Medication Adherence in the Real World: Lessons from the Diuretic Comparison Project
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Adherence Data
2.3. Medication Adherence Assessment
2.4. Patient Characteristics
2.5. Other Follow-Up Measures
2.6. Statistical Analysis
3. Results
3.1. Patient Characteristics and Adherence
3.2. Follow-Up Measures of Interest
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AHT | Antihypertensive therapy |
BP | Blood pressure |
CTD | Chlorthalidone |
CV | Cardiovascular |
DCP | Diuretic comparison project |
eGFR | Estimated glomerular filtration rate |
EHR | Electronic health record |
HCTZ | Hydrochlorothiazide |
HF | Heart failure |
MACE | Major adverse cardiovascular event |
MI | Myocardial infarction |
MPR | Medication possession ratio |
PCC | Primary care clinician |
PCT | Pragmatic clinical trial |
RCT | Randomized control trial |
SBP | Systolic blood pressure |
SGLT2i | Sodium–glucose cotransport protein 2 inhibitors |
VA | Veterans Affairs |
References
- Al-Noumani, H.; Al-Harrasi, M.; Jose, J.; Al-Naamani, Z.; Panchatcharam, S.M. Medication Adherence and Patients’ Characteristics in Chronic Diseases: A National Multi-Center Study. Clin. Nurs. Res. 2022, 31, 426–434. [Google Scholar] [CrossRef]
- Ho, P.M.; Bryson, C.L.; Rumsfeld, J.S. Medication adherence: Its importance in cardiovascular outcomes. Circulation 2009, 119, 3028–3035. [Google Scholar] [CrossRef] [PubMed]
- Anandita Kulkarni, M.; Mehta, A.; Yang, E.; Parapid, B. Older Adults and Hypertension: Beyond the 2017 Guideline for Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults. 2020. Available online: https://www.acc.org/Latest-in-Cardiology/Articles/2020/02/26/06/24/Older-Adults-and-Hypertension (accessed on 20 September 2023).
- Fuchs, F.D.; Whelton, P.K. High Blood Pressure and Cardiovascular Disease. Hypertension 2020, 75, 285–292. [Google Scholar] [CrossRef]
- Rahimi, K.; Bidel, Z.; Nazarzadeh, M.; Copland, E.; Canoy, D.; Ramakrishnan, R.; Pinho-Gomes, A.-C.; Woodward, M.; Adler, A.; Agodoa, L.; et al. Pharmacological blood pressure lowering for primary and secondary prevention of cardiovascular disease across different levels of blood pressure: An individual participant-level data meta-analysis. Lancet 2021, 397, 1625–1636. [Google Scholar] [CrossRef] [PubMed]
- Poulter, N.R.; Borghi, C.; Parati, G.; Pathak, A.; Toli, D.; Williams, B.; Schmieder, R.E. Medication adherence in hypertension. J. Hypertens. 2020, 38, 579–587. [Google Scholar] [CrossRef]
- Krousel-Wood, M.; Craig, L.S.; Peacock, E.; Zlotnick, E.; O’Connell, S.; Bradford, D.; Shi, L.; Petty, R. Medication Adherence: Expanding the Conceptual Framework. Am. J. Hypertens. 2021, 34, 895–909. [Google Scholar] [CrossRef]
- Choudhry, N.K.; Kronish, I.M.; Vongpatanasin, W.; Ferdinand, K.C.; Pavlik, V.N.; Egan, B.M.; Schoenthaler, A.; Houston Miller, N.; Hyman, D.J. Medication Adherence and Blood Pressure Control: A Scientific Statement from the American Heart Association. Hypertension 2022, 79, e1–e14. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Liu, K.; Or, C.; Chen, J.; Yan, M.; Wang, H. An examination of the socio-demographic correlates of patient adherence to self-management behaviors and the mediating roles of health attitudes and self-efficacy among patients with coexisting type 2 diabetes and hypertension. BMC Public Health 2020, 20, 1227. [Google Scholar] [CrossRef]
