SGLT2 Inhibitors and GLP-1 Receptor Agonists in PAD: A State-of-the-Art Review
Abstract
1. Introduction
2. Literature Search Strategy
3. Antidiabetic Medications in PAD: Current Guidelines
4. SGLT2is in PAD
4.1. Overview of SGLT2is
4.2. Potential Mechanisms Underlying the Vascular Protective Effects of SGLT2is
4.3. Potential Risks to Lower Limb Health with SGLT2is
4.4. SGLT2is and PAD: Insights from Clinical Trials and Real-World Evidence
4.4.1. Clinical Trials
4.4.2. Real-World Evidence
5. GLP1-RAs and PAD
5.1. Potential Mechanisms Underlying the Vascular Protective Effects of GLP-1 RAs
5.2. GLP-1 RAs and PAD: Insights from Clinical Trials and Real-World Evidence
5.2.1. Evidence from Randomized Controlled Trials (RCTs)
5.2.2. Insights from Real-World Evidence
5.2.3. Current Limitations
6. Discussion
7. Conclusions
8. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hinchliffe, R.J.; Forsythe, R.O.; Apelqvist, J.; Boyko, E.J.; Fitridge, R.; Hong, J.P.; Katsanos, K.; Mills, J.L.; Nikol, S.; Reekers, J.; et al. Guidelines on diagnosis, prognosis, and management of peripheral artery disease in patients with foot ulcers and diabetes (IWGDF 2019 update). Diabetes Metab. Res. Rev. 2020, 36 (Suppl. S1), e3276. [Google Scholar] [CrossRef]
- Boccatonda, A.; D’Ardes, D.; Moronti, V.; Santilli, J.; Cipollone, A.; Lessiani, G.; Di Gregorio, N.; Serra, C.; Piscaglia, F.; Ferri, C.; et al. From MASLD to PAD: Looking for Cardiovascular Disease Starting from Metabolic Status. Medicina 2024, 60, 1781. [Google Scholar] [CrossRef]
- Younes, A.M.; Salem, M.; Maraey, A.; Nomigolzar, S.; Sewell, K.; Khalil, M.; Elzanaty, A.; Saeyeldin, A.; Dar, M. Safety outcomes of SGLT2i in the heart failure trials: A systematic review and Meta-analysis. Int. J. Cardiol. 2022, 366, 51–56. [Google Scholar] [CrossRef]
- Yan, Y.; Liu, B.; Du, J.; Wang, J.; Jing, X.; Liu, Y.; Deng, S.; Du, J.; She, Q. SGLT2i versus ARNI in heart failure with reduced ejection fraction: A systematic review and meta-analysis. ESC Heart Fail. 2021, 8, 2210–2219. [Google Scholar] [CrossRef]
- Kocabas, U.; Ergin, I.; Yavuz, V.; Altın, C.; Kaplan, M.; Öztekin, G.M.Y.; Doğduş, M.; Murat, S.; Murat, B.; Kıvrak, T.; et al. Real-world data on Empagliflozin and Dapagliflozin use in patients with HEART failure: The RED-HEART study. ESC Heart Fail. 2025, 12, 434–446. [Google Scholar] [CrossRef]
- D’Ardes, D.; Ricci, F.; Simeone, P.; Boccatonda, A.; Santilli, F. Addressing unmet needs in the use of SGLT2 inhibitors in critical and acute care setting. Eur. J. Intern. Med. 2025, online ahead of print. [Google Scholar] [CrossRef]
- Ricci, F.; Saraullo, S.; Boccatonda, A.; Sorella, A.; Cipollone, A.; Simeone, P.; Gallina, S.; Santilli, F.; Cipollone, F.; D’aRdes, D. Early prescription of SGLT2i for acute patient care: From current evidence to future directions. Curr. Probl. Cardiol. 2025, 50, 103081. [Google Scholar] [CrossRef]
- Neal, B.; Perkovic, V.; Mahaffey, K.W.; de Zeeuw, D.; Fulcher, G.; Erondu, N.; Shaw, W.; Law, G.; Desai, M.; Matthews, D.R.; et al. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N. Engl. J. Med. 2017, 377, 644–657. [Google Scholar] [CrossRef]
- Mazzolai, L.; Teixido-Tura, G.; Lanzi, S.; Boc, V.; Bossone, E.; Brodmann, M.; Bura-Rivière, A.; De Backer, J.; Deglise, S.; Della Corte, A.; et al. 2024 ESC Guidelines for the management of peripheral arterial and aortic diseases. Eur. Heart J. 2024, 45, 3538–3700. [Google Scholar] [CrossRef]
- Gornik, H.L.; Aronow, H.D.; Goodney, P.P.; Arya, S.; Brewster, L.P.; Byrd, L.; Chandra, V.; Drachman, D.E.; Eaves, J.M.; Ehrman, J.K.; et al. 2024 ACC/AHA/AACVPR/APMA/ABC/SCAI/SVM/SVN/SVS/SIR/VESS Guideline for the Management of Lower Extremity Peripheral Artery Disease: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2024, 149, e1313–e1410. [Google Scholar] [CrossRef]
