Comparative Analysis of Retrobulbar Blood Flow in Symmetric and Asymmetric Keratoconus Patients
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Ethical Considerations
2.2. Study Population
2.3. Inclusion and Exclusion Criteria
2.4. Sample Size and Group Classification
2.5. Ophthalmological Examination and Topographic Evaluation
2.6. Color Doppler Ultrasonography
2.7. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Santodomingo-Rubido, J.; Carracedo, G.; Suzaki, A.; Villa-Collar, C.; Vincent, S.J.; Wolffsohn, J.S. Keratoconus: An updated review. Contact Lens Anterior Eye J. Br. Contact Lens Assoc. 2022, 45, 101559. [Google Scholar] [CrossRef] [PubMed]
- Rabinowitz, Y.S. Keratoconus. Surv. Ophthalmol. 1998, 42, 297–319. [Google Scholar] [CrossRef] [PubMed]
- Karaca, E.E.; Özmen, M.C.; Ekici, F.; Yüksel, E.; Türkoğlu, Z. Neutrophil-to-lymphocyte ratio may predict progression in patients with keratoconus. Cornea 2014, 33, 1168–1173. [Google Scholar] [CrossRef]
- Galvis, V.; Sherwin, T.; Tello, A.; Merayo, J.; Barrera, R.; Acera, A. Keratoconus: An inflammatory disorder? Eye 2015, 29, 843–859. [Google Scholar] [CrossRef]
- McMonnies, C.W. Mechanisms of rubbing-related corneal trauma in keratoconus. Cornea 2009, 28, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Santos, R.T.; Moscovici, B.K.; Hirai, F.E.; Benício, C.M.F.; Nakano, E.M.; Nosé, W. Association between keratoconus, ocular allergy, and sleeping behavior. Arq. Bras. Oftalmol. 2021, 84, 17–21. [Google Scholar] [CrossRef] [PubMed]
- Mazharian, A.; Panthier, C.; Courtin, R.; Jung, C.; Rampat, R.; Saad, A.; Gatinel, D. Incorrect sleeping position and eye rubbing in patients with unilateral or highly asymmetric keratoconus: A case-control study. Graefes Arch. Clin. Exp. Ophthalmol. 2020, 258, 2431–2439. [Google Scholar] [CrossRef]
- Leclaire, M.D.; Storp, J.J.; Lahme, L.; Esser, E.L.; Eter, N.; Alnawaiseh, M. Reduced Retinal Blood Vessel Densities Measured by Optical Coherence Tomography Angiography in Keratoconus Patients Are Negatively Correlated with Keratoconus Severity. Diagnostics 2024, 14, 707. [Google Scholar] [CrossRef]
- Passaro, M.L.; Rinaldi, M.; Morgera, V.; Feola, A.; Romano, V.; Troisi, M.; Strianese, D.; Piscopo, R.; Messina, S.; Romano, A.; et al. The oxidative-stress-senescence axis in keratoconus: New insights into corneal degeneration. Front. Mol. Biosci. 2025, 12, 1539542. [Google Scholar] [CrossRef]
- Ivanovskaia, E.; Khramenko, N.; GI, D. Ocular hemodynamics in patients with stage I–IV keratoconus. J. Ophthalmol. 2017, 3, 3–8. [Google Scholar] [CrossRef]
- Böhm, E.W.; Grauhan, N.F.; Pfeiffer, N.; Gericke, A. Measurement of Retrobulbar Blood Flow and Vascular Reactivity—Relevance for Ocular and Cardiovascular Diseases. Diagnostics 2023, 13, 3514. [Google Scholar] [CrossRef]
