Applications of Forced Oscillatory Technique in Obstructive and Restrictive Pulmonary Diseases: A Concise State of the Art
Abstract
1. Introduction
2. Forced Oscillatory Technique: Methodology and Technical Aspects
2.1. Methodology
2.2. FOT Parameters
2.3. Recommendations for Measurements
3. Application of the Forced Oscillatory Technique in Obstructive Lung Diseases
3.1. Asthma
3.2. Chronic Obstructive Pulmonary Disease
4. Application of the Forced Oscillatory Technique in Restrictive Lung Diseases
4.1. Interstitial Lung Diseases
4.2. Obesity and Kyphoscoliosis
4.3. Neuromuscular Disorders
5. Future Perspectives
6. Limitations of the Forced Oscillation Technique
7. Economic Considerations and Global Availability of the Forced Oscillation Technique
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Bhattarai, P.; Myers, S.; Chia, C.; Weber, H.C.; Young, S.; Williams, A.D.; Sohal, S.S. Clinical Application of Forced Oscillation Technique (FOT) in Early Detection of Airway Changes in Smokers. J. Clin. Med. 2020, 9, 2778. [Google Scholar] [CrossRef]
- Dubois, A.B.; Brody, A.W.; Lewis, D.H.; Burgess, B.F., Jr. Oscillation Mechanics of Lungs and Chest in Man. J. Appl. Physiol. 1956, 8, 587–594. [Google Scholar] [CrossRef]
- Bates, J.H.T. CORP: Measurement of lung function in small animals. J. Appl. Physiol. 2017, 123, 1039–1046. [Google Scholar] [CrossRef] [PubMed]
- Lundblad, L.K.A. Issues determining direct airways hyperresponsiveness in mice. Front. Physiol. 2012, 3, 32648. [Google Scholar] [CrossRef] [PubMed]
- Jackson, A.C.; Watson, J.W. Oscillatory mechanics of the respiratory system in normal rats. Respir. Physiol. 1982, 48, 309–322. [Google Scholar] [CrossRef] [PubMed]
- Hull, W.E.; Long, E.C. Respiratory impedance and volume flow at high frequency in dogs. J. Appl. Physiol. 1961, 16, 439–443. [Google Scholar] [CrossRef]
- Lundblad, L.K.A.; Robichaud, A. Oscillometry of the respiratory system: A translational opportunity not to be missed. Am. J. Physiol. Cell. Mol. Physiol. 2021, 320, L1038–L1056. [Google Scholar] [CrossRef]
- Cottini, M.; Lombardi, C.; Comberiati, P.; Berti, A.; Menzella, F.; Dandurand, R.J.; Diamant, Z.; Chan, R. Oscillometry-defined small airways dysfunction as a treatable trait in asthma. Ann. Allergy Asthma Immunol. 2025, 134, 151–158. [Google Scholar] [CrossRef]
- Ishikawa, T.; Nishikiori, H.; Mori, Y.; Fujino, K.; Saito, A.; Takahashi, M.; Kuronuma, K.; Hinotsu, S.; Chiba, H. The impact of respiratory reactance in oscillometry on survival in patients with idiopathic pulmonary fibrosis. MC Pulm. Med. 2024, 24, 10. [Google Scholar] [CrossRef]
- Kaminsky, D.A.; Simpson, S.J.; Berger, K.I.; Calverley, P.; de Melo, P.L.; Dandurand, R.; Dellacà, R.L.; Farah, C.S.; Farré, R.; Hall, G.L.; et al. Clinical significance and applications of oscillometry. Eur. Respir. Rev. 2022, 31, 210208. [Google Scholar] [CrossRef]
- Grosso, A.; Locatelli, F.; Gini, E.; Albicini, F.; Tirelli, C.; Cerveri, I.; Corsico, A.G. The course of asthma during pregnancy in a recent, multicase–control study on respiratory health. Allergy Asthma Clin. Immunol. 2018, 14, 16. [Google Scholar] [CrossRef] [PubMed]
- Nasr, A.; Jarenbäck, L.; Bjermer, L.; Tufvesson, E. Assessment of expiratory vs inspiratory resistance and reactance using FOT as a measure of air trapping. Eur. Respir. J. 2019, 54 (Suppl. S63), PA2634. [Google Scholar] [CrossRef]
