Predictive Value of Electrocardiographic Markers Versus Echocardiographic and Clinical Measures for Appropriate ICD Shocks in Heart Failure Patients
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Device Interrogation
2.3. Echocardiographic Assessment
2.4. Electrocardiographic Parameters
2.5. Statistical Analysis
3. Results
3.1. Clinical and Laboratory Parameters
3.2. Electrocardiographic and Echocardiographic Parameters
3.3. ROC Curve Analysis
3.4. Multivariate Logistic Regression Analysis
4. Discussion
5. Study Limitations and Future Implications
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021, 42, 3599–3726, Correction in Eur. Heart J. 2021, 42, 4901. [Google Scholar] [CrossRef]
- Zipes, D.P.; Wellens, H.J.J. Sudden cardiac death. Circulation 1998, 98, 2334–2351. [Google Scholar] [CrossRef]
- Rordorf, R.; Casula, M.; Pezza, L.; Fortuni, F.; Sanzo, A.; Savastano, S.; Vicentini, A. Subcutaneous versus transvenous implantable defibrillator: An updated meta-analysis. Heart Rhythm 2021, 18, 382–391. [Google Scholar] [CrossRef]
- Goldenberg, I.; Huang, D.T.; Nielsen, J.C. The role of implantable cardioverter-defibrillators and sudden cardiac death prevention: Indications, device selection, and outcome. Eur. Heart J. 2019, 41, 2003–2011. [Google Scholar] [CrossRef]
- Borleffs, C.J.W.; van Erven, L.; Schotman, M.; Boersma, E.; Kiès, P.; van der Burg, A.E.B.; Zeppenfeld, K.; Bootsma, M.; van der Wall, E.E.; Bax, J.J.; et al. Recurrence of ventricular arrhythmias in ischaemic secondary prevention implantable cardioverter defibrillator recipients: Long-term follow-up of the Leiden out-of-hospital cardiac arrest study (LOHCAT). Eur. Heart J. 2009, 30, 1621–1626. [Google Scholar] [CrossRef] [PubMed]
- Moss, A.J.; Zareba, W.; Hall, W.J.; Klein, H.; Wilber, D.J.; Cannom, D.S.; Daubert, J.P.; Higgins, S.L.; Brown, M.W.; Andrews, M.L. Prophylactic implantation of a defibrillator in patients with myocardial infarction and reduced ejection fraction. N. Engl. J. Med. 2002, 346, 877–883. [Google Scholar] [CrossRef]
- Chen, J.; Johnson, G.; Hellkamp, A.S.; Anderson, J.; Mark, D.B.; Lee, K.L.; Bardy, G.H.; Poole, J.E. Rapid-rate nonsustained ventricular tachycardia found on implantable cardioverter-defibrillator interrogation: Relationship to outcomes in the SCD-HeFT (Sudden. Cardiac Death in Heart Failure Trial). J. Am. Coll. Cardiol. 2013, 61, 2161–2168. [Google Scholar] [CrossRef]
- Dagres, N.; Hindricks, G. Risk stratification after myocardial infarction: Is left ventricular ejection fraction enough to prevent sudden cardiac death? Eur. Heart J. 2013, 34, 1964–1971. [Google Scholar] [CrossRef] [PubMed]
- Moss, A.J.; Schuger, C.; Beck, C.A.; Brown, M.W.; Cannom, D.S.; Daubert, J.P.; Estes, N.M.I.; Greenberg, H.; Hall, W.J.; Huang, D.T.; et al. Reduction in inappropriate therapy and mortality through ICD programming. N. Engl. J. Med. 2012, 367, 2275–2283. [Google Scholar] [CrossRef] [PubMed]
