, C.; Grünig, E.; Kohler, M.; Lichtblau, M.; Ulrich, S. Effect of Eccentric Cycling on Oxygen Uptake and Hemodynamics in Patients With Pulmonary Vascular Disease: A Randomized Controlled Crossover Trial. CHEST Pulm. 2024, 2, 100054. [Google Scholar] [CrossRef]
- Müller, J.; Bauer, M.; Schneider, S.R.; Mayer, L.; Titz, A.; Sturzenegger, N.; Schwarz, E.I.; Bauer, C.; Grünig, E.; Kohler, M.; et al. Submaximal, Low-Dose Eccentric vs. Traditional Cycling Exercise: Reduced Oxygen Uptake and Pulmonary Artery Pressure Assessed by Echocardiography in Healthy Middle-aged Adults. A Randomized Controlled, Crossover Trial. Arch. Rehabil. Res. Clin. Transl. 2024, 6, 100331. [Google Scholar] [CrossRef]
- Padulo, J.; Laffaye, G.; Chamari, K.; Concu, A. Concentric and Eccentric: Muscle Contraction or Exercise? J. Hum. Kinet. 2013, 37, 5–6. [Google Scholar] [CrossRef]
- Pakosz, P.; Konieczny, M.; Domaszewski, P.; Dybek, T.; Gnoiński, M.; Skorupska, E. Comparison of concentric and eccentric resistance training in terms of changes in the muscle contractile properties. J. Electromyogr. Kinesiol. 2023, 73, 102824. [Google Scholar] [CrossRef] [PubMed]
- Lindstedt, S.L.; LaStayo, P.C.; Reich, T.E. When active muscles lengthen: Properties and consequences of eccentric contractions. News Physiol. Sci. 2001, 16, 256–261. [Google Scholar] [CrossRef] [PubMed]
- Perrey, S.; Betik, A.; Candau, R.; Rouillon, J.D.; Hughson, R.L. Comparison of oxygen uptake kinetics during concentric and eccentric cycle exercise. J. Appl. Physiol. (1985) 2001, 91, 2135–2142. [Google Scholar] [CrossRef]
- Barreto, R.V.; de Lima, L.C.R.; Denadai, B.S. Moving forward with backward pedaling: A review on eccentric cycling. Eur. J. Appl. Physiol. 2021, 121, 381–407. [Google Scholar] [CrossRef]
- Barreto, R.V.; de Lima, L.C.R.; Borszcz, F.K.; de Lucas, R.D.; Denadai, B.S. Chronic Adaptations to Eccentric Cycling Training: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2023, 20, 2861. [Google Scholar] [CrossRef]
- Okamoto, T.; Masuhara, M.; Ikuta, K. Differences of muscle oxygenation during eccentric and concentric contraction. Isokinet. Exerc. Sci. 2006, 14, 207–212. [Google Scholar] [CrossRef]
- Dwan, K.; Li, T.; Altman, D.G.; Elbourne, D. CONSORT 2010 statement: Extension to randomised crossover trials. BMJ 2019, 366, l4378. [Google Scholar] [CrossRef]
- Obrig, H.; Villringer, A. Beyond the visible—Imaging the human brain with light. J. Cereb. Blood Flow Metab. 2003, 23, 1–18. [Google Scholar] [CrossRef]
- Muthalib, M.; Lee, H.; Millet, G.Y.; Ferrari, M.; Nosaka, K. Comparison between maximal lengthening and shortening contractions for biceps brachii muscle oxygenation and hemodynamics. J. Appl. Physiol. (1985) 2010, 109, 710–720. [Google Scholar] [CrossRef]