- Qian, W.; Desai, A.; Therkorn, J.H.; Klein-Adams, J.C.; Sotolongo, A.M.; Falvo, M.J. Employing the Forced Oscillation Technique for the Assessment of Respiratory Mechanics in Adults. J. Vis. Exp. 2022, 180, e63165. [Google Scholar] [CrossRef] [PubMed]
- Skylogianni, E.; Douros, K.; Anthracopoulos, M.B.; Fouzas, S. The Forced Oscillation Technique in Paediatric Respiratory Practice. Paediatr. Respir. Rev. 2016, 18, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Bates, J.H.T.; Irvin, C.G.; Farré, R.; Hantos, Z. Oscillation Mechanics of the Respiratory System. In Comprehensive Physiology; Wiley: Oxford, UK, 2011; pp. 1233–1272. [Google Scholar]
- Bates, J.H.T.; Irvin, C.G. Measuring lung function in mice: The phenotyping uncertainty principle. J Appl Physiol. 2003, 94, 1297–1306. [Google Scholar] [CrossRef]
- Dandurand, R.J.; Lavoie, J.P.; Lands, L.C.; Hantos, Z. Comparison of oscillometry devices using active mechanical test loads. ERJ Open Res. 2019, 5, 00160–2019. [Google Scholar] [CrossRef]
- Sly, P.D.; Hayden, M.J.; Peták, F.; Hantos, Z. Measurement of low-frequency respiratory impedance in infants. Am. J. Respir. Crit. Care Med. 1996, 154, 161–166. [Google Scholar] [CrossRef]
- Lutchen, K.R.; Yang, K.; Kaczka, D.W.; Suki, B. Optimal ventilation waveforms for estimating low-frequency respiratory impedance. J. Appl. Physiol. 1993, 75, 478–488. [Google Scholar] [CrossRef]
- King, G.G.; Bates, J.; Berger, K.I.; Calverley, P.; De Melo, P.L.; Dellacà, R.L.; Farre, R.; Hall, G.; Ioan, I.; Irvin, C.G.; et al. Technical standards for respiratory oscillometry. Eur. Respir. J. 2020, 55, 1900753. [Google Scholar] [CrossRef]
- Oostveen, E.; MacLeod, D.; Lorino, H.; Farré, R.; Hantos, Z.; Desager, K.; Marchal, F. The forced oscillation technique in clinical practice: Methodology, recommendations and future developments. Eur. Respir. J. 2003, 22, 1026–1041. [Google Scholar] [CrossRef]
- Van Noord, J.A.; Clément, J.; Van De Woestijne, K.P.; Demedts, M. Total Respiratory Resistance and Reactance in Patients with Asthma, Chronic Bronchitis, and Emphysema. Am. Rev. Respir. Dis. 1991, 143 Pt 1, 922–927. [Google Scholar] [CrossRef] [PubMed]
- Bhatawadekar, S.A.; Leary, D.; Chen, Y.; Ohishi, J.; Hernandez, P.; Brown, T.; McParland, C.; Maksym, G.N. A Study of Artifacts and Their Removal During Forced Oscillation of the Respiratory System. Ann. Biomed. Eng. 2013, 41, 990–1002. [Google Scholar] [CrossRef]
- Goyal, R.; Parakh, A. Forced oscillation technique and impulse oscillometry: An update on current understanding. J. Pediatr. Pulmonol. 2023, 2, 55. [Google Scholar] [CrossRef]
- Alblooshi, A.; Alkalbani, A.; Albadi, G.; Narchi, H.; Hall, G. Is forced oscillation technique the next respiratory function test of choice in childhood asthma. World J. Methodol. 2017, 7, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Cavalcanti, J.V.; Lopes, A.J.; Jansen, J.M.; Melo, P.L. Detection of changes in respiratory mechanics due to increasing degrees of airway obstruction in asthma by the forced oscillation technique. Respir. Med. 2006, 100, 2207–2219. [Google Scholar] [CrossRef]