- Lin, G.; Nishimura, R.A.; Gersh, B.J.; Phil, D.; Ommen, S.R.; Ackerman, M.J.; Brady, P.A. Device complications and inappropriate implantable cardioverter defibrillator shocks in patients with hypertrophic cardiomyopathy. Heart 2009, 95, 709–714. [Google Scholar] [CrossRef]
- Hetland, M.; Haugaa, K.H.; Sarvari, S.I.; Erikssen, G.; Kongsgaard, E.; Edvardsen, T. A Novel ECG-Index for Prediction of Ventricular Arrhythmias in Patients after Myocardial Infarction. Ann. Noninvasive Electrocardiol. 2014, 19, 330–337. [Google Scholar] [CrossRef]
- Haukilahti, M.A.E.; Eranti, A.; Kenttä, T.; Huikuri, H.V. QRS Fragmentation Patterns Representing Myocardial Scar Need to Be Separated from Benign Normal Variants: Hypotheses and Proposal for Morphology based Classification. Front. Physiol. 2016, 7, 653. [Google Scholar] [CrossRef] [PubMed]
- Levy, W.C.; Lee, K.L.; Hellkamp, A.S.; Poole, J.E.; Mozaffarian, D.; Linker, D.T.; Maggioni, A.P.; Anand, I.; Poole-Wilson, P.A.; Fishbein, D.P.; et al. Maximizing Survival Benefit With Primary Prevention Implantable Cardioverter-Defibrillator Therapy in a Heart Failure Population. Circulation 2009, 120, 835–842. [Google Scholar] [CrossRef]
- Ikeda, T.; Yoshino, H.; Sugi, K.; Tanno, K.; Shimizu, H.; Watanabe, J.; Kasamaki, Y.; Yoshida, A.; Kato, T. Predictive value of microvolt T-wave alternans for sudden cardiac death in patients with preserved cardiac function after acute myocardial infarction: Results of a collaboirative cohort study. J. Am. Coll. Cardiol. 2006, 48, 2268–2274. [Google Scholar] [CrossRef] [PubMed]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2015, 28, 1–39.e14. [Google Scholar] [CrossRef]
- Hnatkova, K.; Seegers, J.; Barthel, P.; Novotny, T.; Smetana, P.; Zabel, M.; Schmidt, G.; Malik, M. Clinical value of different QRS-T angle expressions. Europace 2017, 20, 1352–1361. [Google Scholar] [CrossRef]
- Şahin, D.Y.; Kaypaklı, O.; Gözübüyük, G.; Koç, M. A new use for maximum deflection index: Detection of intraventricular dyssynchrony. J. Electrocardiol. 2017, 50, 301–306. [Google Scholar] [CrossRef] [PubMed]
- Dahlberg, P.; Diamant, U.; Gilljam, T.; Rydberg, A.; Bergfeldt, L. QT correction using Bazett’s formula remains preferable in long QT syndrome type 1 and 2. Ann. Noninvasive Electrocardiol. 2021, 26, e12804. [Google Scholar] [CrossRef] [PubMed]
- de Bie, M.K.; Koopman, M.G.; Gaasbeek, A.; Dekker, F.W.; Maan, A.C.; Swenne, C.A.; Scherptong, R.W.; van Dessel, P.F.; Wilde, A.A.; Schalij, M.J.; et al. Incremental prognostic value of an abnormal baseline spatial QRS-T angle in chronic dialysis patients. Europace. 2013, 15, 290–296. [Google Scholar] [CrossRef]
- Lambiase, P.D. Determining risk of sudden death: Is it all in the T wave? Heart 2023, 110, 151–153. [Google Scholar] [CrossRef]
- Li, S.-N.; Zhang, X.-L.; Cai, G.-L.; Lin, R.-W.; Jiang, H.; Chen, J.-Z.; Xu, B.; Huang, W. Prognostic Significance of Frontal QRS-T Angle in Patients with Idiopathic Dilated Cardiomyopathy. Chin. Med. J. 2016, 129, 1904–1911. [Google Scholar] [CrossRef]