- Douglas, J.; Pearson, S.; Ross, A.; McGuigan, M. Chronic Adaptations to Eccentric Training: A Systematic Review. Sports Med. 2017, 47, 917–941. [Google Scholar] [CrossRef] [PubMed]
- Isner-Horobeti, M.E.; Dufour, S.P.; Vautravers, P.; Geny, B.; Coudeyre, E.; Richard, R. Eccentric exercise training: Modalities, applications and perspectives. Sports Med. 2013, 43, 483–512. [Google Scholar] [CrossRef] [PubMed]
- Tolle, J.; Waxman, A.; Systrom, D. Impaired systemic oxygen extraction at maximum exercise in pulmonary hypertension. Med. Sci. Sports Exerc. 2008, 40, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Rakobowchuk, M.; Isacco, L.; Ritter, O.; Represas, A.G.; Bouhaddi, M.; Degano, B.; Tordi, N.; Mourot, L. Muscle Oxygenation Responses to Low-intensity Steady Rate Concentric and Eccentric Cycling. Int. J. Sports Med. 2018, 39, 173–180. [Google Scholar] [CrossRef] [PubMed]
Baseline Characteristics | PVD Patients | Healthy Individuals |
---|---|---|
Number of participants | 33 | 24 |
Women; men | 13; 20 | 14; 10 |
Age [years] | 50 ± 15 | 50 ± 14 |
BMI [kg/m2] | 26.7 ± 4.7 | 23.9 ± 3.3 |
SpO2 [%] | 94 ± 3 | 97 ± 1 |
Pulmonary arterial hypertension | 19 | |
Idiopathic | 11 | |
Heritable | 2 | |
Associated with the following: | ||
Congenital heart disease | 3 | |
Connective tissue disease | 1 | |
Portopulmonary hypertension | 1 | |
Veno-occlusive disease | 1 | |
Chronic thromboembolic pulmonary hypertension | 14 | |
Persistent after pulmonary endarterectomy | 5 | |
New York Heart Association functional class, I–III | I: 11, II: 15, III: 7 | |
6 min walk distance [m] | 582 ± 98 | |
Systolic pulmonary artery pressure at rest [mmHg] | 42.5 ± 17.1 | |
Pulmonary hypertension-targeted medication | ||
Endothelin receptor antagonist | 23 | |
Phosphodiesterase-5-inhibitor | 9 | |
Prostanoids | 5 | |
Selexipag | 3 | |
Riociguat | 12 | |
Calcium channel blocker | 6 | |
β-blockers | 1 |
Baseline PVD Patients 0:00–0:30 min | Eccentric | Concentric | Mean Difference | 95% CI | p-Value |
---|---|---|---|---|---|
CTO [%] | 70.80 ± 0.98 | 71.60 ± 1.52 | |||
MTO [%] | 69.6 ± 1.36 | 67.4 ± 1.52 | |||
End-exercise 14:30–15:00 min | |||||
Power output [W] | 44 ± 10 | 44 ± 10 | |||
∆ cO2Hb [μM] | 2.78 ± 0.50 | 0.84 ± 0.47 | 1.94 (230.95%) | 0.65 to 3.24 | 0.004 |
∆ cHHb [μM] | 0.04 ± 0.25 | 0.02 ± 0.25 | 0.02 (100%) | −0.65 to 0.68 | 0.964 |
∆ cTHb [μM] | 2.70 ± 0.50 | 0.84 ± 0.47 | 1.86 (221.43%) | 0.57 to 3.15 | 0.005 |
CTO [%] | 74.10 ± 1.90 | 68.00 ± 1.90 | 6.10 (8.97%) | 1.85 to 10.42 | 0.005 |
∆ mO2Hb [μM] | 3.12 ± 0.67 | 2.62 ± 0.71 | 0.50 (19.08%) | −1.41 to 2.41 | 0.607 |
∆ mHHb [μM] | −1.33 ± 0.68 | −0.44 ± 0.79 | −0.89 (−202.27%) | −2.85 to 1.08 | 0.373 |
∆ mTHb [μM] | 1.08 ± 0.88 | 2.22 ± 1.03 | −1.14 (−51.35%) | −3.77 to 1.48 | 0.390 |