- Fitridge, R.; Chuter, V.; Mills, J.; Hinchliffe, R.; Azuma, N.; Behrendt, C.; Boyko, E.J.; Conte, M.S.; Humphries, M.; Kirksey, L.; et al. The intersocietal IWGDF, ESVS, SVS guidelines on peripheral artery disease in people with diabetes and a foot ulcer. Diabetes Metab. Res. Rev. 2024, 40, e3686. [Google Scholar] [CrossRef] [PubMed]
- Simes, B.C.; MacGregor, G.G. Sodium-Glucose Cotransporter-2 (SGLT2) Inhibitors: A Clinician’s Guide. Diabetes Metab. Syndr. Obes. 2019, 12, 2125–2136. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Kumar, B.; Ashique, S.; Yasmin, S.; Venkatesan, K.; Islam, A.; Ghosh, S.; Sahu, A.; Bhui, U.; Ansari, M.Y. A critical review on SGLT2 inhibitors for diabetes mellitus, renal health, and cardiovascular conditions. Diabetes Res. Clin. Pr. 2025, 221, 112050. [Google Scholar] [CrossRef] [PubMed]
- Masuda, T.; Muto, S.; Fukuda, K.; Watanabe, M.; Ohara, K.; Koepsell, H.; Vallon, V.; Nagata, D. Osmotic diuresis by SGLT2 inhibition stimulates vasopressin-induced water reabsorption to maintain body fluid volume. Physiol. Rep. 2020, 8, e14360. [Google Scholar] [CrossRef]
- Gajewska, A.; Wasiak, J.; Sapeda, N.; Młynarska, E.; Rysz, J.; Franczyk, B. SGLT2 Inhibitors in Kidney Diseases-A Narrative Review. Int. J. Mol. Sci. 2024, 25, 4959. [Google Scholar] [CrossRef]
- Nevola, R.; Alfano, M.; Pafundi, P.C.; Brin, C.; Gragnano, F.; Calabrò, P.; Adinolfi, L.E.; Rinaldi, L.; Sasso, F.C.; Caturano, A. Cardiorenal Impact of SGLT-2 Inhibitors: A Conceptual Revolution in The Management of Type 2 Diabetes, Heart Failure and Chronic Kidney Disease. Rev. Cardiovasc. Med. 2022, 23, 106. [Google Scholar] [CrossRef]
- Skeik, N.; Elejla, S.A.; Sethi, A.; Manunga, J.; Mirza, A. Effects of SGLT2 inhibitors and GLP1-receptor agonists on cardiovascular and limb events in peripheral artery disease: A review. Vasc. Med. 2023, 28, 62–76. [Google Scholar] [CrossRef]
- Wei, R.; Wang, W.; Pan, Q.; Guo, L. Effects of SGLT-2 Inhibitors on Vascular Endothelial Function and Arterial Stiffness in Subjects with Type 2 Diabetes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Front. Endocrinol. 2022, 13, 826604. [Google Scholar] [CrossRef]
- Boccatonda, A.; Del Cane, L.; Marola, L.; D’Ardes, D.; Lessiani, G.; di Gregorio, N.; Ferri, C.; Cipollone, F.; Serra, C.; Santilli, F.; et al. Platelet, Antiplatelet Therapy and Metabolic Dysfunction-Associated Steatotic Liver Disease: A Narrative Review. Life 2024, 14, 473. [Google Scholar] [CrossRef]
- Patoulias, D.; Papadopoulos, C.; Kassimis, G.; Fragakis, N.; Vassilikos, V.; Karagiannis, A.; Doumas, M. Effect of sodium-glucose co-transporter-2 inhibitors on arterial stiffness: A systematic review and meta-analysis of randomized controlled trials. Vasc. Med. 2022, 27, 433–439. [Google Scholar] [CrossRef]
- Durante, W.; Behnammanesh, G.; Peyton, K.J. Effects of Sodium-Glucose Co-Transporter 2 Inhibitors on Vascular Cell Function and Arterial Remodeling. Int. J. Mol. Sci. 2021, 22, 8786. [Google Scholar] [CrossRef]
- Scisciola, L.; Cataldo, V.; Taktaz, F.; Fontanella, R.A.; Pesapane, A.; Ghosh, P.; Franzese, M.; Puocci, A.; De Angelis, A.; Sportiello, L.; et al. Anti-inflammatory role of SGLT2 inhibitors as part of their anti-atherosclerotic activity: Data from basic science and clinical trials. Front. Cardiovasc. Med. 2022, 9, 1008922. [Google Scholar] [CrossRef]
- Dimitriadis, K.; Adamopoulou, E.; Pyrpyris, N.; Sakalidis, A.; Leontsinis, I.; Manta, E.; Mantzouranis, E.; Beneki, E.; Soulaidopoulos, S.; Konstantinidis, D.; et al. The effect of SGLT2 inhibitors on the endothelium and the microcirculation: From bench to bedside and beyond. Eur. Heart J. Cardiovasc. Pharmacother. 2023, 9, 741–757. [Google Scholar] [CrossRef] [PubMed]