- Gleeson, S.; Liao, Y.-W.; Dugo, C.; Cave, A.; Zhou, L.; Ayar, Z.; Christiansen, J.; Scott, T.; Dawson, L.; Gavin, A.; et al. ECG-derived spatial QRS-T angle is associated with ICD implantation, mortality and heart failure admissions in patients with LV systolic dysfunction. PLoS ONE 2017, 12, e0171069. [Google Scholar] [CrossRef]
- Vadakkumpadan, F.; Rantner, L.J.; Tice, B.; Boyle, P.; Prassl, A.J.; Vigmond, E.; Plank, G.; Trayanova, N. Image-based models of cardiac structure with applications in arrhythmia and defibrillation studies. J. Electrocardiol. 2009, 42, 157.e1–157.e10. [Google Scholar] [CrossRef]
- Mozos, I.; Caraba, A. Electrocardiographic Predictors of Cardiovascular Mortality. Dis. Markers 2015, 2015, 727401. [Google Scholar] [CrossRef]
- Engel, G.; Beckerman, J.G.; Froelicher, V.F.; Yamazaki, T.; Chen, H.A.; Richardson, K.; McAuley, R.J.; Ashley, E.A.; Chun, S.; Wang, P.J. Electrocardiographic arrhythmia risk testing. Curr. Probl. Cardiol. 2004, 29, 365–432. [Google Scholar] [CrossRef]
- Goldberger, J.J.; Subačius, H.; Patel, T.; Cunnane, R.; Kadish, A.H. Sudden cardiac death risk stratification in patients with nonischemic dilated cardiomyopathy. J. Am. Coll. 2014, 63, 1879–1889. [Google Scholar] [CrossRef]
- Cluitmans, M.; Brooks, D.H.; MacLeod, R.; Dössel, O.; Guillem, M.S.; van Dam, P.M.; Svehlikova, J.; He, B.; Sapp, J.; Wang, L.; et al. Validation and Opportunities of Electrocardiographic Imaging: From Technical Achievements to Clinical Applications. Front. Physiol. 2018, 9, 1305. [Google Scholar] [CrossRef]
- Chugh, S.S.; Reinier, K.; Singh, T.; Uy-Evanado, A.; Socoteanu, C.; Peters, D.; Mariani, R.; Gunson, K.; Jui, J. Determinants of prolonged QT interval and their contribution to sudden death risk in coronary artery disease. Circulation 2009, 119, 663–670. [Google Scholar] [CrossRef] [PubMed]
- Strauss, D.G.; Wu, K.C. Imaging myocardial scar and arrhythmic risk prediction—A role for the electrocardiogram? J. Electrocardiol. 2009, 42, 138.e1–138.e8. [Google Scholar] [CrossRef] [PubMed]
- Moss, A.J.; Zareba, W.; Benhorin, J.; Locati, E.H.; Hall, W.J.; Robinson, J.L.; Schwartz, P.J.; Towbin, J.A.; Vincent, G.M.; Lehmann, M.H.; et al. ECG T-wave patterns in genetically distinct forms of the hereditary long QT syndrome. Circulation 1995, 92, 2929–2934. [Google Scholar] [CrossRef] [PubMed]
- Aarnoudse, A.-J.L.; Newton-Cheh, C.; de Bakker, P.I.; Straus, S.M.; Kors, J.A.; Hofman, A.; Uitterlinden, A.G.; Witteman, J.C.; Stricker, B.H. Common NOS1AP Variants Are Associated With a Prolonged QTc Interval in the Rotterdam Study. Circulation 2007, 116, 10–16. [Google Scholar] [CrossRef]
- Antzelevitch, C.; Sicouri, S. Clinical relevance of cardiac arrhythmias generated by afterdepolarizations. Role of M cells in the generation of U waves, triggered activity and torsade de pointes. J. Am. Coll. Cardiol. 1994, 23, 259–277. [Google Scholar] [CrossRef]
- Chen, Z.X.; Yang, L. Role of Transmural Dispersion of Repolarization in the Genesis of Polymorphic Reentrant Ventricular Arrhythmias. Chin. J. Card. Pacing Electrophysiol. 2008, 22, 20–23. [Google Scholar] [CrossRef]