- Murali, K.M.; Mullan, J.; Chen, J.H.; Roodenrys, S.; Lonergan, M. Medication adherence in randomized controlled trials evaluating cardiovascular or mortality outcomes in dialysis patients: A systematic review. BMC Nephrol. 2017, 18, 42. [Google Scholar] [CrossRef]
- Rolnick, S.J.; Pawloski, P.A.; Hedblom, B.D.; Asche, S.E.; Bruzek, R.J. Patient characteristics associated with medication adherence. Clin. Med. Res. 2013, 11, 54–65. [Google Scholar] [CrossRef]
- Apter, A.J. Understanding adherence requires pragmatic trials: Lessons from pediatric asthma. JAMA Pediatr. 2015, 169, 310–311. [Google Scholar] [CrossRef]
- Dal-Ré, R.; Janiaud, P.; Ioannidis, J.P.A. Real-world evidence: How pragmatic are randomized controlled trials labeled as pragmatic? BMC Med. 2018, 16, 49. [Google Scholar] [CrossRef]
- Ishani, A.; Leatherman, S.M.; Woods, P.; Hau, C.; Klint, A.; Lew, R.A.; Taylor, A.A.; Glassman, P.A.; Brophy, M.T.; Fiore, L.D.; et al. Design of a pragmatic clinical trial embedded in the Electronic Health Record: The VA’s Diuretic Comparison Project. Contemp. Clin. Trials 2022, 116, 106754. [Google Scholar] [CrossRef] [PubMed]
- Ishani, A.; Cushman, W.C.; Leatherman, S.M.; Lew, R.A.; Woods, P.; Glassman, P.A.; Taylor, A.A.; Hau, C.; Klint, A.; Huang, G.D. Chlorthalidone vs. Hydrochlorothiazide for Hypertension–Cardiovascular Events. N. Engl. J. Med. 2022, 387, 2401–2410. [Google Scholar] [CrossRef]
- Lederle, F.A.; Cushman, W.C.; Ferguson, R.E.; Brophy, M.T.; Fiore Md, L.D. Chlorthalidone Versus Hydrochlorothiazide: A New Kind of Veterans Affairs Cooperative Study. Ann. Intern. Med. 2016, 165, 663–664. [Google Scholar] [CrossRef]
- Hau, C.; Efird, J.T.; Leatherman, S.M.; Soloviev, O.V.; Glassman, P.A.; Woods, P.A.; Ishani, A.; Cushman, W.C.; Ferguson, R.E. A Centralized EHR-Based Model for the Recruitment of Rural and Lower Socioeconomic Participants in Pragmatic Trials: A Secondary Analysis of the Diuretic Comparison Project. JAMA Netw. Open 2023, 6, e2332049. [Google Scholar] [CrossRef]
- Hau, C.; Woods, P.A.; Guski, A.S.; Raju, S.I.; Zhu, L.; Alba, P.R.; Cushman, W.C.; Glassman, P.A.; Ishani, A.; Taylor, A.A.; et al. Strategies for secondary use of real-world clinical and administrative data for outcome ascertainment in pragmatic clinical trials. J. Biomed. Inform. 2024, 150, 104587. [Google Scholar] [CrossRef]
- Noël, P.H.; Copeland, L.A.; Perrin, R.A.; Lancaster, A.E.; Pugh, M.J.; Wang, C.P.; Bollinger, M.J.; Hazuda, H.P. VHA Corporate Data Warehouse height and weight data: Opportunities and challenges for health services research. J. Rehabil. Res. Dev. 2010, 47, 739–750. [Google Scholar] [CrossRef]
- Dhond, R.; Elbers, D.; Majahalme, N.; Dipietro, S.; Goryachev, S.; Acher, R.; Leatherman, S.; Anglin-Foote, T.; Liu, Q.; Su, S.; et al. ProjectFlow: A configurable workflow management application for point of care research. JAMIA Open 2021, 4, ooab074. [Google Scholar] [CrossRef] [PubMed]