- Cai, C.; Guo, Z.; Chang, X.; Li, Z.; Wu, F.; He, J.; Cao, T.; Wang, K.; Shi, N.; Zhou, H.; et al. Empagliflozin attenuates cardiac microvascular ischemia/reperfusion through activating the AMPKα1/ULK1/FUNDC1/mitophagy pathway. Redox Biol. 2022, 52, 102288. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Wang, S.; Zhu, P.; Hu, S.; Chen, Y.; Ren, J. Empagliflozin rescues diabetic myocardial microvascular injury via AMPK-mediated inhibition of mitochondrial fission. Redox Biol. 2018, 15, 335–346. [Google Scholar] [CrossRef]
- Campeau, M.A.; Leask, R.L. Empagliflozin mitigates endothelial inflammation and attenuates endoplasmic reticulum stress signaling caused by sustained glycocalyx disruption. Sci. Rep. 2022, 12, 12681. [Google Scholar] [CrossRef]
- Cooper, S.; Teoh, H.; Campeau, M.A.; Verma, S.; Leask, R.L. Empagliflozin restores the integrity of the endothelial glycocalyx in vitro. Mol. Cell. Biochem. 2019, 459, 121–130. [Google Scholar] [CrossRef]
- Ganbaatar, B.; Fukuda, D.; Shinohara, M.; Yagi, S.; Kusunose, K.; Yamada, H.; Soeki, T.; Hirata, K.-I.; Sata, M. Empagliflozin ameliorates endothelial dysfunction and suppresses atherogenesis in diabetic apolipoprotein E-deficient mice. Eur. J. Pharmacol. 2020, 875, 173040. [Google Scholar] [CrossRef]
- He, L.; Li, Y.; Zhang, D.; Song, H.; Xu, D.; Song, Z. Dapagliflozin improves endothelial cell dysfunction by regulating mitochondrial production via the SIRT1/PGC-1α pathway in obese mice. Biochem. Biophys. Res. Commun. 2022, 615, 123–130. [Google Scholar] [CrossRef]
- Ma, L.; Zou, R.; Shi, W.; Zhou, N.; Chen, S.; Zhou, H.; Chen, X.; Wu, Y. SGLT2 inhibitor dapagliflozin reduces endothelial dysfunction and microvascular damage during cardiac ischemia/reperfusion injury through normalizing the XO-SERCA2-CaMKII-coffilin pathways. Theranostics 2022, 12, 5034–5050. [Google Scholar] [CrossRef]
- Chatterjee, S.; Bandyopadhyay, D.; Ghosh, R.K.; Majumdar, U.; Aneja, A.; Lavie, C.J.; Deedwania, P. SGLT-2 Inhibitors and Peripheral Artery Disease: A Statistical Hoax or Reality? Curr. Probl. Cardiol. 2019, 44, 207–222. [Google Scholar] [CrossRef]
- Lin, C.; Zhu, X.; Cai, X.; Yang, W.; Lv, F.; Nie, L.; Ji, L. SGLT2 inhibitors and lower limb complications: An updated meta-analysis. Cardiovasc. Diabetol. 2021, 20, 91. [Google Scholar] [CrossRef] [PubMed]
- Butt, J.H.; Kondo, T.; Yang, M.; Jhund, P.S.; Docherty, K.F.; Vaduganathan, M.; Claggett, B.L.; Hernandez, A.F.; Lam, C.S.P.; E Inzucchi, S.; et al. Heart failure, peripheral artery disease, and dapagliflozin: A patient-level meta-analysis of DAPA-HF and DELIVER. Eur. Heart J. 2023, 44, 2170–2183. [Google Scholar] [CrossRef]
- Perkovic, V.; Jardine, M.J.; Neal, B.; Bompoint, S.; Heerspink, H.J.L.; Charytan, D.M.; Edwards, R.; Agarwal, R.; Bakris, G.; Bull, S.; et al. Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy. N. Engl. J. Med. 2019, 380, 2295–2306. [Google Scholar] [CrossRef]
- Imran, B.; Ahsan, F.; Mahmood, T.; Khan, M.M.U.; Bano, S.; Zaidi, S.M.H.; Ansari, J.A.; Singh, A. Canagliflozin: A Comprehensive Review of Advances in Preclinical Research. Drug Res. 2025, 75, 183–201. [Google Scholar] [CrossRef] [PubMed]
- Bilezikian, J.P.; Watts, N.B.; Usiskin, K.; Polidori, D.; Fung, A.; Sullivan, D.; Rosenthal, N. Evaluation of Bone Mineral Density and Bone Biomarkers in Patients with Type 2 Diabetes Treated with Canagliflozin. J. Clin. Endocrinol. Metab. 2016, 101, 44–51. [Google Scholar] [CrossRef]
- Matthews, D.R.; Li, Q.; Perkovic, V.; Mahaffey, K.W.; de Zeeuw, D.; Fulcher, G.; Desai, M.; Hiatt, W.R.; Nehler, M.; Fabbrini, E.; et al. Effects of canagliflozin on amputation risk in type 2 diabetes: The CANVAS Program. Diabetologia 2019, 62, 926–938. [Google Scholar] [CrossRef] [PubMed]
- Potier, L.; Mohammedi, K.; Velho, G.; Roussel, R. SGLT2 inhibitors and lower limb complications: The diuretic-induced hypovolemia hypothesis. Cardiovasc. Diabetol. 2021, 20, 107. [Google Scholar] [CrossRef]
