The Prognostic Utility of Pathophysiologically Distinct Biomarkers for Renal Outcomes in Sepsis: A Prospective ICU Cohort Study †
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Ethical Approval
2.2. Study Population and Grouping
2.2.1. Exclusion Criteria
2.2.2. Patient Grouping
2.3. Data Collection
2.4. Biomarker Sampling and Analysis
2.5. Sample Size Calculation
2.6. Statistical Analysis
3. Results
3.1. Study Population and Flow Diagram
3.2. Comparison of Clinical and Laboratory Characteristics According to AKI and RRT Status
3.3. Serum Biomarker Levels Stratified by Clinical Outcomes and Disease Severity
3.4. Multivariate Logistic Regression Analysis of AKI and RRT Initiation Risk Factors in Sepsis Patients
3.5. Receiver Operating Curve Analysis of Biomarkers for AKI Evaluation and RRT Initiation
3.6. Univariable and Multivariable Analysis of Mortality-Associated Clinical and Laboratory Variables in Sepsis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Esposito, P.; Cappadona, F.; Prenna, S.; Marengo, M.; Fiorentino, M.; Fabbrini, P.; Quercia, A.D.; Naso, E.; Garzotto, F.; Russo, E.; et al. Acute kidney injury in hospitalized patients with real-life analysis of incidence and clinical impact in Italian hospitals (the SIN-AKI study). Sci. Rep. 2025, 15, 14261. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, T.; Flannery, A.H.; Liu, L.J.; Ghazi, L.; Cama-Olivares, A.; Fushimi, K.; Chen, J.; Huen, S.C.; Tolwani, A.J.; Neyra, J.A. Epidemiology of sepsis-associated acute kidney injury in the ICU with contemporary consensus definitions. Crit. Care 2025, 29, 128. [Google Scholar] [CrossRef] [PubMed]
- Hoste, E.A.; Bagshaw, S.M.; Bellomo, R.; Cely, C.M.; Colman, R.; Cruz, D.N.; Edipidis, K.; Forni, L.G.; Gomersall, C.D.; Govil, D.; et al. Epidemiology of acute kidney injury in critically ill patients: The multinational AKI-EPI study. Intensive Care Med. 2015, 41, 1411–1423. [Google Scholar] [CrossRef] [PubMed]
- Vincent, J.L.; Sakr, Y.; Sprung, C.L.; Ranieri, V.M.; Reinhart, K.; Gerlach, H.; Moreno, R.; Carlet, J.; Le Gall, J.R.; Payen, D. Sepsis in European intensive care units: Results of the SOAP study. Crit. Care Med. 2006, 34, 344–353. [Google Scholar] [CrossRef] [PubMed]
- Zarbock, A.; Nadim, M.K.; Pickkers, P.; Gomez, H.; Bell, S.; Joannidis, M.; Kashani, K.; Koyner, J.L.; Pannu, N.; Meersch, M.; et al. Sepsis-associated acute kidney injury: Consensus report of the 28th Acute Disease Quality Initiative workgroup. Nat. Rev. Nephrol. 2023, 19, 401–417. [Google Scholar] [CrossRef] [PubMed]
- Peerapornratana, S.; Manrique-Caballero, C.L.; Gómez, H.; Kellum, J.A. Acute kidney injury from sepsis: Current concepts, epidemiology, pathophysiology, prevention and treatment. Kidney Int. 2019, 96, 1083–1099. [Google Scholar] [CrossRef] [PubMed]
- Kister, T.S.; Schmidt, M.; Heuft, L.; Federbusch, M.; Haase, M.; Kaiser, T. Laboratory Diagnostic of Acute Kidney Injury and Its Progression: Risk of Underdiagnosis in Female and Elderly Patients. J. Clin. Med. 2023, 12, 1092. [Google Scholar] [CrossRef] [PubMed]
- Kounatidis, D.; Tzivaki, I.; Daskalopoulou, S.; Daskou, A.; Adamou, A.; Rigatou, A.; Sdogkos, E.; Karampela, I.; Dalamaga, M.; Vallianou, N.G. Sepsis-Associated Acute Kidney Injury: What’s New Regarding Its Diagnostics and Therapeutics? Diagnostics 2024, 14, 2845. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.L.; Xue, F.; Yin, F.; Zhao, J.; Zhang, K.Y. Expression of syndecan-1, PKC and VEGF in rats with acute kidney injury and correlation between syndecan-1 and renal function. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 12794–12801. [Google Scholar] [CrossRef] [PubMed]
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; Mcintyre, L.; Ostermann, M.; Prescott, H.C.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2021. Crit. Care Med. 2021, 49, e1063–e1143. [Google Scholar] [CrossRef] [PubMed]
- Vanmassenhove, J.; Glorieux, G.; Lameire, N.; Hoste, E.; Dhondt, A.; Vanholder, R.; Van Biesen, W. Influence of severity of illness on neutrophil gelatinase-associated lipocalin performance as a marker of acute kidney injury: A prospective cohort study of patients with sepsis. BMC Nephrol. 2015, 16, 18. [Google Scholar] [CrossRef] [PubMed]