- Canfield, S.L.; Zuckerman, A.; Anguiano, R.H.; Jolly, J.A.; DeClercq, J.; Wascher, M.; Choi, L.; Knox, S.; Mitchell, D.G. Navigating the Wild West of Medication Adherence Reporting in Specialty Pharmacy. J. Manag. Care Spec. Pharm. 2019, 25, 1073–1077. [Google Scholar] [CrossRef]
- Halpern, M.T.; Khan, Z.M.; Schmier, J.K.; Burnier, M.; Caro, J.J.; Cramer, J.; Daley, W.L.; Gurwitz, J.; Hollenberg, N.K. Recommendations for evaluating compliance and persistence with hypertension therapy using retrospective data. Hypertension 2006, 47, 1039–1048. [Google Scholar] [CrossRef]
- Tang, K.L.; Quan, H.; Rabi, D.M. Measuring medication adherence in patients with incident hypertension: A retrospective cohort study. BMC Health Serv. Res. 2017, 17, 135. [Google Scholar] [CrossRef]
- West, A.N.; Lee, R.E.; Shambaugh-Miller, M.D.; Bair, B.D.; Mueller, K.J.; Lilly, R.S.; Kaboli, P.J.; Hawthorne, K. Defining “rural” for veterans’ health care planning. J. Rural Health 2010, 26, 301–309. [Google Scholar] [CrossRef]
- Song, R.J.; Ho, Y.L.; Nguyen, X.M.T.; Honerlaw, J.; Quaden, R.; Gaziano, J.M.; Concato, J.; Cho, K.; Gagnon, D.R.; Million Veteran Program Data Analytics Group. Abstract 18809: Development of an Electronic Health Record-Based Algorithm for Smoking Status Using the Million Veteran Program (MVP) Cohort Survey Response. Circulation 2016, 134, A18809. [Google Scholar]
- Lee, S.; Jiang, L.; Dowdy, D.; Hong, Y.A.; Ory, M.G. Attitudes, Beliefs, and Cost-Related Medication Nonadherence Among Adults Aged 65 or Older with Chronic Diseases. Prev. Chronic Dis. 2018, 15, E148. [Google Scholar] [CrossRef]
- Whittle, J.; Yamal, J.M.; Williamson, J.D.; Ford, C.E.; Probstfield, J.L.; Beard, B.L.; Marginean, H.; Hamilton, B.P.; Suhan, P.S.; Davis, B.R. Clinical and demographic correlates of medication and visit adherence in a large randomized controlled trial. BMC Health Serv. Res. 2016, 16, 236. [Google Scholar] [CrossRef]
- Nelson, M.R.; Reid, C.M.; Ryan, P.; Willson, K.; Yelland, L. Self-reported adherence with medication and cardiovascular disease outcomes in the Second Australian National Blood Pressure Study (ANBP2). Med. J. Aust. 2006, 185, 487–489. [Google Scholar] [CrossRef]
- Chang, T.E.; Ritchey, M.D.; Park, S.; Chang, A.; Odom, E.C.; Durthaler, J.; Jackson, S.L.; Loustalot, F. National Rates of Nonadherence to Antihypertensive Medications Among Insured Adults with Hypertension, 2015. Hypertension 2019, 74, 1324–1332. [Google Scholar] [CrossRef] [PubMed]
- Baryakova, T.H.; Pogostin, B.H.; Langer, R.; McHugh, K.J. Overcoming barriers to patient adherence: The case for developing innovative drug delivery systems. Nat. Rev. Drug Discov. 2023, 22, 387–409. [Google Scholar] [CrossRef] [PubMed]
- National Research Council (US) Panel on Race, Ethnicity, and Health in Later Life. The National Academies Collection: Reports funded by National Institutes of Health. In Critical Perspectives on Racial and Ethnic Differences in Health in Late Life; Anderson, N.B., Bulatao, R.A., Cohen, B., Eds.; National Academy of Sciences: Washington, DC, USA, 2004. [Google Scholar]
- American Psychological Association. Ethnic and Racial Minorities & Socioeconomic Status. 2017. Available online: https://www.apa.org/pi/ses/resources/publications/minorities (accessed on 12 October 2023).