- Chen, B.; Huang, M.; Pu, B.; Dong, H. Impact of SGLT2 inhibitors on lower limb complications: A mendelian randomization perspective. Front. Pharmacol. 2024, 15, 1401103. [Google Scholar] [CrossRef]
- Bonaca, M.P.; Wiviott, S.D.; Zelniker, T.A.; Mosenzon, O.; Bhatt, D.L.; Leiter, L.A.; McGuire, D.K.; Goodrich, E.L.; Furtado, R.H.D.M.; Wilding, J.P.; et al. Dapagliflozin and Cardiac, Kidney, and Limb Outcomes in Patients with and Without Peripheral Artery Disease in DECLARE-TIMI 58. Circulation 2020, 142, 734–747. [Google Scholar] [CrossRef]
- Inzucchi, S.E.; Iliev, H.; Pfarr, E.; Zinman, B. Empagliflozin and Assessment of Lower-Limb Amputations in the EMPA-REG OUTCOME Trial. Diabetes Care 2018, 41, e4–e5. [Google Scholar] [CrossRef]
- Geng, L.; Sun, B.; Chen, Y. A meta-analysis of randomized controlled studies examining the effects of sodium-glucose co-transporter-2 inhibitors on peripheral artery disease and risk of amputations. Diabetes Obes. Metab. 2024, 26, 5376–5389. [Google Scholar] [CrossRef]
- Nani, A.; Carrara, F.; Paulesu, C.M.E.; Dalle Fratte, C.; Padroni, M.; Enisci, S.; Bilancio, M.C.; Romio, M.S.; Bertuzzi, F.; Pintaudi, B. Association of Sodium-Glucose Cotransporter 2 Inhibitors with Osteomyelitis and Other Lower Limb Safety Outcomes in Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. J. Clin. Med. 2023, 12, 3958. [Google Scholar] [CrossRef]
- Griffin, K.E.; Snyder, K.; Javid, A.H.; Hackstadt, A.; Greevy, R.; Grijalva, C.G.; Roumie, C.L. Use of SGLT2i Versus DPP-4i as an Add-on Therapy and the Risk of PAD-Related Surgical Events (Amputation, Stent Placement, or Vascular Surgery): A Cohort Study in Veterans with Diabetes. Diabetes Care 2025, 48, 361–370. [Google Scholar] [CrossRef]
- Kim, J.H.; Lee, J.; Han, K.; Kim, J.T.; Kwon, H.S. Cardiovascular Disease & Diabetes Statistics in Korea: Nationwide Data 2010 to 2019. Diabetes Metab. J. 2024, 48, 1084–1092. [Google Scholar] [CrossRef]
- Lee, H.F.; Chen, S.W.; Liu, J.R.; Li, P.R.; Wu, L.S.; Chang, S.H.; Yeh, Y.-H.; Kuo, C.-T.; Chan, Y.-H.; See, L.-C. Major adverse cardiovascular and limb events in patients with diabetes and concomitant peripheral artery disease treated with sodium glucose cotransporter 2 inhibitor versus dipeptidyl peptidase-4 inhibitor. Cardiovasc. Diabetol. 2020, 19, 160. [Google Scholar] [CrossRef]
- Rodionov, R.N.; Peters, F.; Marschall, U.; L’Hoest, H.; Jarzebska, N.; Behrendt, C.A. Initiation of SGLT2 Inhibitors and the Risk of Lower Extremity Minor and Major Amputation in Patients with Type 2 Diabetes and Peripheral Arterial Disease: A Health Claims Data Analysis. Eur. J. Vasc. Endovasc. Surg. 2021, 62, 981–990. [Google Scholar] [CrossRef]
- Paul, S.K.; Bhatt, D.L.; Montvida, O. The association of amputations and peripheral artery disease in patients with type 2 diabetes mellitus receiving sodium-glucose cotransporter type-2 inhibitors: Real-world study. Eur. Heart J. 2021, 42, 1728–1738. [Google Scholar] [CrossRef]
- Lee, H.F.; Chuang, C.; Li, P.R.; Yeh, Y.H.; Chan, Y.H.; See, L.C. Adverse cardiovascular, limb, and renal outcomes in patients with diabetes after peripheral artery disease revascularization treated with sodium glucose cotransporter 2 inhibitors versus dipeptidyl peptidase-4 inhibitors. Diabetol. Metab. Syndr. 2023, 15, 8. [Google Scholar] [CrossRef]
- Vadini, F.; Simeone, P.G.; Boccatonda, A.; Guagnano, M.T.; Liani, R.; Tripaldi, R.; Di Castelnuovo, A.; Cipollone, F.; Consoli, A.; Santilli, F. Liraglutide improves memory in obese patients with prediabetes or early type 2 diabetes: A randomized, controlled study. Int. J. Obes. 2020, 44, 1254–1263. [Google Scholar] [CrossRef]
- Rroji, M.; Spahia, N.; Figurek, A.; Spasovski, G. Targeting Diabetic Atherosclerosis: The Role of GLP-1 Receptor Agonists, SGLT2 Inhibitors, and Nonsteroidal Mineralocorticoid Receptor Antagonists in Vascular Protection and Disease Modulation. Biomedicines 2025, 13, 728. [Google Scholar] [CrossRef]