- Zhu, T.Y.; Teng, S.E.; Chen, Y.Y.; Liu, S.R.; Meng, S.R.; Peng, J. Correlation of Tp-e interval and Tp-e/Q-T ratio with malignant ventricular arrhythmia in patients with implantable cardioverter-defibrillator for primary prevention. J. South. Med. Univ. 2016, 36, 401–404. [Google Scholar]
- Dinshaw, L.; Münch, J.; Dickow, J.; Lezius, S.; Willems, S.; Hoffmann, B.A.; Patten, M. The T-peak-to-T-end interval: A novel ECG marker for ventricular arrhythmia and appropriate ICD therapy in patients with hypertrophic cardiomyopathy. Clin. Res. Cardiol. 2018, 107, 130–137. [Google Scholar] [CrossRef] [PubMed]
- Daniels, D.V.; Lu, Y.-Y.; Morton, J.B.; Santucci, P.A.; Akar, J.G.; Green, A.; Wilber, D.J. Idiopathic epicardial left ventricular tachycardia originating remote from the sinus of Valsalva: Electrophysiological characteristics, catheter ablation, and identification from the 12-lead electrocardiogram. Circulation 2006, 113, 1659–1666. [Google Scholar] [CrossRef] [PubMed]
- Berruezo, A.; Mont, L.; Nava, S.; Chueca, E.; Bartholomay, E.; Brugada, J. Electrocardiographic recognition of the epicardial origin of ventricular tachycardias. Circulation 2004, 109, 1842–1847. [Google Scholar] [CrossRef]
- Moss, A.J.; Hall, W.J.; Cannom, D.S.; Klein, H.; Brown, M.W.; Daubert, J.P.; Estes, N.A.M., III; Foster, E.; Greenberg, H.; Higgins, S.L.; et al. Cardiac-resynchronization therapy for the prevention of heart-failure events. N. Engl. J. Med. 2009, 361, 1329–1338. [Google Scholar] [CrossRef]
- Bardy, G.H.; Lee, K.L.; Mark, D.B.; Poole, J.E.; Packer, D.L.; Boineau, R.; Domanski, M.; Troutman, C.; Anderson, J.; Johnson, G.; et al. Amiodarone or an implantable cardioverter–defibrillator for congestive heart failure. N. Engl. J. Med. 2005, 352, 225–237. [Google Scholar] [CrossRef]
- Van Rees, J.B.; Borleffs, C.J.; de Bie, M.K.; Stijnen, T.; van Erven, L.; Bax, J.J.; Schalij, M.J. Inappropriate implantable cardioverter-defibrillator shocks: Incidence; predictors; and impact on mortality. J. Am. Coll. Cardiol. 2011, 57, 556–562. [Google Scholar] [CrossRef]
- Daubert, J.P.; Zareba, W.; Cannom, D.S.; McNitt, S.; Rosero, S.Z.; Wang, P.; Schuger, C.; Steinberg, J.S.; Higgins, S.L.; Wilber, D.J.; et al. Inappropriate implantable cardioverter-defibrillator shocks in MADIT II: Frequency, mechanisms, predictors, and survival impact. J. Am. Coll. Cardiol. 2008, 51, 1357–1365. [Google Scholar] [CrossRef]
- Zabel, M.; Willems, R.; Lubinski, A.; Bauer, A.; Brugada, J.; Conen, D.; Flevari, P.; Hasenfuß, G.; Svetlosak, M.; Huikuri, H.V.; et al. Clinical effectiveness of primary prevention implantable cardioverter-defibrillators: Results of the EU-CERT-ICD controlled multicentre cohort study. Eur. Heart J. 2020, 41, 3437–3447. [Google Scholar] [CrossRef]
- Zhang, Y.; Guallar, E.; Blasco-Colmenares, E.; Butcher, B.; Norgard, S.; Nauffal, V.; Marine, J.E.; Eldadah, Z.; Dickfeld, T.; Ellenbogen, K.A.; et al. Changes in Follow-Up Left Ventricular Ejection Fraction Associated with Outcomes in Primary Prevention Implantable Cardioverter-Defibrillator and Cardiac Resynchronization Therapy Device Recipients. J. Am. Coll. Cardiol. 2015, 66, 524–531. [Google Scholar] [CrossRef]