- Di Mango, A.M.G.T.; Lopes, A.J.; Jansen, J.M.; Melo, P.L. Changes in respiratory mechanics with increasing degrees of airway obstruction in COPD: Detection by forced oscillation technique. Respir. Med. 2006, 100, 399–410. [Google Scholar] [CrossRef]
- Venkatesan, P. 2023 GINA report for asthma. Lancet Respir. Med. 2023, 11, 589. [Google Scholar] [CrossRef]
- Ramsahai, J.M.; Hansbro, P.M.; Wark, P.A.B. Mechanisms and Management of Asthma Exacerbations. Am. J. Respir. Crit. Care Med. 2019, 199, 423–432. [Google Scholar] [CrossRef]
- Mandilwar, S.; Thorve, S.M.; Gupta, V.; Prabhudesai, P. Role of impulse oscillometry in diagnosis and follow-up in bronchial asthma. Lung India 2023, 40, 24–32. [Google Scholar] [CrossRef]
- Houle, M.C.; Cavacece, C.T.; Gonzales, M.A.; Anderson, J.T.; Hunninghake, J.C.; Holley, A.B.; Morris, M.J. Correlation of Impulse Oscillometry with Spirometry in Deployed Military Personnel with Airway Obstruction. Mil. Med. 2023, 188 (Suppl. S6), 400–406. [Google Scholar] [CrossRef]
- Nakayasu, H.; Shirai, T.; Hirai, K.; Akamatsu, T.; Kitahara, Y. Bronchodilator response using oscillometry to detect uncontrolled asthma. Allergol. Int. 2023, 72, 597–599. [Google Scholar] [CrossRef]
- Kostorz-Nosal, S.; Jastrzębski, D.; Błach, A.; Skoczyński, S. Window of opportunity for respiratory oscillometry: A review of recent research. Respir. Physiol. Neurobiol. 2023, 316, 104135. [Google Scholar] [CrossRef] [PubMed]
- Corral-Blanco, M.; Díaz Campos, R.M.; Peláez, A.; Melero Moreno, C. Beyond forced exhalation: Impulse oscillometry as a promising tool for bronchial hyperresponsiveness evaluation. J. Asthma 2024, 61, 427–435. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Mukherjee, A.; Gupta, S.; Jat, K.R.; Sankar, J.; Lodha, R.; Kabra, S.K. Impulse oscillometry (IOS) for detection of exercise induced bronchoconstriction in children with asthma ages 6–15 years. J. Asthma 2023, 60, 1336–1346. [Google Scholar] [CrossRef] [PubMed]
- Grell, A.V.; Vera, R.G.; Yarur, A.M.; Castro-Rodriguez, J.A.; Montenegro, M.A.P.; Colodro, O.F.; Elías, S.A.; Bentjerodt, M.S.; Poblete, J.M. Impulse oscillometry in preschool children with persistent asthma can predict spirometry at school age. Pediatr. Pulmonol. 2023, 58, 1411–1416. [Google Scholar] [CrossRef]
- Gonzalez Vera, R.; Saavedra Bentjerodt, M.; Vidal Grell, A.; Mackenney Poblete, J. Función pulmonar evolutiva evaluada por oscilometría de impulso en prescolares con asma. Andes Pediatr. 2021, 92, 42. [Google Scholar] [CrossRef]
- Chaiwong, W.; Namwongprom, S.; Liwsrisakun, C.; Pothirat, C. The roles of impulse oscillometry in detection of poorly controlled asthma in adults with normal spirometry. J. Asthma 2022, 59, 561–571. [Google Scholar] [CrossRef]
- Dawman, L.; Mukherjee, A.; Sethi, T.; Agrawal, A.; Kabra, S.K.; Lodha, R. Role of Impulse Oscillometry in Assessing Asthma Control in Children. Indian Pediatr. 2020, 57, 119–123. [Google Scholar] [CrossRef]
- Kuo, C.R.; Lipworth, B. Airwave oscillometry and patient-reported outcomes in persistent asthma. Ann. Allergy Asthma Immunol. 2020, 124, 289–290. [Google Scholar] [CrossRef]
- Díaz Palacios, M.Á.; Hervás Marín, D.; Giner Valero, A.; Colomer Hernández, N.; Torán Barona, C.; Hernández Fernández de Rojas, D. Correlation between impulse oscillometry parameters and asthma control in an adult population. J. Asthma Allergy 2019, 12, 195–203. [Google Scholar] [CrossRef]