- Siegel, D.; Lopez, J.; Meier, J. Antihypertensive medication adherence in the Department of Veterans Affairs. Am. J. Med. 2007, 120, 26–32. [Google Scholar] [CrossRef]
- Ferdinand, K.C.; Yadav, K.; Nasser, S.A.; Clayton-Jeter, H.D.; Lewin, J.; Cryer, D.R.; Senatore, F.F. Disparities in hypertension and cardiovascular disease in blacks: The critical role of medication adherence. J. Clin. Hypertens. 2017, 19, 1015–1024. [Google Scholar] [CrossRef]
- Pallangyo, P.; Millinga, J.; Bhalia, S.; Mkojera, Z.; Misidai, N.; Swai, H.J.; Hemed, N.R.; Kaijage, A.; Janabi, M. Medication adherence and survival among hospitalized heart failure patients in a tertiary hospital in Tanzania: A prospective cohort study. BMC Res. Notes 2020, 13, 89. [Google Scholar] [CrossRef]
- Pietrzykowski, Ł.; Michalski, P.; Kosobucka, A.; Kasprzak, M.; Fabiszak, T.; Stolarek, W.; Siller-Matula, J.M.; Kubica, A. Medication adherence and its determinants in patients after myocardial infarction. Sci. Rep. 2020, 10, 12028. [Google Scholar] [CrossRef] [PubMed]
- Natarajan, N.; Putnam, W.; Van Aarsen, K.; Beverley Lawson, K.; Burge, F. Adherence to antihypertensive medications among family practice patients with diabetes mellitus and hypertension. Can. Fam. Physician 2013, 59, e93–e100. [Google Scholar]
- Burnier, M.; Pruijm, M.; Wuerzner, G.; Santschi, V. Drug adherence in chronic kidney diseases and dialysis. Nephrol. Dial. Transplant. 2015, 30, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Burnier, M.; Egan, B.M. Adherence in Hypertension. Circ. Res. 2019, 124, 1124–1140. [Google Scholar] [CrossRef]
- Bailey, J.E.; Wan, J.Y.; Tang, J.; Ghani, M.A.; Cushman, W.C. Antihypertensive medication adherence, ambulatory visits, and risk of stroke and death. J. Gen. Intern. Med. 2010, 25, 495–503. [Google Scholar] [CrossRef]
- Pittman, D.G.; Tao, Z.; Chen, W.; Stettin, G.D. Antihypertensive medication adherence and subsequent healthcare utilization and costs. Am. J. Manag. Care 2010, 16, 568–576. [Google Scholar]
- Kini, V.; Ho, P.M. Interventions to Improve Medication Adherence: A Review. JAMA 2018, 320, 2461–2473. [Google Scholar] [CrossRef] [PubMed]
- Gackowski, M.; Jasińska-Stroschein, M.; Osmałek, T.; Waszyk-Nowaczyk, M. Innovative Approaches to Enhance and Measure Medication Adherence in Chronic Disease Management: A Review. Med. Sci. Monit. 2024, 30, e944605. [Google Scholar] [CrossRef] [PubMed]
Parameter | Category | Total Randomized | Adherence | 6656 Randomized with ≥2.4 yrs of Follow-Up | Adherence | ||||
---|---|---|---|---|---|---|---|---|---|
N | % of N | MPR% (IQR) | p | n | % of n | MPR% (IQR) | p | ||
Age | <72 | 6751 | 49.9 | 94.8 (72.6–101.8) | 0.108 | 3774 | 56.7 | 92.7 (66.3–100.1) | 0.449 |
≥72 | 6772 | 50.1 | 95.1 (72.5–102.1) | 2882 | 43.3 | 92.4 (62.7–100.2) | |||
Sex | Female | 431 | 3.2 | 95.7 (71.0–103.0) | 0.109 | 168 | 2.5 | 93.5 (67.6–64.5) | 0.396 |
Male | 13,092 | 96.8 | 95.0 (72.6–101.9) | 6488 | 97.5 | 92.6 (64.5–100.1) | |||
