Barriers to Timely Referral of Children Born with Myelomeningocele in Zambia
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Selection, Recruitment, and Data Collection
2.2. Study Variables
2.3. Statistical Analysis
3. Results
3.1. Healthcare Providers Survey
3.2. Mother–Baby Dyad Survey
4. Discussion
4.1. Limitations on Access to Care
4.2. A Need to Improve Prenatal Ultrasound Diagnostic Capabilities
4.3. Prevention of Spina Bifida
4.4. Policy Implications and Future Directions
4.5. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DALY | disability-life adjusted year |
IQR | interquartile range |
LMIC | low-middle income country |
MMC | myelomeningocele |
NTD | neural tube defect |
SDG | Sustainable Development Goals |
UN | United Nations |
References
- Perin, J.; Mai, C.T.; De Costa, A.; Strong, K.; Diaz, T.; Blencowe, H.; Berry, R.J.; Williams, J.L.; Liu, L. Systematic estimates of the global, regional and national under-5 mortality burden attributable to birth defects in 2000-2019: A summary of findings from the 2020 WHO estimates. BMJ Open 2023, 13, e067033. [Google Scholar] [CrossRef]
- Bai, Z.; Han, J.; An, J.; Wang, H.; Du, X.; Yang, Z.; Mo, X. The global, regional, and national patterns of change in the burden of congenital birth defects, 1990-2021: An analysis of the global burden of disease study 2021 and forecast to 2040. EClinicalMedicine 2024, 77, 102873. [Google Scholar] [CrossRef]
- Czeizel, A.E.; Dudas, I. Prevention of the first occurrence of neural-tube defects by periconceptional vitamin supplementation. N. Engl. J. Med. 1992, 327, 1832–1835. [Google Scholar] [CrossRef] [PubMed]
- Laurence, K.M.; James, N.; Miller, M.H.; Tennant, G.B.; Campbell, H. Double-blind randomised controlled trial of folate treatment before conception to prevent recurrence of neural-tube defects. Br. Med. J. (Clin. Res. Ed.) 1981, 282, 1509–1511. [Google Scholar] [CrossRef] [PubMed]
- Kancherla, V.; Wagh, K.; Priyadarshini, P.; Pachon, H.; Oakley, G.P., Jr. A global update on the status of prevention of folic acid-preventable spina bifida and anencephaly in year 2020: 30-Year anniversary of gaining knowledge about folic acid’s prevention potential for neural tube defects. Birth Defects Res. 2022, 114, 1392–1403. [Google Scholar] [CrossRef]
- UNICEF: Under 5 Mortality Sheet. Available online: https://data.unicef.org/topic/child-survival/under-five-mortality/ (accessed on 1 July 2025).
- Beier, A.D.; Nikas, D.C.; Assassi, N.; Bauer, D.F.; Blount, J.P.; Durham, S.R.; Flannery, A.M.; Klimo, P.; McClung-Smith, C.; Rehring, P.; et al. Congress of Neurological Surgeons Systematic Review and Evidence-Based Guideline on Closure of Myelomeningocele Within 48 Hours to Decrease Infection Risk. Neurosurgery 2019, 85, E412–E413. [Google Scholar] [CrossRef]
- Darrag Salim, A.; Awad Elzain, M.; Adil Mohamed, A. Spina bifida in Sudan. J. Neurol. Neurosci. 2014, 5, 1–8. Available online: https://www.itmedicalteam.pl/articles/spina-bifida-in-sudan-107275.html (accessed on 1 July 2025).