- Krumeich, J.H.; Daniel, J.; Knülle, A. Live-epikeratophakia for keratoconus. J. Cataract. Refract. Surg. 1998, 24, 456–463. [Google Scholar] [CrossRef]
- Stalmans, I.; Vandewalle, E.; Anderson, D.R.; Costa, V.P.; Frenkel, R.E.P.; Garhofer, G.; Grunwald, J.; Gugleta, K.; Harris, A.; Hudson, C.; et al. Use of colour Doppler imaging in ocular blood flow research. Acta Ophthalmol. 2011, 89, e609–e630. [Google Scholar] [CrossRef]
- Quaranta, L.; Harris, A.; Donato, F.; Cassamali, M.; Semeraro, F.; Nascimbeni, G.; Gandolfo, E.; Quaranta, C.A. Color Doppler Imaging of Ophthalmic Artery Blood Flow Velocity: A Study of Repeatability and Agreement. Ophthalmology 1997, 104, 653–658. [Google Scholar] [CrossRef]
- Yu, C.; Xu, C.; Wang, Z.; Zhang, X.; Huang, X. Color doppler ultrasound analysis of pathological myopia induced changes in retrobulbar blood flow and its relationship with characteristic changes in myopia. Pak. J. Med. Sci. 2023, 39, 853–857. [Google Scholar] [CrossRef]
- Aydın, E.; Özgür, E.; İnsan, A.; Gürün, E. Retrobulbar Blood Flow Parameters in Patients With Anisometropic Amblyopia. Cureus 2023, 15, e35025. [Google Scholar] [CrossRef]
- Loh, I.P.; Sherwin, T. Is Keratoconus an Inflammatory Disease? The Implication of Inflammatory Pathways. Ocul. Immunol. Inflamm. 2022, 30, 246–255. [Google Scholar] [CrossRef] [PubMed]
- Erdogmus, B.; Yazici, S.; Yazici, B.; Ataoglu, S.; Buyukkaya, R.; Yuksel, H.; Cura, S. Orbital blood flow velocities in patients with rheumatoid arthritis. J. Clin. Ultrasound 2007, 35, 367–371. [Google Scholar] [CrossRef] [PubMed]
- Aydemir, G.A.; Kocabaş, D.O.; Bilen, A.; Aydemir, E.; Bayat, A.H.; Oren, B.; Kiziltoprak, H. Evaluation of Retinal Layer Thicknesses in Patients with Keratoconus Using Retinal Layer Segmentation Analysis. Klin. Monatsblatter Augenheilkd. 2023, 240, 1199–1206. [Google Scholar] [CrossRef] [PubMed]
- Grudzińska, E.M.; Zaborski, D.; Modrzejewska, M. Correlation between retrobulbar blood flow parameters and retinal nerve fiber, ganglion cell and inner plexus layer thickness in myopia. Eur. J. Ophthalmol. 2022, 32, 643–650. [Google Scholar] [CrossRef]
- Jamshidian-Tehrani, M.; Nabavi, A.; Kasaee, A.; Hasanpoor, N.; Elhami, E.; Sharif-Kashani, S.; Masoumi, A.; Nowroozzadeh, M.H.; Sadeghi-Tari, A. Color Doppler imaging in thyroid eye disease and its correlation to disease activity. Orbit 2019, 38, 440–445. [Google Scholar] [CrossRef]
- Sirkeci, O.; Erkus Sirkeci, E.; Ergün Süzer, N.; Tatlıparmak, A.C.; Küçükçiloğlu, Y.; Ulaş, T. Can orbital artery resistive indexes detect complications of diabetes in the prediabetic phase? Wien. Klin. Wochenschr. 2023, 135, 343–348. [Google Scholar] [CrossRef]