- Menghini, R.; Casagrande, V.; Rizza, S.; Federici, M. GLP-1RAs and cardiovascular disease: Is the endothelium a relevant platform? Acta Diabetol. 2023, 60, 1441–1448. [Google Scholar] [CrossRef]
- Caturano, A.; Rocco, M.; Tagliaferri, G.; Piacevole, A.; Nilo, D.; Di Lorenzo, G.; Iadicicco, I.; Donnarumma, M.; Galiero, R.; Acierno, C.; et al. Oxidative Stress and Cardiovascular Complications in Type 2 Diabetes: From Pathophysiology to Lifestyle Modifications. Antioxidants 2025, 14, 72. [Google Scholar] [CrossRef]
- Alharbi, S.H. Anti-inflammatory role of glucagon-like peptide 1 receptor agonists and its clinical implications. Ther. Adv. Endocrinol. Metab. 2024, 15, 20420188231222367. [Google Scholar] [CrossRef]
- Zhan, J.K.; Wang, Y.J.; Wang, Y.; Tang, Z.Y.; Tan, P.; Huang, W.; Liu, Y.-S. The protective effect of GLP-1 analogue in arterial calcification through attenuating osteoblastic differentiation of human VSMCs. Int. J. Cardiol. 2015, 189, 188–193. [Google Scholar] [CrossRef]
- Bennett, M.R.; Sinha, S.; Owens, G.K. Vascular Smooth Muscle Cells in Atherosclerosis. Circ. Res. 2016, 118, 692–702. [Google Scholar] [CrossRef]
- Park, B.; Krishnaraj, A.; Teoh, H.; Bakbak, E.; Dennis, F.; Quan, A.; Hess, D.A.; Verma, S. GLP-1RA therapy increases circulating vascular regenerative cell content in people living with type 2 diabetes. Am. J. Physiol. Heart Circ. Physiol. 2024, 327, H370–H376. [Google Scholar] [CrossRef]
- García-Casares, N.; González-González, G.; de la Cruz-Cosme, C.; Garzón-Maldonado, F.J.; de Rojas-Leal, C.; Ariza, M.J.; Narváez, M.; Barbancho, M.Á.; García-Arnés, J.A.; Tinahones, F.J. Effects of GLP-1 receptor agonists on neurological complications of diabetes. Rev. Endocr. Metab. Disord. 2023, 24, 655–672. [Google Scholar] [CrossRef]
- Katsurada, K.; Nandi, S.S.; Sharma, N.M.; Zheng, H.; Liu, X.; Patel, K.P. Does glucagon-like peptide-1 induce diuresis and natriuresis by modulating afferent renal nerve activity? Am. J. Physiol. Ren. Physiol. 2019, 317, F1010–F1021. [Google Scholar] [CrossRef]
- Bahtiyar, G.; Pujals-Kury, J.; Sacerdote, A. Cardiovascular Effects of Different GLP-1 Receptor Agonists in Patients with Type 2 Diabetes. Curr. Diabetes Rep. 2018, 18, 92. [Google Scholar] [CrossRef]
- Patel, P.; Ordunez, P.; DiPette, D.; Escobar, M.C.; Hassell, T.; Wyss, F.; Hennis, A.; Asma, S.; Angell, S. Improved Blood Pressure Control to Reduce Cardiovascular Disease Morbidity and Mortality: The Standardized Hypertension Treatment and Prevention Project. J. Clin. Hypertens. 2016, 18, 1284–1294. [Google Scholar] [CrossRef]
- Ma, X.; Liu, Z.; Ilyas, I.; Little, P.J.; Kamato, D.; Sahebka, A.; Chen, Z.; Luo, S.; Zheng, X.; Weng, J.; et al. GLP-1 receptor agonists (GLP-1RAs): Cardiovascular actions and therapeutic potential. Int. J. Biol. Sci. 2021, 17, 2050–2068. [Google Scholar] [CrossRef]
- Berberich, A.J.; Hegele, R.A. Lipid effects of glucagon-like peptide 1 receptor analogs. Curr. Opin. Lipidol. 2021, 32, 191–199. [Google Scholar] [CrossRef]
- Hullon, D.; Subeh, G.K.; Volkova, Y.; Janiec, K.; Trach, A.; Mnevets, R. The role of glucagon-like peptide-1 receptor (GLP-1R) agonists in enhancing endothelial function: A potential avenue for improving heart failure with preserved ejection fraction (HFpEF). Cardiovasc. Diabetol. 2025, 24, 70. [Google Scholar] [CrossRef]
- Gaspari, T.; Welungoda, I.; Widdop, R.E.; Simpson, R.W.; Dear, A.E. The GLP-1 receptor agonist liraglutide inhibits progression of vascular disease via effects on atherogenesis, plaque stability and endothelial function in an ApoE(−/−) mouse model. Diabetes Vasc. Dis. Res. 2013, 10, 353–360. [Google Scholar] [CrossRef]
- Liu, H.; Dear, A.E.; Knudsen, L.B.; Simpson, R.W. A long-acting glucagon-like peptide-1 analogue attenuates induction of plasminogen activator inhibitor type-1 and vascular adhesion molecules. J. Endocrinol. 2009, 201, 59–66. [Google Scholar] [CrossRef]