- Warf, B.C.; Wright, E.J.; Kulkarni, A.V. Factors affecting survival of infants with myelomeningocele in southeastern Uganda. J. Neurosurg. Pediatr. 2011, 7, 127–133. [Google Scholar] [CrossRef]
- Sims-Williams, H.J.; Sims-Williams, H.P.; Kabachelor, E.M.; Fotheringham, J.; Warf, B.C. Ten-year survival of Ugandan infants after myelomeningocele closure. J. Neurosurg. Pediatr. 2017, 19, 70–76. [Google Scholar] [CrossRef]
- Tirsit, A.; Bizuneh, Y.; Yesehak, B.; Yigaramu, M.; Demetse, A.; Mengesha, F.; Masresha, S.; Zenebe, E.; Getahun, S.; Laeke, T.; et al. Surgical treatment outcome of children with neural-tube defect: A prospective cohort study in a high volume center in Addis Ababa, Ethiopia. Brain Spine 2023, 3, 101787. [Google Scholar] [CrossRef] [PubMed]
- Thaddeus, S.; Maine, D. Too far to walk: Maternal mortality in context. Soc. Sci. Med. 1994, 38, 1091–1110. [Google Scholar] [CrossRef]
- Chen, J.W.; Shlobin, N.A.; Bhebhe, A.; Zhao, S.; Shannon, C.N.; Sichizya, K.; Bonfield, C.M.; Reynolds, R.A. Local conceptions of the role of folate in neural tube defects in Zambia. J. Neurosurg. Pediatr. 2023, 31, 268–274. [Google Scholar] [CrossRef]
- Reynolds, R.A.; Bhebhe, A.; Garcia, R.M.; Chen, H.; Bonfield, C.M.; Lam, S.; Sichizya, K.; Shannon, C. Surgical Outcomes after Myelomeningocele Repair in Lusaka, Zambia. World Neurosurg. 2021, 145, e332–e339. [Google Scholar] [CrossRef]
- Simpamba, M.M.; Struthers, P.M.; Mweshi, M.M. Access to health care for children with neural tube defects: Experiences of mothers in Zambia. Afr. J. Disabil. 2016, 5, 267. [Google Scholar] [CrossRef] [PubMed]
- Actis Danna, V.; Bedwell, C.; Wakasiaka, S.; Lavender, T. Utility of the three-delays model and its potential for supporting a solution-based approach to accessing intrapartum care in low- and middle-income countries. A qualitative evidence synthesis. Glob. Health Action 2020, 13, 1819052. [Google Scholar] [CrossRef] [PubMed]
- Harris, P.A.; Taylor, R.; Minor, B.L.; Elliott, V.; Fernandez, M.; O’Neal, L.; McLeod, L.; Delacqua, G.; Delacqua, F.; Kirby, J.; et al. The REDCap consortium: Building an international community of software platform partners. J. Biomed. Inform. 2019, 95, 103208. [Google Scholar] [CrossRef]
- Harris, P.A.; Taylor, R.; Thielke, R.; Payne, J.; Gonzalez, N.; Conde, J.G. Research electronic data capture (REDCap)—A metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inform. 2009, 42, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Kang, L.; Cao, G.; Jing, W.; Liu, J.; Liu, M. Global, regional, and national incidence and mortality of congenital birth defects from 1990 to 2019. Eur. J. Pediatr. 2023, 182, 1781–1792. [Google Scholar] [CrossRef]
- Attenello, F.J.; Tuchman, A.; Christian, E.A.; Wen, T.; Chang, K.E.; Nallapa, S.; Cen, S.Y.; Mack, W.J.; Krieger, M.D.; McComb, J.G. Infection rate correlated with time to repair of open neural tube defects (myelomeningoceles): An institutional and national study. Childs Nerv. Syst. 2016, 32, 1675–1681. [Google Scholar] [CrossRef]