- Goldenberg, I.; Vyas, A.K.; Hall, W.J.; Moss, A.J.; Wang, H.; He, H.; Zareba, W.; McNitt, S.; Andrews, M.L. Risk stratification for primary implantation of a cardioverter-defibrillator in patients with ischemic left ventricular dysfunction. J. Am. Coll. Cardiol. 2008, 51, 288–296. [Google Scholar] [CrossRef]
- Bilchick, K.C.; Stukenborg, G.J.; Kamath, S.; Cheng, A. Prediction of mortality in clinical practice for medicare patients undergoing defibrillator implantation for primary prevention of sudden cardiac death. J. Am. Coll. Cardiol. 2012, 60, 1647–1655. [Google Scholar] [CrossRef] [PubMed]
- Buxton, A.E.; Lee, K.L.; Hafley, G.E.; Pires, L.A.; Fisher, J.D.; Gold, M.R.; Josephson, M.E.; Lehmann, M.H.; Prystowsky, E.N. Limitations of ejection fraction for prediction of sudden death risk in patients with coronary artery disease: Lessons from the MUSTT study. J. Am. Coll. Cardiol. 2007, 50, 1150–1157. [Google Scholar] [CrossRef] [PubMed]
- Waks, J.W.; Hamilton, C.; Das, S.; Ehdaie, A.; Minnier, J.; Narayan, S.; Niebauer, M.; Raitt, M.; Tompkins, C.; Varma, N.; et al. Improving sudden cardiac death risk stratification by evaluating electrocardiographic measures of global electrical heterogeneity and clinical outcomes among patients with implantable cardioverter-defibrillators: Rationale and design for a retrospective, multicenter, cohort study. J. Interv. Card. Electrophysiol. 2018, 52, 77–89. [Google Scholar] [CrossRef]
- Hekkanen, J.J.; Kenttä, T.V.; Holmström, L.; Tulppo, M.P.; Ukkola, O.H.; Pakanen, L.; Junttila, M.J.; Huikuri, H.V.; Perkiömäki, J.S. Association of electrocardiographic spatial heterogeneity of repolarization and spatial heterogeneity of atrial depolarization with left ventricular fibrosis. Europace 2023, 25, 820–827. [Google Scholar] [CrossRef] [PubMed]
- Holkeri, A.; Eranti, A.; Haukilahti, M.A.E.; Kenttä, T.V.; Tikkanen, J.T.; Anttonen, O.; Noponen, K.; Seppänen, T.; Rissanen, H.; Heliövaara, M.; et al. Predicting sudden cardiac death in a general population using an electrocardiographic risk score. Heart 2020, 106, 427–433. [Google Scholar] [CrossRef]
Patients Without Appropriate Shock n = 322 | Patients with Appropriate Shock n = 53 | p | |
---|---|---|---|
Age (years) | 63.0 ± 12.6 | 63.8 ± 13.8 | 0.665 |
Gender (Male, %) | 250 (77.6) | 45 (84.9) | 0.231 |
Hypertension (n, %) | 181 (56.2) | 25 (47.2) | 0.220 |
DM (n, %) | 144 (44.7) | 21 (39.6) | 0.488 |
Type of CMP (ischemic/dilated) | 243/79 | 42/11 | 0.551 |
Type of ICD (VVIR/DDDR) | 233/89 | 44/9 | 0.102 |
Aspirin (n, %) | 202 (62.7) | 32 (60.4) | 0.743 |
Digoxin (n, %) | 66 (20.5) | 22 (41.5) | 0.001 |
Beta Blocker (n, %) | 265 (82.3) | 37 (69.8) | 0.033 |
Amiodarone (n, %) | 31 (9.6) | 5 (9.4) | 0.965 |
Nondihydropyridine CCB (n, %) | 2 (0.6) | 1 (1.9) | 0.368 |
ACEi/ARB (n, %) | 237 (73.6) | 38 (71.7) | 0.771 |
Sprinolactone (n, %) | 220 (68.3) | 31 (58.5) | 0.159 |
Statin (n, %) | 180 (55.9) | 28 (52.8) | 0.677 |