- Abdo, M.; Trinkmann, F.; Kirsten, A.-M.; Pedersen, F.; Herzmann, C.; von Mutius, E.; Kopp, M.V.; Hansen, G.; Waschki, B.; Rabe, K.F.; et al. Small Airway Dysfunction Links Asthma Severity with Physical Activity and Symptom Control. J. Allergy Clin. Immunol. Pract. 2021, 9, 3359–3368.e1. [Google Scholar] [CrossRef] [PubMed]
- Tang, F.S.; Rutting, S.; Farrow, C.E.; Tonga, K.O.; Watts, J.; Dame-Carrol, J.R.; Bertolin, A.; King, G.G.; Thamrin, C.; Chapman, D.G. Ventilation heterogeneity and oscillometry predict asthma control improvement following step-up inhaled therapy in uncontrolled asthma. Respirology 2020, 25, 827–835. [Google Scholar] [CrossRef] [PubMed]
- Sugawara, H.; Saito, A.; Yokoyama, S.; Tsunematsu, K.; Chiba, H.; Takahashi, H. A retrospective analysis of usefulness of impulse oscillometry system in the treatment of asthma. Respir. Res. 2020, 21, 226. [Google Scholar] [CrossRef] [PubMed]
- Tirelli, C.; Parazzini, E.M.; Sacchi, L.; Carone, G.; Pescol, F.; Maggioni, S.; Belmonte, L.A.; Albrici, C.; Contino, S.; Re, B.; et al. Forced oscillatory technique R5-19 values correlate with spirometry FEV1/FVC in severe eosinophilic asthma. An observational, prospective, cohort study. Respir. Med. 2025, 247, 108260. [Google Scholar] [CrossRef]
- Kreetapirom, P.; Kiewngam, P.; Jotikasthira, W.; Kamchaisatian, W.; Benjaponpitak, S.; Manuyakorn, W. Forced oscillation technique as a predictor for loss of control in asthmatic children. Asia Pac. Allergy 2020, 10, e3. [Google Scholar] [CrossRef]
- Lauhkonen, E.; Kaltsakas, G.; Sivagnanasithiyar, S.; Iles, R. Comparison of forced oscillation technique and spirometry in paediatric asthma. ERJ Open Res. 2021, 7, 00202–02020. [Google Scholar] [CrossRef]
- Tirelli, C.; Mira, S.; Belmonte, L.A.; De Filippi, F.; De Grassi, M.; Italia, M.; Maggioni, S.; Guido, G.; Mondoni, M.; Canonica, G.W.; et al. Exploring the Potential Role of Metabolomics in COPD: A Concise Review. Cells 2024, 13, 475. [Google Scholar] [CrossRef]
- Venkatesan, P. GOLD COPD report: 2024 update. Lancet Respir. Med. 2024, 12, 15–16. [Google Scholar] [CrossRef]
- Crim, C.; Celli, B.; Edwards, L.D.; Wouters, E.; Coxson, H.O.; Tal-Singer, R.; Calverley, P.M. Respiratory system impedance with impulse oscillometry in healthy and COPD subjects: ECLIPSE baseline results. Respir. Med. 2011, 105, 1069–1078. [Google Scholar] [CrossRef]
- Baba, R.Y.; Zhang, Y.; Shao, Y.; Berger, K.I.; Goldring, R.M.; Liu, M.; Kazeros, A.; Rosen, R.; Reibman, J. COPD in Smoking and Non-Smoking Community Members Exposed to the World Trade Center Dust and Fumes. Int. J. Environ. Res. Public Health 2022, 19, 4249. [Google Scholar] [CrossRef]
- Desai, U.; Joshi, J.M. Impulse Oscillometry. Adv. Respir. Med. 2019, 87, 235–238. [Google Scholar] [CrossRef]
- Brashier, B.; Salvi, S. Measuring lung function using sound waves: Role of the forced oscillation technique and impulse oscillometry system. Breathe 2015, 11, 57–65. [Google Scholar] [CrossRef]
- Tirelli, C.; Pesenti, C.; Miozzo, M.; Mondoni, M.; Fontana, L.; Centanni, S. The Genetic and Epigenetic Footprint in Idiopathic Pulmonary Fibrosis and Familial Pulmonary Fibrosis: A State-of-the-Art Review. Diagnostics 2022, 12, 3107. [Google Scholar] [CrossRef] [PubMed]