- Menon, J.A.; Kusanthan, T.; Mwaba, S.O.C.; Juanola, L.; Kok, M.C. ‘Ring’ your future, without changing diaper—Can preventing teenage pregnancy address child marriage in Zambia? PLoS ONE 2018, 13, e0205523. [Google Scholar] [CrossRef]
- Cordova-Pozo, K.L.; Anishettar, S.S.; Kumar, M.; Chokhandre, P.K. Trends in child marriage, sexual violence, early sexual intercourse and the challenges for policy interventions to meet the sustainable development goals. Int. J. Equity Health 2023, 22, 250. [Google Scholar] [CrossRef]
- McEvoy, C.S.; Ross-Li, D.; Held, J.M.; Jones, D.A.; Rice-Townsend, S.; Weldon, C.B.; Ricca, R.L. Geographic distance to pediatric surgical care within the continental United States. J. Pediatr. Surg. 2019, 54, 1112–1117. [Google Scholar] [CrossRef]
- McEvoy, C.S.; Ross-Li, D.; Norris, E.A.; Ricca, R.L.; Gow, K.W. From far and wide: Geographic distance to pediatric surgical care across Canada. J. Pediatr. Surg. 2020, 55, 908–912. [Google Scholar] [CrossRef] [PubMed]
- Ivey, T.L.; Hughes, D.; Dajani, N.K.; Magann, E.F. Antenatal management of at-risk pregnancies from a distance. Aust. N. Z. J. Obstet. Gynaecol. 2015, 55, 87–89. [Google Scholar] [CrossRef]
- Marcin, J.P.; Shaikh, U.; Steinhorn, R.H. Addressing health disparities in rural communities using telehealth. Pediatr. Res. 2016, 79, 169–176. [Google Scholar] [CrossRef]
- Owolabi, E.O.; Mac Quene, T.; Louw, J.; Davies, J.I.; Chu, K.M. Telemedicine in Surgical Care in Low- and Middle-Income Countries: A Scoping Review. World J. Surg. 2022, 46, 1855–1869. [Google Scholar] [CrossRef]
- Copp, A.J.; Adzick, N.S.; Chitty, L.S.; Fletcher, J.M.; Holmbeck, G.N.; Shaw, G.M. Spina bifida. Nat. Rev. Dis. Primers 2015, 1, 15007. [Google Scholar] [CrossRef]
- Dabdoub, C.F.; Dabdoub, C.B.; Villavicencio, R.; Quevedo, G. How I do it: Myelomeningocele in bolivia. Surg. Neurol. Int. 2014, 5, S39–S48. [Google Scholar] [CrossRef]
- Mukherjee, S.K.; Papadakis, J.E.; Arman, D.M.; Islam, J.; Azim, M.; Rahman, A.; Ekramullah, S.M.; Suchanda, H.S.; Farooque, A.; Warf, B.C.; et al. The Importance of Neurosurgical Intervention and Surgical Timing for Management of Pediatric Patients with Myelomeningoceles in Bangladesh. World Neurosurg. 2024, 187, e673–e682. [Google Scholar] [CrossRef] [PubMed]
- Habibi, Z.; Nejat, F.; Tajik, P.; Kazmi, S.S.; Kajbafzadeh, A.M. Cervical myelomeningocele. Neurosurgery 2006, 58, 1168–1174. [Google Scholar] [CrossRef] [PubMed]
- Leidinger, A.; Piquer, J.; Kim, E.E.; Nahonda, H.; Qureshi, M.M.; Young, P.H. Experience in the Early Surgical Management of Myelomeningocele in Zanzibar. World Neurosurg. 2019, 121, e493–e499. [Google Scholar] [CrossRef]
- Muzumdar, D.; Hawaldar, A.; Bhambhere, S.; Singh, M.; Lunawat, A.; Nanavati, R. Open Neural Tube Defects in COVID-19 Pandemic: An Analysis of 26 Neonatal Patients in a Tertiary Care Center. J. Pediatr. Neurosci. 2021, 16, 5–10. [Google Scholar] [CrossRef] [PubMed]