- Hamidi, C.; Türkcü, F.M.; Göya, C.; Çetinçakmak, M.G.; Yüksel, H.; Teke, M.; Hattapoğlu, S.; Bilici, A. Evaluation of retrobulbar blood flow with color doppler ultrasonography in patients with central serous chorioretinopathy. J. Clin. Ultrasound JCU 2014, 42, 481–485. [Google Scholar] [CrossRef] [PubMed]
- Şimşek, S.; İşlek, A. Diagnostic and predictive value of resistive/pulsatility indices of ophthalmic artery and common carotid artery for the development of diabetic retinopathy. Acta Radiol. 2023, 64, 1966–1973. [Google Scholar] [CrossRef] [PubMed]
- Akal, A.; Ulas, T.; Goncu, T.; Karakas, E.; Karakas, O.; Kurnaz, F.; Boyaci, F.N.; Yilmaz, O.F.; Bata, A.; Yildiz, S. Evaluation of resistive index using color Doppler imaging of orbital arteries in geriatric patients with hypertension. Indian J. Ophthalmol. 2014, 62, 671–674. [Google Scholar] [CrossRef] [PubMed]
- Manicam, C.; Ginter, N.; Li, H.; Xia, N.; Goloborodko, E.; Zadeh, J.K.; Musayeva, A.; Pfeiffer, N.; Gericke, A. Compensatory Vasodilator Mechanisms in the Ophthalmic Artery of Endothelial Nitric Oxide Synthase Gene Knockout Mice. Sci. Rep. 2017, 7, 7111. [Google Scholar] [CrossRef]
- Pasaoglu, I.; Ozturker, Z.K.; Celik, S.; Ocak, B.; Yasar, T. Fellow-eye asymmetry on optical coherence tomography angiography and thickness parameters in unilateral pseudoexfoliation syndrome. Arq. Bras. Oftalmol. 2021, 85, 333–338. [Google Scholar] [CrossRef]
Variables (N = 116) | N (%) | Mean ± SD | Median (Min–Max) IQR (Q1–Q3) |
---|---|---|---|
Gender | |||
Female | 72 (62.1%) | ||
Male | 44 (37.9%) | ||
Age (years) | 29 ± 5 | 29 (19–40) (23–32) | |
Group | |||
Symmetric | 37 (31.9%) | ||
Asymmetric | 39 (33.6%) | ||
Control | 40 (34.5%) |
Variables | Asymmetric KC Present | Asymmetric KC Absent | p Value |
---|---|---|---|
oaRI | 0.77 (0.54–0.96) | 0.74 (0.6–9.6) | 0.122 ** |
Median (Min–Max) | |||
oaPI | 1.99 ± 1.01 | 1.73 ± 0.51 | 0.045 * |
Mean ± SD | |||
craRI | 0.800 ** | ||
Median (Min–Max) | 0.76 (0.5–0.94) | 0.75 (0.48–0.92) | |
IQR (Q1–Q3) | (0.65–0.81) | (0.69–0.79) | |
craPI | 0.697 ** | ||
Median (Min–Max) | 1.48 (0.55–2.56) | 1.38 (0.68–2.73) | |
IQR (Q1–Q3) | (1.13–1.87) | (1.14–1.93) | |
pcaRI | 0.996 ** | ||
Median (Min–Max) | 0.69 (0.53–0.94) | 0.70 (0.52–6.4) | |
IQR (Q1–Q3) | (0.65–0.77) | (0.65–0.76) | |
pcaPI | 0.887 ** | ||
Median (Min–Max) | 1.24 (0.52–2.87) | 1.27 (0.75–2.55) | |
IQR (Q1–Q3) | (1.14–1.73) | (1.13–1.60) | |
Kvf | <0.001 ** | ||
Median (Min–Max) | 28 (6–57) | 9 (3–42) | |
IQR (Q1–Q3) | (22.00–40.0) | (5.00–14.0) | |
Kvb | <0.001 ** | ||
Median (Min–Max) | 67 (13–129) | 25 (7–102) | |
IQR (Q1–Q3) | (52.00–94.0) | (14.0–33.0) | |
MCCT | 460.67 ± 36.96 | 492.97 ± 34.54 | <0.001 * |
Mean ± SD | |||
CV | <0.001 ** | ||
Median (Min–Max) | 2.81 (0.29–5.86) | 0.88 (0.12–3.46) | |
IQR (Q1–Q3) | (2.22–3.81) | (0.51–1.34) | |