MTO [%] | 69.50 ± 2.07 | 67.7 ± 2.21 | 1.80 (2.66%) | −2.81 to 6.53 | 0.433 |
SpO2 [%] | 92.10 ± 0.56 | 91.60 ± 0.56 | 0.50 (0.55%) | −0.65 to 1.51 | 0.437 |
Baseline Healthy 0:00–0:30 min | Eccentric | Concentric | Mean Difference | 95% CI | p-Value |
---|---|---|---|---|---|
CTO [%] | 68.90 ± 1.40 | 71.0 ± 1.41 | |||
MTO [%] | 69.30 ± 1.74 | 68.90 ± 2.09 | |||
End-exercise 14:30–15:00 min | |||||
Power output [W] | 77 ± 11 | 77 ± 11 | |||
∆ cO2Hb [μM] | 2.88 ± 0.52 | 3.27 ± 0.53 | −0.39 (−11.93%) | −1.70 to 0.92 | 0.555 |
∆ cHHb [μM] | −2.67 ± 0.31 | −0.69 ± 0.31 | −1.98 (286.96%) | −2.74 to −1.22 | <0.001 |
∆ cTHb [μM] | 0.52 ±0.57 | 2.46 ± 0.55 | −1.94 (−78.86%) | −3.36 to −0.52 | 0.008 |
CTO [%] | 70.60 ± 1.53 | 71.90 ± 1.56 | −1.30 (−1.81%) | −4.81 to 2.18 | 0.458 |
∆ mO2Hb [μM] | 3.82 ± 0.49 | 3.73 ± 0.50 | 0.09 (2.41%) | −1.01 to 1.19 | 0.87 |
∆ mHHb [μM] | −2.94 ± 0.49 | −1.73 ± 0.48 | −1.21 (69.94%) | −2.37 to −0.04 | 0.043 |
∆ mTHb [μM] | 0.54 ± 0.73 | 1.52 ± 0.75 | −0.98 (−64.47%) | −2.64 to 0.67 | 0.24 |
MTO [%] | 72.50 ± 2.29 | 69.90 ± 2.30 | 2.60 (3.72%) | 0.03 to 5.17 | 0.047 |
SpO2 [%] | 95.30 ± 0.36 | 94.90 ± 0.36 | 0.40 (0.42%) | −0.24 to 1.04 | 0.216 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sturzenegger, N.; Schneider, S.R.; Furian, M.; Titz, A.; Schwarz, E.I.; Lichtblau, M.; Müller, J.; Ulrich, S. The Effect of Eccentric Cycling on Cerebral and Muscle Tissue Oxygenation in Patients with Pulmonary Hypertension and Healthy Individuals: A Randomized Controlled Crossover Trial. J. Clin. Med. 2025, 14, 5751. https://doi.org/10.3390/jcm14165751
Sturzenegger N, Schneider SR, Furian M, Titz A, Schwarz EI, Lichtblau M, Müller J, Ulrich S. The Effect of Eccentric Cycling on Cerebral and Muscle Tissue Oxygenation in Patients with Pulmonary Hypertension and Healthy Individuals: A Randomized Controlled Crossover Trial. Journal of Clinical Medicine. 2025; 14(16):5751. https://doi.org/10.3390/jcm14165751
Chicago/Turabian StyleSturzenegger, Nico, Simon R. Schneider, Michael Furian, Anna Titz, Esther I. Schwarz, Mona Lichtblau, Julian Müller, and Silvia Ulrich. 2025. "The Effect of Eccentric Cycling on Cerebral and Muscle Tissue Oxygenation in Patients with Pulmonary Hypertension and Healthy Individuals: A Randomized Controlled Crossover Trial" Journal of Clinical Medicine 14, no. 16: 5751. https://doi.org/10.3390/jcm14165751
APA StyleSturzenegger, N., Schneider, S. R., Furian, M., Titz, A., Schwarz, E. I., Lichtblau, M., Müller, J., & Ulrich, S. (2025). The Effect of Eccentric Cycling on Cerebral and Muscle Tissue Oxygenation in Patients with Pulmonary Hypertension and Healthy Individuals: A Randomized Controlled Crossover Trial. Journal of Clinical Medicine, 14(16), 5751. https://doi.org/10.3390/jcm14165751