- Kaur, G.; Srivastav, J.; Kaur, A.; Huria, A.; Goel, P.; Kaur, R.; Kataria, S.; Chavan, B.S.; Kochhar, S.; Aggarwal, P.; et al. Maternal serum second trimester screening for chromosomal disorders and neural tube defects in a government hospital of North India. Prenat. Diagn. 2012, 32, 1192–1196. [Google Scholar] [CrossRef]
- Abdul-Mumin, A.; Rotkis, L.N.; Gumanga, S.; Fay, E.E.; Denno, D.M. Could ultrasound midwifery training increase antenatal detection of congenital anomalies in Ghana? PLoS ONE 2022, 17, e0272250. [Google Scholar] [CrossRef]
- Uzun, O.; Kennedy, J.; Davies, C.; Goodwin, A.; Thomas, N.; Rich, D.; Thomas, A.; Tucker, D.; Beattie, B.; Lewis, M.J. Training: Improving antenatal detection and outcomes of congenital heart disease. BMJ Open Qual. 2018, 7, e000276. [Google Scholar] [CrossRef] [PubMed]
- Hunter, S.; Heads, A.; Wyllie, J.; Robson, S. Prenatal diagnosis of congenital heart disease in the northern region of England: Benefits of a training programme for obstetric ultrasonographers. Heart 2000, 84, 294–298. [Google Scholar] [CrossRef] [PubMed]
- Kang, W.S.; Park, K.H.; Kim, S.N.; Shin, D.M.; Hong, J.S.; Jung, H.J. Degree of cervical shortening after initial induction of labor as a predictor of subsequent successful induction. Ultrasound Obstet. Gynecol. 2010, 36, 749–754. [Google Scholar] [CrossRef]
- Goldenberg, R.L.; Nathan, R.O.; Swanson, D.; Saleem, S.; Mirza, W.; Esamai, F.; Muyodi, D.; Garces, A.L.; Figueroa, L.; Chomba, E.; et al. Routine antenatal ultrasound in low- and middle-income countries: First look—A cluster randomised trial. BJOG 2018, 125, 1591–1599. [Google Scholar] [CrossRef]
- Williams, J.; Mai, C.T.; Mulinare, J.; Isenburg, J.; Flood, T.J.; Ethen, M.; Frohnert, B.; Kirby, R.S. Updated Estimates of Neural Tube Defects Prevented by Mandatory Folic Acid Fortification—United States, 1995–2011. MMWR Morb. Mortal. Wkly. Rep. 2015, 64, 1–5. [Google Scholar]
- Reefhuis, J.; Honein, M.A. Maternal age and non-chromosomal birth defects, Atlanta—1968-2000: Teenager or thirty-something, who is at risk? Birth Defects Res. A Clin. Mol. Teratol. 2004, 70, 572–579. [Google Scholar] [CrossRef]
- The World Bank. World Bank Country and Lending Groups. Available online: https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups (accessed on 8 June 2025).
- Sayed, A.R.; Bourne, D.; Pattinson, R.; Nixon, J.; Henderson, B. Decline in the prevalence of neural tube defects following folic acid fortification and its cost-benefit in South Africa. Birth Defects Res. A Clin. Mol. Teratol. 2008, 82, 211–216. [Google Scholar] [CrossRef]
- Olugbenga Ben, O.; Blessing, M.O.; Blessing, O. Progress in Food Fortification in Nigeria—Historical Overview, Current Issues, Consumer Perceptions and Awareness, and the Need for Additional Vehicles. Food Sci. Nutr. Res. 2023, 6, 1–17. [Google Scholar]
- Gautam, N. Nigeria Adopts Multiple Micronutrient-Fortified Bouillon Cube Standards to Reduce Malnutrition and Child Mortality. Available online: https://caes.ucdavis.edu/news/nigeria-adopts-multiple-micronutrient-fortified-bouillon-cube-standards-reduce-malnutrition (accessed on 6 April 2025).