- Maxwell, M.A.; Muscat, G.E. The NR4A subgroup: Immediate early response genes with pleiotropic physiological roles. Nucl. Recept. Signal. 2006, 4, e002. [Google Scholar] [CrossRef]
- Tsai, T.H.; Lee, C.H.; Cheng, C.I.; Fang, Y.N.; Chung, S.Y.; Chen, S.M.; Lin, C.-J.; Wu, C.-J.; Hang, C.-L.; Chen, W.-Y. Liraglutide Inhibits Endothelial-to-Mesenchymal Transition and Attenuates Neointima Formation after Endovascular Injury in Streptozotocin-Induced Diabetic Mice. Cells 2019, 8, 589. [Google Scholar] [CrossRef]
- Luo, X.; Hu, Y.; He, S.; Ye, Q.; Lv, Z.; Liu, J.; Chen, X. Dulaglutide inhibits high glucose- induced endothelial dysfunction and NLRP3 inflammasome activation. Arch. Biochem. Biophys. 2019, 671, 203–209. [Google Scholar] [CrossRef]
- Onuma, H.; Inukai, K.; Kitahara, A.; Moriya, R.; Nishida, S.; Tanaka, T.; Katsuta, H.; Takahashi, K.; Sumitani, Y.; Hosaka, T.; et al. The glucagon-like peptide 1 receptor agonist enhances intrinsic peroxisome proliferator-activated receptor γ activity in endothelial cells. Biochem. Biophys. Res. Commun. 2014, 451, 339–344. [Google Scholar] [CrossRef]
- McGuire, D.K.; Marx, N.; Mulvagh, S.L.; Deanfield, J.E.; Inzucchi, S.E.; Pop-Busui, R.; Mann, J.F.; Emerson, S.S.; Poulter, N.R.; Engelmann, M.D.; et al. Oral Semaglutide and Cardiovascular Outcomes in High-Risk Type 2 Diabetes. N. Engl. J. Med. 2025, 392, 2001–2012. [Google Scholar] [CrossRef] [PubMed]
- Badjatiya, A.; Merrill, P.; Buse, J.B.; Goodman, S.G.; Katona, B.; Iqbal, N.; Pagidipati, N.J.; Sattar, N.; Holman, R.R.; Hernandez, A.F.; et al. Clinical Outcomes in Patients with Type 2 Diabetes Mellitus and Peripheral Artery Disease: Results From the EXSCEL Trial. Circ. Cardiovasc. Interv. 2019, 12, e008018. [Google Scholar] [CrossRef]
- Caruso, P.; Maiorino, M.I.; Longo, M.; Porcellini, C.; Matrone, R.; Digitale Selvaggio, L.; Gicchino, M.; Carbone, C.; Scappaticcio, L.; Bellastella, G.; et al. Liraglutide for Lower Limb Perfusion in People with Type 2 Diabetes and Peripheral Artery Disease: The STARDUST Randomized Clinical Trial. JAMA Netw. Open 2024, 7, e241545. [Google Scholar] [CrossRef]
- Lin, D.S.; Lee, J.K.; Chen, W.J. Major adverse cardiovascular and limb events in patients with diabetes treated with GLP-1 receptor agonists vs DPP-4 inhibitors. Diabetologia 2021, 64, 1949–1962. [Google Scholar] [CrossRef]
- Wu, J.Y.; Tu, W.L.; Yu, T.; Liao, K.M.; Lin, Y.M. Tirzepatide and major adverse limb events: Insights from a multicenter real-world analysis in PAD and diabetes patients. Diabetes Res. Clin. Pr. 2025, 222, 112083. [Google Scholar] [CrossRef] [PubMed]
- Galiero, R.; Caturano, A.; Vetrano, E.; Monda, M.; Marfella, R.; Sardu, C.; Salvatore, T.; Rinaldi, L.; Sasso, F.C. Precision Medicine in Type 2 Diabetes Mellitus: Utility and Limitations. Diabetes Metab. Syndr. Obes. 2023, 16, 3669–3689. [Google Scholar] [CrossRef] [PubMed]
Drug Class | Mechanism | CV Effect | Hypoglycemia Risk | Weight Effect | Comments in PAD |
---|---|---|---|---|---|
Metformin | Insulin sensitizer | Neutral | Low | Weight neutral or modest loss | Risk of lactic acidosis in advanced PAD |
Sulfonylureas | Insulin secretagogue | Neutral/possibly adverse | Moderate | Weight gain | Risk of hypoglycemia; limited CV benefit |
DPP-4 inhibitors | Incretin enhancer | Neutral | Low | Weight neutral | Safe but limited benefit in PAD |
SGLT2 inhibitors | Glycosuria inducer | Benefit (CV and renal) | Low to moderate | Weight loss | Caution in active foot ulcers; canagliflozin amputation signal |
GLP-1 receptor agonists | Incretin mimetic | Benefit (CV) | Low | Weight loss | Preferred in PAD with CV disease |
Insulin | Direct glucose lowering | Neutral/possibly adverse | High | Weight gain | Risk of hypoglycemia; avoid overtreatment |
Thiazolidinediones | Insulin sensitizer | Neutral/possibly adverse | High | Weight gain | Contraindicated in heart failure |