CylD | <0.001 ** | ||
Median (Min–Max) | −3.1 (−9.61–−0.23) | −1.28 (−4.98–−0.2) | |
IQR (Q1–Q3) | (−4.21–−1.63) | (−1.85–−0.69) | |
SimK1 | 45.38 ± 2.37 | 43.69 ± 2.07 | 0.001 * |
Mean ± SD | |||
SimK2 | 48.22 ± 2.83 | 45.26 ± 2.41 | <0.001 * |
Mean ± SD | |||
Hoa | <0.001 ** | ||
Median (Min–Max) | 1.39 (0.41–2.94) | 0.49 (0.15–2.41) | |
IQR (Q1–Q3) | (0.96–1.90) | (0.32–0.69) | |
Coma | <0.001 ** | ||
Median (Min–Max) | 1.18 (0.32–2.49) | 0.36 (0.04–1.75) | |
IQR (Q1–Q3) | (0.77–1.60) | (0.12–0.49) | |
Sa | <0.001 ** | ||
Median (Min–Max) | 0.18 (0–1.12) | 0.08 (0–1.04) | |
IQR (Q1–Q3) | (0.09–0.25) | (0.03–0.15) |
Variable | Control Group | Symmetric KC Group | p Value | |
---|---|---|---|---|
oaRI | Median (Min–Max) | 0.78 (0.64–0.89) | 0.78 (0.61–0.87) | 0.740 |
IQR (Q1–Q3) | (0.75–0.81) | (0.75–0.82) | ||
oaPI | Median (Min–Max) | 1.8 (1.02–3.14) | 2 (1.26–2.77) | 0.049 |
IQR (Q1–Q3) | (1.50–2.02) | (1.58–2.26) | ||
craRI | Mean ± SD | 0.72 ± 0.08 | 0.74 ± 0.07 | 0.120 |
craPI | Median (Min–Max) | 1.41 (0.74–2.74) | 1.6 (1.07–2.88) | 0.026 |
IQR (Q1–Q3) | (1.20–1.57) | (1.33–1.89) | ||
pcaRI | Median (Min–Max) | 0.72 (0.58–0.83) | 0.74 (0.56–1.00) | 0.308 |
IQR (Q1–Q3) | (0.67–0.76) | (0.68–0.78) | ||
pcaPI | Median (Min–Max) | 1.34 (0.91–2.41) | 1.48 (0.89–5.05) | 0.494 |
IQR (Q1–Q3) | (1.19–1.64) | (1.24–1.71) | ||
Kvf | Median (Min–Max) | 4 (1.5–7) | 25 (5.5–81.5) | <0.001 |
IQR (Q1–Q3) | (3.50–5.25) | (16.0–31.0) | ||
Kvb | Median (Min–Max) | 10 (6–16.5) | 59 (9–168) | <0.001 |
IQR (Q1–Q3) | (8.50–11.75) | (35.5–73.0) | ||
MCCT | Mean ± SD | 531.95 ± 29.36 | 459.96 ± 47.04 | <0.001 |
CV | Median (Min–Max) | 0.04 (0–0.37) | 2.46 (0–8.61) | <0.001 |
IQR (Q1–Q3) | (0.00–0.12) | (1.60–3.72) | ||
CylD | Median (Min–Max) | −0.64 (−1.38–−0.13) | −2.33 (−7.42–−0.40) | <0.001 |
IQR (Q1–Q3) | (−0.87–−0.39) | (−3.21–−1.73) | ||
SimK1 | Mean ± SD | 42.95 ± 1.53 | 44.72 ± 2.27 | <0.001 |
SimK2 | Mean ± SD | 43.76 ± 1.58 | 47.10 ± 2.63 | <0.001 |
hoa | Median (Min–Max) | 0.4 (0.21–0.64) | 1.04 (0.33–3.35) | <0.001 |
IQR (Q1–Q3) | (0.32–0.50) | (0.74–1.73) | ||
coma | Median (Min–Max) | 0.23 (0.06–0.53) | 0.86 (0.22–3.05) | <0.001 |
IQR (Q1–Q3) | (0.16–0.33) | (0.55–1.57) | ||
sa | Median (Min–Max) | 0.21 (0.07–12.04) | 0.17 (0.02–0.68) | 0.253 |
IQR (Q1–Q3) | (0.14–0.27) | (0.11–0.26) |
Variables | Control 1 | Symmetric 2 | Asymmetric with KC 3 | p Value | Post-HOC |
---|---|---|---|---|---|
oaRI | 0.78 | 0.78 | 0.77 | 0.980 ** | |
Median (Min-Max) | (0.64–0.89) | (0.61–0.87) | (0.54–0.96) | ||
IQR (Q1–Q3) | (0.75–0.81) | (0.75–0.82) | (0.72–0.85) | ||
oaPI | 1.8 | 2 | 1.79 | 0.039 ** | 1–2 |
Median (Min-Max) | (1.02–3.14) | (1.26–2.77) | (0.76–7.23) | ||
IQR (Q1–Q3) | (1.50–2.02) | (1.58–2.26) | (1.51–2.23) | ||