- Thompson, L.; Becher, E.; Adams, K.P.; Haile, D.; Walker, N.; Tong, H.; Vosti, S.A.; Engle-Stone, R. Modeled impacts of bouillon fortification with micronutrients on child mortality in Senegal, Burkina Faso, and Nigeria. Ann. N. Y. Acad. Sci. 2024, 1537, 82–97, Erratum in Ann. N. Y. Acad. Sci. 2024, 1540, 350. [Google Scholar] [CrossRef] [PubMed]
- Langlois, P.H.; Hoyt, A.T.; Lupo, P.J.; Lawson, C.C.; Waters, M.A.; Desrosiers, T.A.; Shaw, G.M.; Romitti, P.A.; Lammer, E.J.; Stud, N.B.D.P. Maternal occupational exposure to polycyclic aromatic hydrocarbons and risk of neural tube defect-affected pregnancies. Birth Defects Res. A 2012, 94, 693–700. [Google Scholar] [CrossRef] [PubMed]
- Naufal, Z.; Li, Z.W.; Zhu, L.; Zhou, G.D.; McDonald, T.; He, L.Y.; Mitchell, L.; Ren, A.G.; Zhu, H.P.; Finnell, R.; et al. Biomarkers of exposure to combustion by-products in a human population in Shanxi, China. J. Expo. Sci. Environ. Epidemiol. 2010, 20, 310–319. [Google Scholar] [CrossRef] [PubMed]
- Ren, A.G.; Qiu, X.H.; Jin, L.; Ma, J.; Li, Z.W.; Zhang, L.; Zhu, H.P.; Finnell, R.H.; Zhu, T. Association of selected persistent organic pollutants in the placenta with the risk of neural tube defects. Proc. Natl. Acad. Sci. USA 2011, 108, 12770–12775. [Google Scholar] [CrossRef]
- Yuan, Y.; Jin, L.; Wang, L.L.; Li, Z.W.; Zhang, L.; Zhu, H.P.; Finnell, R.H.; Zhou, G.D.; Ren, A.G. Levels of PAH-DNA adducts in placental tissue and the risk of fetal neural tube defects in a Chinese population. Reprod. Toxicol. 2013, 37, 70–75. [Google Scholar] [CrossRef]
- Wang, B.; Jin, L.; Ren, A.G.; Yuan, Y.; Liu, J.F.; Li, Z.W.; Zhang, L.; Yi, D.Q.; Wang, L.L.; Zhang, Y.L.; et al. Levels of Polycyclic Aromatic Hydrocarbons in Maternal Serum and Risk of Neural Tube Defects in Offspring. Environ. Sci. Technol. 2015, 49, 588–596, Erratum in Environ. Sci. Technol. 2015, 49, 10754–10755. [Google Scholar] [CrossRef]
- Gladen, B.C.; Zadorozhnaja, T.D.; Chislovska, N.; Hryhorczuk, D.O.; Kennicutt, M.C.; Little, R.E. Polycyclic aromatic hydrocarbons in placenta. Hum. Exp. Toxicol. 2000, 19, 597–603. [Google Scholar] [CrossRef]
- Madhavan, N.D.; Naidu, K.A. Polycyclic Aromatic-Hydrocarbons in Placenta, Maternal Blood, Umbilical-Cord Blood and Milk of Indian Women. Hum. Exp. Toxicol. 1995, 14, 503–506. [Google Scholar] [CrossRef] [PubMed]
- Rossner, P.; Milcova, A.; Libalova, H.; Novakova, Z.; Topinka, J.; Balascak, I.; Sram, R.J. Biomarkers of exposure to tobacco smoke and environmental pollutants in mothers and their transplacental transfer to the foetus. Part II. Oxidative damage. Mutat. Res./Fundam. Mol. Mech. Mutagen. 2009, 669, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.W.; Zhang, L.; Ye, R.W.; Pei, L.J.; Liu, J.M.; Zheng, X.Y.; Ren, A.G. Indoor Air Pollution From Coal Combustion and the Risk of Neural Tube Defects in a Rural Population in Shanxi Province, China. Am. J. Epidemiol. 2011, 174, 451–458. [Google Scholar] [CrossRef] [PubMed]
- United Nations Millennium Development Goals. Available online: https://www.who.int/topics/millennium_development_goals/about/en/ (accessed on 1 July 2025).
- 71st World Health Assembly. Maternal, Infant, and Young Child Nutrition. Available online: http://apps.who.int/gb/ebwha/pdf_files/WHA71/A71_22-en.pdf?ua=1 (accessed on 1 July 2025).
- 76th World Health Assembly. Accelerating Efforts for Preventing Micronutrient Deficiencies and Their Consequences, Including Spina Bifida and Other Neural Tube Defects, Through Safe and Effective Food Fortification; World Health Organization: Geneva, Switzerland, 2023. [Google Scholar]
- Hoddinott, J. The investment case for folic acid fortification in developing countries. Ann. N. Y. Acad. Sci. 2018, 1414, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Effectiveness Study for the Development of a Home Fortification Programme for Young Children in Zambia—Endline Report; University of British Columbia: UNICEF: Vancouver, BC, Canada, 2015.