Guideline | Recommended Medications | Purpose | Class/Level of Evidence | Notes |
---|---|---|---|---|
ESC 2024 [9] | GLP-1 RAs, SGLT2is | Reduce CV events in T2DM and PAD | Class I, Level A | Recommended regardless of HbA1c or concurrent therapy |
— | Improve glycemic control | — | Essential in T2DM with PAD | |
— | Potential risk: lower limb amputation | — | Mainly linked to canagliflozin; evidence conflicting | |
ACC/AHA 2024 [10] | GLP-1 RAs, SGLT2is | Reduce MACEs in T2DM and PAD | Class I, Level A | Strong recommendation |
Multidisciplinary diabetes care | Optimize overall outcomes | Class I, Level C (Expert Opinion) | Coordinated care encouraged | |
Glycemic control | Improve limb outcomes | Class IIb, Level B (Nonrandomized Evidence) | Evidence less robust for limb-specific outcomes | |
IWGDF/ESVS/SVS 2023 [11] | SGLT2is, GLP-1 RAs | Reduce CV risk, improve PAD outcomes | Best Practice Statement | Use GLP-1 RAs preferentially in active foot ulcers |
SGLT2is (delayed initiation) | Avoid adverse outcomes in active DFU | Not recommended until ulcer healing | Risk of ketoacidosis/infection with SGLT2is in DFU | |
Glycemic target (HbA1c < 8%) | Avoid hypoglycemia in high-risk patients | Best Practice Statement | Lower targets not recommended in elderly or those with foot ulcers |
Study/Source | Design/Population | Findings on PAD/Amputation Risk | Key Notes |
---|---|---|---|
DECLARE-TIMI 58 (2019) [40] | RCT; dapagliflozin (n = 17,160 patients with T2DM who either had established atherosclerotic cardiovascular disease or were at risk of it; about 10% with PAD) | No significant increase in amputation (HR 1.09; 95% CI 0.84–1.40) | PAD patients had higher baseline MACE/limb risk; dapagliflozin neutral |
CANVAS Program (2018) [37] | RCT; canagliflozin (n = 10,142 patients with T2DM) | Nearly 2× increased amputation risk | Prompted early regulatory concern |
EMPA-REG OUTCOME (2015) [41] | RCTs; empagliflozin (n = 7020 patients with T2DM and established ASCVD | No increased amputation risk | Supported safety reassurance |
DAPA-HF + DELIVER (2022) [33] | Patient-level meta-analysis (n ≈ 11,000; 809 with PAD) | No increased amputation risk; PAD subgroup: dapagliflozin 3.7% vs. placebo 4.2% | No interaction between treatment and amputation risk in PAD |
Geng et al. (2024) [42] | Meta-analysis of 51 RCTs (n = 97,589) | ↑ PAD risk (OR 1.20; p = 0.04); no ↑ in amputation (OR 1.18; p = 0.43) | No differences by agent, duration, or baseline risk |
Nani et al. (2023) [43] | Meta-analysis of 42 RCTs (n = 29,491 and 23,052 patients, respectively, assigned to SGLT2-i and comparator groups) | Neutral PAD risk; ↑ limb ulcers (RR 1.39), ↑ infections (RR 1.20) | Elevated soft tissue complication risks |
Lin et al. (2021) [32] | Meta-analysis; 40,925 SGLT2i users vs. 33,414 non-users | ↑ Amputation (OR 1.60), ↑ PAD (OR 1.53); esp. with canagliflozin | Risks linked to BP/weight reductions; strongest with lower DBP |
Griffin et al. (2025) [44] | Real-world; U.S. Veterans (n ≈ 76,000/group) | ↑ PAD-related surgeries (HR 1.18; 95% CI 1.08–1.29) vs. DPP-4is | Large sample; adjusted HR |
Lee et al. (2020) [46] | Real-world; Taiwan (n = 11,431 and 93,972 consecutive T2DM patients with PAD taking SGLT2is and DPP4is, respectively) | ↓ Limb ischemia, amputation, CV death vs. DPP-4is | Suggests net benefit in Asian cohort |
Rodionov et al. (2021) [47] | Real-world; Europe, post-EMA safety alert (n = 44,284 (13.6% PAD) and 56,878 (16.3% PAD) T2DM patients initiated with SGLT2is or GLP1-RAs, respectively) | Amputation risk comparable between SGLT2is and GLP-1 RAs | Risk mitigation via clinical monitoring |
Paul et al. (2021) [48] | U.S. observational; ~3 million patients | PAD = main amputation risk; SGLT2is had ↓ risk vs. DPP-4is/others | PAD, not SGLT2i, was primary risk driver |