Hemoglobin (g/dl) | 12.8 ± 2.1 | 12.8 ± 2.0 | 0.977 |
White blood cell (×109/L) | 9.7 ± 3.7 | 10.4 ± 4.0 | 0.732 |
Creatinine (mg/dL) | 1.20 ± 0.69 | 1.22 ± 0.63 | 0.756 |
LDL cholesterol (mg/dL) | 96.0 ± 38.1 | 96.6 ± 35.1 | 0.929 |
Triglycerides (mg/dL) | 155.3 ± 90.4 | 161.3 ± 115.2 | 0.936 |
VT terminated with ATP (n, %) | 31 (9.6) | 44 (83.0) | <0.001 |
Monitor VT (n, %) | 47 (14.6) | 29 (54.7) | <0.001 |
Non-sustained VT (n, %) | 74 (23.0) | 35 (66.0) | <0.001 |
Variable | Patients Without Appropriate Shock n = 322 | Patients with Appropriate Shock n = 53 | p |
---|---|---|---|
QRS duration (ms) | 107.7 ± 23.5 | 117.4 ± 26.1 | 0.007 |
QTc (ms) | 433.43 ± 40.9 | 461.1 ± 29.7 | <0.001 |
Tpe/QT ratio | 0.20 ± 0.16 | 0.26 ± 0.09 | <0.001 |
Frontal QRS-T angle (degree) | −8.0 ± 111.4 | 85.4 ± 118.4 | <0.001 |
Maximum deflection index | 0.49 ± 0.65 | 0.58 ± 0.33 | <0.001 |
Complete BBB (n, %) | 35 (10.9) | 13 (24.5) | 0.006 |
Atrial Fibrillation (n, %) | 40 (12.4) | 8 (15.1) | 0.590 |
RV pacing ratio | 3.4 ± 10.7 | 7.4 ± 15.8 | 0.007 |
Days after implantation (days) | 756.7 ± 561.4 | 773.7 ± 680.5 | 0.741 |
LV end-diastolic diameter (mm) | 62.3 ± 7.9 | 61.5 ± 7.4 | 0.497 |
LV end-systolic diameter (mm) | 51.3 ± 7.9 | 50.4 ± 7.7 | 0.351 |
LVEF (%) | 29.7 ± 10.0 | 30.5 ± 10.5 | 0.732 |
LA end-diastolic diameter (mm) | 40.4 ± 9.8 | 40.9 ± 9.0 | 0.846 |
Variable | p | Odds Ratio | 95% CI | |
---|---|---|---|---|
Lower | Upper | |||
Digoxin use | 0.003 | 2.931 | 1.441 | 5.964 |
Beta bloker use | 0.002 | 0.275 | 0.120 | 0.635 |
Frontal QRS-T angle | <0.001 | 1.009 | 1.006 | 1.012 |
QTc | <0.001 | 1.020 | 1.011 | 1.030 |
Tpe/QT ratio | 0.050 | 4.882 | 1.003 | 23.769 |
Maximum deflection index | 0.344 | |||
RV pacing ratio | 0.656 | |||
QRS duration | 0.934 | |||
Complete BBB | 0.545 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bekler, Ö.; Kazan, S.D.; Harbalioğlu, H.; Kaypakli, O. Predictive Value of Electrocardiographic Markers Versus Echocardiographic and Clinical Measures for Appropriate ICD Shocks in Heart Failure Patients. J. Clin. Med. 2025, 14, 5506. https://doi.org/10.3390/jcm14155506
Bekler Ö, Kazan SD, Harbalioğlu H, Kaypakli O. Predictive Value of Electrocardiographic Markers Versus Echocardiographic and Clinical Measures for Appropriate ICD Shocks in Heart Failure Patients. Journal of Clinical Medicine. 2025; 14(15):5506. https://doi.org/10.3390/jcm14155506
Chicago/Turabian StyleBekler, Özkan, Süleyman Diren Kazan, Hazar Harbalioğlu, and Onur Kaypakli. 2025. "Predictive Value of Electrocardiographic Markers Versus Echocardiographic and Clinical Measures for Appropriate ICD Shocks in Heart Failure Patients" Journal of Clinical Medicine 14, no. 15: 5506. https://doi.org/10.3390/jcm14155506
APA StyleBekler, Ö., Kazan, S. D., Harbalioğlu, H., & Kaypakli, O. (2025). Predictive Value of Electrocardiographic Markers Versus Echocardiographic and Clinical Measures for Appropriate ICD Shocks in Heart Failure Patients. Journal of Clinical Medicine, 14(15), 5506. https://doi.org/10.3390/jcm14155506