Race | Other 1 | 324 | 2.4 | 92.7 (69.0–100.6) | 180 | 2.7 | 90.3 (68.0–99.0) | ||
Black 2 | 2027 | 15.0 | 89.8 (64.2–100.6) | <0.001 * | 1039 | 15.6 | 87.8 (57.8–99.0) | <0.001 * | |
White | 10,454 | 77.3 | 95.7 (75.0–102.1) | 5107 | 76.7 | 93.4 (66.5–100.4) | |||
Unknown | 718 | 5.3 | 94.4 (72.3–101.7) | 330 | 5.0 | 92.2 (64.8–99.6) | |||
Ethnicity | Not Hispanic/Latino | 12,549 | 92.8 | 95.1 (72.8–101.9) | 0.072 | 6191 | 93.0 | 92.7 (64.5–100.2) | 0.496 |
Hispanic/Latino | 494 | 3.7 | 91.6 (67.6–101.6) | 231 | 3.5 | 90.8 (66.1–99.9) | |||
Unknown | 480 | 3.6 | 95.3 (70.6–102.0) | 234 | 3.5 | 92.0 (63.9–100.0) | |||
Marital status | Married | 8560 | 63.3 | 95.7 (75.6–102.2) | <0.001 * | 4170 | 62.7 | 93.6 (68.1–100.4) | <0.001 * |
Separated 3 | 4026 | 29.8 | 93.1 (67.4–101.3) | 2017 | 30.3 | 90.1 (59.8–99.5) | |||
Single | 850 | 6.3 | 94.4 (69.9–101.7) | 430 | 6.5 | 93.1 (62.7–100.6) | |||
Unknown | 87 | 0.6 | 91.7 (65.6–103.6) | 39 | 0.6 | 91.9 (52.9–102.5) | |||
Residency | Urban | 7375 | 54.5 | 93.8 (69.3–101.8) | <0.001 * | 3720 | 55.9 | 91.1 (61.5–100.0) | <0.001 * |
Rural | 6122 | 45.3 | 95.9 (76.7–102.1) | 2923 | 43.9 | 94.3 (69.7–100.4) | |||
Unknown | 26 | 0.2 | 89.6 (69.2–97.4) | 13 | 0.2 | 89.6 (49.5–96.7) | |||
Baseline smoking status | Never | 3486 | 25.8 | 94.7 (73.8–101.8) | <0.001 * | 1716 | 25.8 | 92.5 (66.1–100.0) | <0.001 * |
Former | 5840 | 43.2 | 95.7 (74.6–102.0) | 3052 | 45.9 | 93.6 (67.3–100.4) | |||
Current | 2957 | 21.9 | 93.2 (67.8–101.4) | 1432 | 21.5 | 89.8 (60.8–99.8) | |||
Unknown | 1240 | 9.2 | 95.3 (74.2–102.8) | 456 | 6.9 | 92.5 (57.6–100.0) | |||
History of MI | No | 13,035 | 96.4 | 95.0 (72.8–101.9) | 0.692 | 6444 | 96.8 | 92.7 (65.1–100.2) | 0.017 * |
Yes | 488 | 3.6 | 93.6 (65.5–103.3) | 212 | 3.2 | 86.3 (49.0–99.1) | |||
History of stroke | No | 12,494 | 92.4 | 95.1 (73.1–101.9) | 0.034 * | 6147 | 92.4 | 92.7 (65.6–100.2) | 0.039 * |
Yes | 1029 | 7.6 | 93.4 (64.6–101.9) | 509 | 7.7 | 90.3 (55.8–99.9) | |||
History of heart failure | No | 12,472 | 92.3 | 95.1 (73.4–101.9) | 0.003 * | 6184 | 92.9 | 92.8 (65.6–100.2) | 0.001 * |
Yes | 1051 | 7.8 | 92.7 (62.6–102.1) | 472 | 7.1 | 87.3 (52.7–99.3) | |||
History of diabetes | No | 7494 | 55.4 | 94.9 (72.9–101.6) | 0.249 | 3733 | 56.1 | 92.7 (64.6–99.9) | 0.441 |
Yes | 6029 | 44.6 | 95.1 (72.2–102.2) | 2923 | 43.9 | 92.4 (64.2–100.4) | |||
Baseline eGFR | Stage 1–2 | 9038 | 66.8 | 95.7 (76.5–101.9) | <0.001 * | 4742 | 71.2 | 93.8 (69.5–100.3) | <0.001 * |
Stage 3a | 2234 | 16.5 | 93.6 (68.3–102.1) | 1012 | 15.2 | 89.1 (59.9–100.1) | |||
Stage 3b | 710 | 5.3 | 91.7 (58.1–101.0) | 320 | 4.8 | 86.7 (48.1–98.2) | |||
Stage 4–5 | 283 | 2.1 | 91.2 (54.6–101.6) | 141 | 2.1 | 83.2 (46.7–98.9) | |||
Unknown | 1258 | 9.3 | 93.0 (63.7–101.9) | 441 | 6.6 | 90.1 (55.7–99.7) | |||
Baseline SBP | <136 | 6449 | 47.7 | 95.4 (75.1–102.1) | 0.006 * | 3139 | 47.2 | 93.2 (67.6–100.2) | 0.056 |
≥136 | 7074 | 52.3 | 94.5 (70.7–101.9) | 3517 | 52.8 | 91.9 (62.5–100.1) | |||