Lee et al. (2023) [49] | Real-world (n = 2455 and 8695 patients with T2DM who had undergone PAD revascularization and received first prescriptions for SGLT2is and DPP4i, respectively | No ↑ in amputation/re-intervention; ↓ CV and renal events | SGLT2is safe in high-risk surgical PAD group |
Study/Source | Design/Population | Findings on PAD/Amputation Risk | Key Notes |
---|---|---|---|
SOUL trial [71] | RCT; oral semaglutide; 9650 adults ≥50 yrs with T2D + ASCVD/CKD | ↓ MACE by 14% (HR 0.86; 95% CI 0.77–0.96); no renal outcome effect | Focused on CV safety; limb outcomes not primary endpoint |
EXSCEL trial [72] | RCT; exenatide; included ~2800 PAD patients | No ↓ in MACE or LEA; PAD patients had ↑ MACE, mortality, and LEA risk | aHR for LEA in PAD vs. non-PAD: 5.48 (95% CI 4.16–7.22) |
STARDUST trial [73] | RCT; liraglutide; 55 T2D patients with PAD | ↑ TcPo2 (+11.2 mm Hg); 89% had ≥10% increase vs. 46% in control | Also improved CRP, albuminuria, and walking distance (+25.1 m) |
STRIDE trial [32] | RCT; semaglutide; 792 PAD patients with T2D | ↑ Maximum walking distance (ETR 1.13; 95% CI 1.06–1.21; p = 0.0004) | Showed functional improvement in PAD patients |
Lin et al. (2021) [74] | Real-world; 17,840 patients (GLP-1 RA vs. DPP-4i), Taiwan | ↓ MALEs (SHR 0.63); ↓ amputations (SHR 0.55); ↓ CV outcomes (HR 0.62) | Benefit most evident in statin users and those w/o prior CVD |
Wu et al. (2025) [75] | Real-world; 8046 matched PAD patients with T2D | ↓ MALEs (HR 0.44); ↓ stroke, mortality, and MACE; AMI risk unchanged | Tirzepatide = GLP-1/GIP RA; effects consistent across most subgroups |
Therapy | Advantages | Limitations | PAD with DFU | PAD without DFU |
---|---|---|---|---|
GLP-1 RAs |
|
|
|
|
SGLT2is |
|
|
|
|
Objective | Design | Key Features |
---|---|---|
Compare Limb Outcomes: GLP-1 RAs VS. SGLT2is | Randomized Controlled Trial (RCT) | Multicenter, stratified by PAD severity; primary endpoint: MALEs |
Assess Safety in Active Foot Ulcers | Prospective Cohort Study | Track wound healing, infection rates, and amputation in patients initiating therapy |
Post-Revascularization Benefit | RCT or Pragmatic Trial | Randomize patients after revascularization; endpoints: reocclusion, amputation, MALEs |
Evaluate Combined Therapy | Factorial RCT | 2 × 2 design: GLP-1 RA, SGLT2i, both, or neither |
Real-World Outcomes in High-Risk Groups | Registry-Based Study | Use PAD/diabetes registries to evaluate long-term limb and CV outcomes by treatment class |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caturano, A.; D’Ardes, D.; Simeone, P.G.; Lessiani, G.; Gregorio, N.D.; Andreetto, L.; Grassi, D.; Serra, C.; Santilli, F.; Guagnano, M.T.; et al. SGLT2 Inhibitors and GLP-1 Receptor Agonists in PAD: A State-of-the-Art Review. J. Clin. Med. 2025, 14, 5549. https://doi.org/10.3390/jcm14155549
Caturano A, D’Ardes D, Simeone PG, Lessiani G, Gregorio ND, Andreetto L, Grassi D, Serra C, Santilli F, Guagnano MT, et al. SGLT2 Inhibitors and GLP-1 Receptor Agonists in PAD: A State-of-the-Art Review. Journal of Clinical Medicine. 2025; 14(15):5549. https://doi.org/10.3390/jcm14155549
Chicago/Turabian StyleCaturano, Alfredo, Damiano D’Ardes, Paola Giustina Simeone, Gianfranco Lessiani, Nicoletta Di Gregorio, Lorenzo Andreetto, Davide Grassi, Carla Serra, Francesca Santilli, Maria Teresa Guagnano, and et al. 2025. "SGLT2 Inhibitors and GLP-1 Receptor Agonists in PAD: A State-of-the-Art Review" Journal of Clinical Medicine 14, no. 15: 5549. https://doi.org/10.3390/jcm14155549
APA StyleCaturano, A., D’Ardes, D., Simeone, P. G., Lessiani, G., Gregorio, N. D., Andreetto, L., Grassi, D., Serra, C., Santilli, F., Guagnano, M. T., Piscaglia, F., Ferri, C., Cipollone, F., & Boccatonda, A. (2025). SGLT2 Inhibitors and GLP-1 Receptor Agonists in PAD: A State-of-the-Art Review. Journal of Clinical Medicine, 14(15), 5549. https://doi.org/10.3390/jcm14155549