- Verleden, S.E.; Tanabe, N.; McDonough, J.E.; Vasilescu, D.M.; Xu, F.; Wuyts, W.A.; Piloni, D.; De Sadeleer, L.; Willems, S.; Mai, C.; et al. Small airways pathology in idiopathic pulmonary fibrosis: A retrospective cohort study. Lancet Respir. Med. 2020, 8, 573–584. [Google Scholar] [CrossRef] [PubMed]
- Matesanz-López, C.; Raboso-Moreno, B.; Saldaña-Pérez, L.E.; Rodríguez-Nieto, M.J.; Río-Ramírez, M.T. Is Lung Function Measured by Oscillometry Useful in Interstitial Lung Diseases? Open Respir. Arch. 2024, 6, 100278. [Google Scholar] [CrossRef] [PubMed]
- Takeichi, N.; Yamazaki, H.; Fujimoto, K. Comparison of impedance measured by the forced oscillation technique and pulmonary functions, including static lung compliance, in obstructive and interstitial lung disease. Int. J. Chronic Obstr. Pulm. Dis. 2019, 14, 1109–1118. [Google Scholar] [CrossRef]
- Mikamo, M.; Fujisawa, T.; Oyama, Y.; Kono, M.; Enomoto, N.; Nakamura, Y.; Inui, N.; Sumikawa, H.; Johkoh, T.; Suda, T. Clinical Significance of Forced Oscillation Technique for Evaluation of Small Airway Disease in Interstitial Lung Diseases. Lung 2016, 194, 975–983. [Google Scholar] [CrossRef]
- Miyoshi, S.; Katayama, H.; Matsubara, M.; Kato, T.; Hamaguchi, N.; Yamaguchi, O. Prediction of Spirometric Indices Using Forced Oscillometric Indices in Patients with Asthma, COPD, and Interstitial Lung Disease. Int. J. Chronic Obstr. Pulm. Dis. 2020, 15, 1565–1575. [Google Scholar] [CrossRef]
- Cheng, W.-C.; Chang, S.-H.; Chen, W.-C.; Wu, B.-R.; Chen, C.-H.; Lin, C.-C.; Hsu, W.-H.; Lan, J.-L.; Chen, D.-Y. Application of impulse oscillometry to detect interstitial lung disease and airway disease in adults with rheumatoid arthritis. BMC Pulm. Med. 2023, 23, 331. [Google Scholar] [CrossRef]
- Panagopoulos, P.K.; Goules, A.V.; Georgakopoulou, V.E.; Kallianos, A.; Chatzinikita, E.; Pezoulas, V.C.; Malagari, K.; Fotiadis, D.I.; Vlachoyiannopoulos, P.; Vassilakopoulos, T.; et al. Small airways dysfunction in patients with systemic sclerosis and interstitial lung disease. Front. Med. 2022, 9, 1016898. [Google Scholar] [CrossRef]
- Tirelli, C.; Zanframundo, G.; Valentini, A.; Bortolotto, C.; Dore, R.; Oggionni, T.; Milani, P.; Bravi, E.; Kadija, Z.; Mariani, F.; et al. CT-guided biopsy in the differential diagnosis of Sjogren syndrome associated cystic lung disease: A case of lung nodular AL-k amyloidosis. Radiol. Case Rep. 2020, 15, 2331–2334. [Google Scholar] [CrossRef]
- Tirelli, C.; Rondinone, O.; Italia, M.; Mira, S.; Belmonte, L.A.; De Grassi, M.; Guido, G.; Maggioni, S.; Mondoni, M.; Miozzo, M.R.; et al. The Genetic Basis, Lung Involvement, and Therapeutic Options in Niemann-Pick Disease: A Comprehensive Review. Biomolecules 2024, 14, 211. [Google Scholar] [CrossRef]
- Tirelli, C.; Arbustini, E.; Meloni, F. Bilateral Cystic Bronchiectasis as Novel Phenotype of Niemann-Pick Disease Type B Successfully Treated With Double Lung Transplantation. Chest 2021, 159, e293–e297. [Google Scholar] [CrossRef]
- Miura, E.; Tsuchiya, N.; Igarashi, Y.; Arakawa, R.; Nikkuni, E.; Tamai, T.; Tabata, M.; Ohkouchi, S.; Irokawa, T.; Ogawa, H.; et al. Respiratory resistance among adults in a population-based cohort study in Northern Japan. Respir. Investig. 2019, 57, 274–281. [Google Scholar] [CrossRef]