Antihypertensive prescription | <3 | 6391 | 47.3 | 94.3 (71.3–101.3) | <0.001 * | 3205 | 48.2 | 92.3 (64.3–99.7) | 0.069 |
≥3 | 7132 | 52.7 | 95.6 (74.0–102.4) | 3451 | 51.9 | 92.9 (64.7–100.5) |
Year 1 | Year 2 | Year 3 | Year 4 | Year 5 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Adherent N = 9501 | Non-Adherent N = 4022 | Adherent N = 8288 | Non-Adherent N = 3632 | Adherent N = 5128 | Non-Adherent N = 2586 | Adherent N = 2898 | Non-Adherent N = 1633 | Adherent N = 747 | Non-Adherent N = 456 | |
No. (%) patients with SBP measure | 8674 (91.3) | 3710 (92.2) | 6583 (79.4) | 2902 (79.9) | 4311 (84.1) | 2111 (81.6) | 2047 (70.6) | 1151 (70.5) | 542 (72.6) | 318 (69.7) |
Mean (SD) no. of SBP records | 5.2 (5.0) | 6.6 (6.7) | 4.5 (4.6) | 6.0 (7.0) | 4.7 (5.2) | 6.5 (9.2) | 4.3 (5.0) | 5.7 (7.5) | 3.8 (3.8) | 6.1 (16.8) |
Mean (SD) SBP measure | 138.4 (13.2) | 140.3 (14.7) | 138.8 (13.8) | 140.9 (15.8) | 139.0 (14.4) | 141.8 (16.0) | 139.3 (15.0) | 142.4 (17.2) | 139.1 (15.1) | 140.2 (15.9) |
No. (%) patients who had hospitalizations | 946 (10.0) | 903 (22.5) | 738 (8.9) | 743 (20.5) | 478 (9.3) | 482 (18.6) | 188 (6.5) | 205 (12.6) | 47 (6.3) | 53 (11.6) |
Mean (SD) no. of hospitalizations | 1.4 (0.9) | 2.0 (1.5) | 1.5 (1.0) | 2.0 (1.6) | 1.4 (1.0) | 1.9 (1.6) | 1.4 (0.7) | 1.7 (1.3) | 1.5 (0.8) | 1.9 (1.9) |
No. (%) patients had major CV events | 117 (1.2) | 236 (5.9) | 96 (1.2) | 238 (6.6) | 75 (1.5) | 132 (5.1) | 31 (1.1) | 48 (2.9) | 5 (0.7) | 15 (3.3) |
Mean (SD) no. of major CV events | 1.3 (0.8) | 1.5 (1.0) | 1.4 (0.9) | 1.6 (1.0) | 1.3 (0.9) | 1.5 (1.2) | 1.1 (0.3) | 1.5 (1.1) | 1.8 (0.8) | 1.2 (0.4) |
No. (%) deceased patients | 181 (1.9) | 93 (2.3) | 167 (2.0) | 105 (2.9) | 114 (2.2) | 108 (4.2) | 49 (1.7) | 52 (3.2) | 10 (1.3) | 13 (2.9) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hynes, C.A.; Hau, C.; Woods, P.; Leatherman, S.; Anand, S.T.; Glassman, P.; Taylor, A.; Cushman, W.C.; Ishani, A.; Ferguson, R. Medication Adherence in the Real World: Lessons from the Diuretic Comparison Project. J. Clin. Med. 2025, 14, 5695. https://doi.org/10.3390/jcm14165695
Hynes CA, Hau C, Woods P, Leatherman S, Anand ST, Glassman P, Taylor A, Cushman WC, Ishani A, Ferguson R. Medication Adherence in the Real World: Lessons from the Diuretic Comparison Project. Journal of Clinical Medicine. 2025; 14(16):5695. https://doi.org/10.3390/jcm14165695
Chicago/Turabian StyleHynes, Colleen A., Cynthia Hau, Patricia Woods, Sarah Leatherman, Sonia T. Anand, Peter Glassman, Addison Taylor, William C. Cushman, Areef Ishani, and Ryan Ferguson. 2025. "Medication Adherence in the Real World: Lessons from the Diuretic Comparison Project" Journal of Clinical Medicine 14, no. 16: 5695. https://doi.org/10.3390/jcm14165695
APA StyleHynes, C. A., Hau, C., Woods, P., Leatherman, S., Anand, S. T., Glassman, P., Taylor, A., Cushman, W. C., Ishani, A., & Ferguson, R. (2025). Medication Adherence in the Real World: Lessons from the Diuretic Comparison Project. Journal of Clinical Medicine, 14(16), 5695. https://doi.org/10.3390/jcm14165695