- United Nations. The 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2015. [Google Scholar]
Variables | n (%) |
---|---|
Type of provider | |
Doctor | 36 (29) |
Nurse | 43 (35) |
Midwife | 34 (28) |
Other | 10 (8) |
Work setting | |
Level 3 hospital | 19 (15) |
Level 2 hospital | 22 (18) |
Level 1 hospital | 72 (59) |
Other | 10 (8) |
Distance from tertiary care center (km) | |
0–99 | 42 (34) |
100–249 | 21 (17) |
250–499 | 49 (40) |
500+ | 11 (9) |
Years of experience | |
<1 year | 9 (7) |
1–5 years | 45 (37) |
6–10 years | 35 (29) |
11–20 years | 25 (20) |
>20 years | 9 (7) |
Variables | n (%) |
---|---|
MMC patients per month, median (range) | 1 (0–12) |
Diagnosis of MMC | |
Before the baby is born (on ultrasound) | 35 (29) |
I diagnose it after the baby is born | 65 (53) |
Another provider on my team diagnoses it | 10 (8) |
Another provider outside my hospital diagnosis it | 9 (7) |
Other | 4 (3) |
Age at diagnosis (days), median (range) | 1 (0–24) |
Where is patient referred? | |
Level 3 hospital | 91 (74) |
Level 2 hospital | 10 (8) |
Level 1 hospital | 3 (3) |
Other | 19 (15) |
When is the baby referred for further management? | |
Within 6 h after baby is born or received | 50 (41) |
7–12 h after baby is born or received | 13 (11) |
13–24 h after baby is born or received | 20 (16) |
2–3 days after baby is born or received | 19 (15) |
More than 3 days after baby is born or received | 14 (11) |
Unknown | 7 (6) |
Are babies referred directly to UTH? | |
Yes | 90 (73) |
No | 33 (27) |
Are babies referred to UTH within the first 3 days of life? | |
Yes | 79 (90) |
No | 9 (10) |
Barriers to early referral | |
No money for transport | 0 (0) |
No ambulance available for transport | 0 (0) |
Diagnosis of myelomeningocele not made that quickly | 3 (2) |
Mother’s preference | 0 (0) |
Provider’s preference | 0 (0) |
Other | 6 (5) |
No barriers reported | 114 (95) |
Antibiotics available? | |
Yes | 121 (98) |
No | 2 (2) |
Do MMC patients receive antibiotics | |
Yes | 101 (82) |
No | 7 (6) |
I do not know | 15 (12) |
Variables | Time to Referral | Univariate | Multivariate | |||
---|---|---|---|---|---|---|
≤6 h (n = 51) n (%) | >6 h (n = 72) n (%) | Odds Ratio (95% CI) | p-Value | Odds Ratio (95% CI) | p-Value | |
Provider | 0.427 | |||||
Doctor | 13 (36) | 23 (64) | Ref | |||
Nurse | 17 (40) | 26 (60) | −0.15 (−1.06–0.77) | 0.159 | ||
Midwife | 18 (53) | 16 (47) | −0.69 (−1.65–0.27) | 0.755 | ||
Other | 3 (30) | 7 (70) | 0.28 (−1.24–1.79) | 0.720 | ||
Work setting | ||||||
Level 3 hospital | 11 (58) | 8 (42) | Ref | Ref | ||
Level 2 hospital | 29 (40) | 43 (60) | 0.69 (−0.46–1.64) | 0.273 | 0.35 (−0.98–1.68) | 0.608 |
Level 1 hospital | 6 (27) | 16 (73) | −0.71 (−1.74–0.31) | 0.173 | −0.77 (−2.02–0.49) | 0.230 |
Other | 5 (50) | 5 (50) | −0.39 (−1.72–0.93) | 0.560 | −0.98 (−2.54–0.58) | 0.216 |
Distance (km) | ||||||
0–99 | 33 (79) | 9 (21) | Ref | Ref | ||
100–249 | 1 (5) | 20 (95) | 4.30 (2.16–6.43) | <0.001 | 4.23 (2.07–6.38) | <0.001 |