craRI | 0.72 ± 0.08 | 0.74 ± 0.07 | 0.74 ± 0.10 | 0.287 * | |
Mean ± SD | |||||
craPI | 1.41 | 1.6 | 1.48 | 0.096 ** | |
Median (Min-Max) | (0.74–2.74) | (1.07–2.88) | (0.55–2.56) | ||
IQR (Q1–Q3) | (1.20–1.57) | (1.33–1.89) | (1.13–1.87) | ||
pcaRI | 0.72 | 0.74 | 0.69 | 0.428 ** | |
Median (Min-Max) | (0.58–0.83) | (0.56–1) | (0.53–0.94) | ||
IQR (Q1–Q3) | (0.67–0.76) | (0.68–0.78) | (0.65–0.77) | ||
pcaPI | 1.34 | 1.48 | 1.24 | 0.355 ** | |
Median (Min-Max) | (0.91–2.41) | (0.89–5.05) | (0.52–2.87) | ||
IQR (Q1–Q3) | (1.19–1.64) | (1.24–1.71) | (1.14–1.73) | ||
Kvf | 4 | 25 | 28 | <0.001 ** | 1–2; 1–3 |
Median (Min-Max) | (1.5–7) | (5.5–81.5) | (6–57) | ||
IQR (Q1–Q3) | (3.50–5.25) | (16.0–31.0) | (22.0–40.0) | ||
Kvb | 10 | 59 | 67 | <0.001 ** | 1–2; 1–3 |
Median (Min-Max) | (6–16.5) | (9–168) | (13–129) | ||
IQR (Q1–Q3) | (8.50–11.75) | (35.5–73.0) | (52.0–94.0) | ||
MCCT | <0.001 * | 1–2; 1–3 | |||
Mean ± SD | 531.95 ± 29.36 | 459.96 ± 47.04 | 460.67 ± 36.96 | ||
Kmax | 0.04 | 2.46 | 2.81 | <0.001 ** | 1–2; 1–3 |
Median (Min-Max) | (0–0.37) | (0–8.61) | (0.29–5.86) | ||
IQR (Q1–Q3) | (0.0–0.12) | (1.60–3.72) | (2.22–3.81) | ||
CylD | −0.64 | −2.33 | −3.1 | <0.001 ** | 1–2; 1–3 |
Median (Min-Max) | (−1.38–−0.13) | (−7.42–−0.4) | (−9.61–−0.23) | ||
IQR (Q1–Q3) | (−0.87–−0.39) | (−3.21–−1.73) | (−4.21–−1.63) | ||
SimK1 | 42.95 ± 1.53 | 44.72 ± 2.27 | 45.38 ± 2.37 | <0.001 * | 1–2; 1–3 |
Mean ± SD | |||||
SimK2 | 43.76 ± 1.58 | 47.1 ± 2.63 | 48.22 ± 2.83 | <0.001 * | 1–2; 1–3 |
Mean ± SD | |||||
hoa | 0.4 | 1.04 | 1.39 | <0.001 ** | 1–2; 1–3 |
Median (Min-Max) | (0.21–0.64) | (0.33–3.35) | (0.41–2.94) | ||
IQR (Q1–Q3) | (0.32–0.50) | (0.74–1.73) | (0.96–1.90) | ||
coma | 0.23 | 0.86 | 1.18 | <0.001 ** | 1–2; 1–3 |
Median (Min-Max) | (0.06–0.53) | (0.22–3.05) | (0.32–2.49) | ||
IQR (Q1–Q3) | (0.16–0.33) | (0.55–1.57) | (0.77–1.60) | ||
sa | 0.21 | 0.17 | 0.18 | 0.491 ** | |
Median (Min-Max) | (0.07–12.04) | (0.02–0.68) | (0–1.12) | ||
IQR (Q1–Q3) | (0.14–0.27) | (0.11–0.26) | (0.09–0.25) |
Variables | Control 1 | Symmetric 2 | Asymmetric No KC 3 | p-Value | Post-HOC |
---|---|---|---|---|---|
oaRI | 0.78 | 0.78 | 0.74 | 0.030 ** | 1–3; 2–3 |
Median (Min–Max) | (0.64–0.89) | (0.61–0.87) | (0.6–9.6) | ||
IQR (Q1–Q3) | (0.71–0.82) | (0.66–0.82) | (0.66–1.02) | ||
oaPI | 1.8 | 2 | 1.62 | 0.028 ** | 2–3 |
Median (Min–Max) | (1.02–3.14) | (1.26–2.77) | (1.02–3.34) | ||
IQR (Q1–Q3) | (1.50–2.02) | (1.58–2.26) | (1.32–2.01) | ||
craRI | 0.72 ± 0.08 | 0.74 ± 0.07 | 0.74 ± 0.09 | 0.320 * | – |
(Mean ± SD) | |||||
craPI | 1.41 | 1.6 | 1.38 | 0.080 ** | – |
Median (Min–Max) | (0.74–2.74) | (1.07–2.88) | (0.68–2.73) | ||
IQR (Q1–Q3) | (1.20–1.57) | (1.33–1.89) | (1.14–1.93) | ||
pcaRI | 0.72 | 0.74 | 0.7 | 0.467 ** | – |
Median (Min–Max) | (0.58–0.83) | (0.56–1) | (0.52–6.4) | ||