- Iliaz, S.; Yunisova, G.; Cakmak, O.O.; Celebi, O.; Bulus, E.; Duman, A.; Bayraktaroglu, M.; Oflazer, P. The clinical use of impulse oscillometry in neuromuscular diseases. Respir. Med. 2022, 200, 106931. [Google Scholar] [CrossRef]
- Fujii, M.; Shirai, T.; Mori, K.; Mikamo, M.; Shishido, Y.; Akita, T.; Morita, S.; Asada, K.; Suda, T. Inspiratory resonant frequency of forced oscillation technique as a predictor of the composite physiologic index in interstitial lung disease. Respir. Physiol. Neurobiol. 2015, 207, 22–27. [Google Scholar] [CrossRef]
FOT Parameter | Asthma | COPD | ILD |
---|---|---|---|
Z | ↑↑ | ↑↑ | ↑ |
Rrs | ↑↑ | ↑↑↑ | ↑ |
Xrs | ↓↓ | ↓↓↓ | ↑↓ |
R5–20 | ↑↑↑ | ↑↑↑ | ↑↓ |
Clinical and Research Applications of the FOT | |||
Complementary tool to spirometry | ↑↑↑ | ↑↑↑ | ↑↑ |
Detection of SAD | ↑↑↑ | ↑↑ | ↑↑ |
Bronchodilator test (research use) | ↑↑ | ↑↑ | Not needed |
Bronchoprovocation test (research use) | ↑↑ | Not needed | Not needed |
Exercise-induced bronchoconstriction test (research use) | ↑↑ | Not needed | Not needed |
NCT/ID | Condition/ Population | Intervention/Design | FOT Parameters (e.g., Rrs, Xrs, ΔXrs) | Role of FOT Outcome | Status/Estimated Completion |
---|---|---|---|---|---|
NCT07063563 | COPD, pulmonary rehabilitation | Rehabilitation at moderate vs. low altitude | Rrs, Xrs, ΔXrs | Primary/Secondary | Recruiting; primary completion 31 December 2025 (ClinicalTrials.gov) |
NCT01151618 | COPD under mechanical ventilation | NIV with flow-limitation detection via FOT | ΔXrs (within-breath reactance at 5 Hz) | Primary | Completed (2010) (ctv.veeva.com) |
NCT05612256 | Mechanically ventilated newborn infants | Observational, comparing EIT + SOPI + FOT | Xrs and Rrs | Exploratory biomarkers/ composite score | Recruiting; completion estimated. December 2024 (ICHGCP) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tirelli, C.; Mira, S.; Italia, M.; Maggioni, S.; Intravaia, C.; Zava, M.; Contino, S.; Parazzini, E.M.; Mondoni, M. Applications of Forced Oscillatory Technique in Obstructive and Restrictive Pulmonary Diseases: A Concise State of the Art. J. Clin. Med. 2025, 14, 5718. https://doi.org/10.3390/jcm14165718
Tirelli C, Mira S, Italia M, Maggioni S, Intravaia C, Zava M, Contino S, Parazzini EM, Mondoni M. Applications of Forced Oscillatory Technique in Obstructive and Restrictive Pulmonary Diseases: A Concise State of the Art. Journal of Clinical Medicine. 2025; 14(16):5718. https://doi.org/10.3390/jcm14165718
Chicago/Turabian StyleTirelli, Claudio, Sabrina Mira, Marta Italia, Sara Maggioni, Carmelo Intravaia, Martina Zava, Simone Contino, Elena Maria Parazzini, and Michele Mondoni. 2025. "Applications of Forced Oscillatory Technique in Obstructive and Restrictive Pulmonary Diseases: A Concise State of the Art" Journal of Clinical Medicine 14, no. 16: 5718. https://doi.org/10.3390/jcm14165718
APA StyleTirelli, C., Mira, S., Italia, M., Maggioni, S., Intravaia, C., Zava, M., Contino, S., Parazzini, E. M., & Mondoni, M. (2025). Applications of Forced Oscillatory Technique in Obstructive and Restrictive Pulmonary Diseases: A Concise State of the Art. Journal of Clinical Medicine, 14(16), 5718. https://doi.org/10.3390/jcm14165718