250–499 | 14 (29) | 35 (71) | 2.22 (1.25–3.18) | <0.001 | 2.41 (1.38–3.44) | <0.001 |
500+ | 3 (27) | 8 (73) | 2.28 (0.76–3.80) | 0.001 | 1.99 (0.39–3.58) | 0.015 |
Experience (yr) | ||||||
<1 year | 3 (33) | 6 (67) | Ref | |||
1–5 years | 18 (40) | 27 (60) | 0.35 (−0.68–1.38) | 0.508 | ||
6–10 years | 19 (54) | 16 (45) | 0.29 (−1.22–1.80) | 0.709 | ||
11–20 years | 8 (32) | 17 (68) | −0.58 (−1.47–0.32) | 0.205 | ||
>20 years | 3 (33) | 6 (67) | 0.28 (−1.22–1.80) | 0.709 | ||
Antenatal diagnosis | 14 (40) | 21 (60) | 0.08 (−0.71–0.88) | 0.835 | ||
Receive antibiotics | 43 (43) | 58 (58) | −0.26 (−1.21–0.69) | 0.593 |
Variables | n (%) |
---|---|
Maternal age (years), median (range) | 25 (15–43) |
Gravidity, median (range) | 2 (1–8) |
Parity, median (range) | 2 (1–8) |
Age at presentation (days), median (range) | 7.5 (0–244) |
Location of birth | |
Level 3 hospital | 3 (4) |
Level 2 hospital | 0 (0) |
Level 1 hospital | 62 (90) |
Home | 1 (2) |
Other | 3 (4) |
Distance travelled to tertiary care center (km) | |
0–99 | 4 (6) |
100–249 | 10 (14) |
250–499 | 29 (42) |
500+ | 26 (38) |
Maternal education | |
College or beyond | 7 (10) |
Secondary school | 14 (20) |
Primary school | 40 (58) |
No school | 8 (12) |
Monthly family income (dollars), median (range) | 7.19 (0.04–179.69) |
Antibiotics prior to presentation at UTH | 40 (58) |
Prenatal ultrasound | 53 (77) |
Gestational age of first prenatal ultrasound (months), median (range) | 5 (1–9) |
Prenatal ultrasound after 20 weeks gestational age | 43 (62) |
Prenatal diagnosis of spina bifida | 2 (3) |
Folic acid intake | |
Prior to conception | 2 (3) |
During pregnancy | 67 (97) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muller, R.; Sipalo, K.; Beals, C.; Chazura, A.; Chola, S.; Garcia, R.; Jackson, B.; Feinglass, J.; Nourski, K.V.; Mala Wa Mpoyi, M.-R.; et al. Barriers to Timely Referral of Children Born with Myelomeningocele in Zambia. J. Clin. Med. 2025, 14, 5721. https://doi.org/10.3390/jcm14165721
Muller R, Sipalo K, Beals C, Chazura A, Chola S, Garcia R, Jackson B, Feinglass J, Nourski KV, Mala Wa Mpoyi M-R, et al. Barriers to Timely Referral of Children Born with Myelomeningocele in Zambia. Journal of Clinical Medicine. 2025; 14(16):5721. https://doi.org/10.3390/jcm14165721
Chicago/Turabian StyleMuller, Rya, Kabelele Sipalo, Caitlyn Beals, Angela Chazura, Stephanie Chola, Roxanna Garcia, Brooks Jackson, Joseph Feinglass, Kirill V. Nourski, Marie-Renee Mala Wa Mpoyi, and et al. 2025. "Barriers to Timely Referral of Children Born with Myelomeningocele in Zambia" Journal of Clinical Medicine 14, no. 16: 5721. https://doi.org/10.3390/jcm14165721
APA StyleMuller, R., Sipalo, K., Beals, C., Chazura, A., Chola, S., Garcia, R., Jackson, B., Feinglass, J., Nourski, K. V., Mala Wa Mpoyi, M.-R., Kunda, H., & Reynolds, R. (2025). Barriers to Timely Referral of Children Born with Myelomeningocele in Zambia. Journal of Clinical Medicine, 14(16), 5721. https://doi.org/10.3390/jcm14165721