IQR (Q1–Q3) | (0.67–0.76) | (0.68–0.78) | (0.65–0.76) | ||
pcaPI | 1.34 | 1.48 | 1.27 | 0.239 ** | – |
Median (Min–Max) | (0.91–2.41) | (0.89–5.05) | (0.75–2.55) | ||
IQR (Q1–Q3) | (1.19–1.64) | (1.24–1.71) | (1.13–1.60) | ||
Kvf | 4 | 25 | 9 | <0.001 ** | All |
Median (Min–Max) | (1.5–7) | (5.5–81.5) | (3–42) | ||
IQR (Q1–Q3) | (3.50–5.25) | (16.0–31.0) | (5.0–14.0) | ||
Kvb | 10 | 59 | 25 | <0.001 ** | All |
Median (Min–Max) | (6–16.5) | (9–168) | (7–102) | ||
IQR (Q1–Q3) | (8.50–11.75) | (35.5–73.0) | (14.0–33.0) | ||
MCCT | 531.95 ± 29.36 | 459.96 ± 47.04 | 492.97 ± 34.54 | <0.001 * | All |
(Mean ± SD) | |||||
CV | 0.04 | 2.46 | 0.88 | <0.001 ** | All |
Median (Min–Max) | (0–0.37) | (0–8.61) | (0.12–3.46) | ||
IQR (Q1–Q3) | (0.00–0.12) | (1.60–3.72) | (0.51–1.34) | ||
CylD | −0.64 | −2.33 | −1.28 | <0.001 ** | All |
Median (Min–Max) | (–1.38–−0.13) | (–7.42–−0.4) | (–4.98–−0.2) | ||
IQR (Q1–Q3) | (–0.87–−0.39) | (–3.21–−1.73) | (–1.85–−0.69) | ||
SimK1 | 42.95 ± 1.53 | 44.72 ± 2.27 | 43.69 ± 2.07 | <0.001 * | 1–2 |
(Mean ± SD) | |||||
SimK2 | 43.76 ± 1.58 | 47.1 ± 2.63 | 45.26 ± 2.41 | <0.001 * | All |
(Mean ± SD) | |||||
hoa | 0.4 | 1.04 | 0.49 | <0.001 ** | 1–2; 2–3 |
Median (Min–Max) | (0.21–0.64) | (0.33–3.35) | (0.15–2.41) | ||
IQR (Q1–Q3) | (0.32–0.50) | (0.74–1.73) | (0.32–0.69) | ||
Coma | 0.23 | 0.86 | 0.36 | <0.001 ** | 1–2; 2–3 |
Median (Min–Max) | (0.06–0.53) | (0.22–3.05) | (0.04–1.75) | ||
IQR (Q1–Q3) | (0.16–0.33) | (0.55–1.57) | (0.12–0.49) | ||
sa | 0.21 | 0.17 | 0.08 | <0.001 ** | 1–3; 2–3 |
Median (Min–Max) | (0.07–12.04) | (0.02–0.68) | (0–1.04) | ||
IQR (Q1–Q3) | (0.14–0.27) | (0.11–0.26) | (0.03–0.15) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kısa, F.H.; Findik, H.; Uzun, F.; Kaim, M.; Solak, M.; Aslan, M.G. Comparative Analysis of Retrobulbar Blood Flow in Symmetric and Asymmetric Keratoconus Patients. J. Clin. Med. 2025, 14, 5717. https://doi.org/10.3390/jcm14165717
Kısa FH, Findik H, Uzun F, Kaim M, Solak M, Aslan MG. Comparative Analysis of Retrobulbar Blood Flow in Symmetric and Asymmetric Keratoconus Patients. Journal of Clinical Medicine. 2025; 14(16):5717. https://doi.org/10.3390/jcm14165717
Chicago/Turabian StyleKısa, Fatma Huriye, Hüseyin Findik, Feyzahan Uzun, Muhammet Kaim, Merve Solak, and Mehmet Gökhan Aslan. 2025. "Comparative Analysis of Retrobulbar Blood Flow in Symmetric and Asymmetric Keratoconus Patients" Journal of Clinical Medicine 14, no. 16: 5717. https://doi.org/10.3390/jcm14165717
APA StyleKısa, F. H., Findik, H., Uzun, F., Kaim, M., Solak, M., & Aslan, M. G. (2025). Comparative Analysis of Retrobulbar Blood Flow in Symmetric and Asymmetric Keratoconus Patients. Journal of Clinical Medicine, 14(16), 5717. https://doi.org/10.3390/jcm14165717