- Rovin, B.H.; Adler, S.G.; Barratt, J.; Bridoux, F.; Burdge, K.A.; Chan, T.M.; Cook, H.T.; Fervenza, F.C.; Gibson, K.L.; Glassock, R.J.; et al. Executive summary of the KDIGO 2021 Guideline for the Management of Glomerular Diseases. Kidney Int. 2021, 100, 753–779. [Google Scholar] [CrossRef] [PubMed]
- Kellum, J.A.; Lameire, N.; for the KDIGO AKI Guideline Work Group. Section 2: AKI Definition. Kidney Int. Suppl. 2012, 2, 19–36. [Google Scholar] [CrossRef] [PubMed]
- Uchimido, R.; Schmidt, E.P.; Shapiro, N.I. The glycocalyx: A novel diagnostic and therapeutic target in sepsis. Crit. Care 2019, 23, 16. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Hu, H.; Sun, T.; Zhu, W.; Tian, H.; Hao, D.; Wang, T.; Wang, X. Plasma Endothelial Glycocalyx Components as a Potential Biomarker for Predicting the Development of Disseminated Intravascular Coagulation in Patients With Sepsis. J. Intensive Care Med. 2021, 36, 1286–1295. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Wang, Y.; Wu, X.; Cai, Y.; Zhai, T.; Zhan, Q. Prognostic Value of Syndecan-1 in the Prediction of Sepsis-Related Complications and Mortality: A Meta-Analysis. Front. Public. Health 2022, 10, 870065. [Google Scholar] [CrossRef] [PubMed]
- de Melo Bezerra Cavalcante, C.T.; Castelo Branco, K.M.; Pinto Júnior, V.C.; Meneses, G.C.; de Oliveira Neves, F.M.; de Souza, N.M.; Penaforte, K.L.; Martins, A.M.; Libório, A.B. Syndecan-1 improves severe acute kidney injury prediction after pediatric cardiac surgery. J. Thorac. Cardiovasc. Surg. 2016, 152, 178–186.e172. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Jiang, W.; Li, Y.; Li, H.; Geng, X.; Chen, X.; Hu, J.; Shen, B.; Wang, Y.; Fang, Y.; et al. Association Between Syndecan-1, Fluid Overload, and Progressive Acute Kidney Injury After Adult Cardiac Surgery. Front. Med. 2021, 8, 648397. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Cui, J.; Lu, Y.; Sun, J.; Liu, J. Meta-analysis of the diagnostic value of serum, plasma and urine neutrophil gelatinase-associated lipocalin for the detection of acute kidney injury in patients with sepsis. Exp. Ther. Med. 2021, 21, 386. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, C.; Yang, X.; Guo, S.; Cui, Z.; Kang, H.; Ma, Z.; Wang, H. Neutrophil Gelatinase-Associated Lipocalin and Interleukin-18 in the Prediction of Acute Kidney Injury in Sepsis Patients. Int. J. Gen. Med. 2024, 17, 6335–6341. [Google Scholar] [CrossRef] [PubMed]
- Sapra, S.; Goyal, L.K.; Mathur, A.; Jain, G. Serum Neutrophil Gelatinase-associated Lipocalin: A Potential Marker of Impending Acute Kidney Injury in Sepsis. J. Appl. Sci. Clin. Pract. 2024, 5, 57–60. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, Q.; Zhao, X.; Dong, G.; Li, C. Diagnostic and prognostic value of neutrophil gelatinase-associated lipocalin, matrix metalloproteinase-9, and tissue inhibitor of matrix metalloproteinases-1 for sepsis in the Emergency Department: An observational study. Crit. Care 2014, 18, 634. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, G.S.; Frota, M.L.; Gonzaga, M.J.D.; Vattimo, M.F.F.; Lima, C. The Role of Biomarkers in Diagnosis of Sepsis and Acute Kidney Injury. Biomedicines 2024, 12, 931. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.Y.; Hong, D.Y.; Lee, K.R.; Paik, J.H.; Jung, H.M. Plasma presepsin level predicts acute kidney injury in patients with sepsis in the emergency department. Medicine 2022, 101, e29919. [Google Scholar] [CrossRef] [PubMed]
- Baik, S.M.; Park, J.; Kim, T.Y.; Choi, S.H.; Hong, K.S. Validation of presepsin measurement for mortality prediction of sepsis: A preliminary study. Acute Crit. Care 2022, 37, 527–532. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Song, J.; Park, D.W.; Seok, H.; Ahn, S.; Kim, J.; Park, J.; Cho, H.-j.; Moon, S. Diagnostic and prognostic value of presepsin and procalcitonin in non-infectious organ failure, sepsis, and septic shock: A prospective observational study according to the Sepsis-3 definitions. BMC Infect. Dis. 2022, 22, 8. [Google Scholar] [CrossRef] [PubMed]
- Kyriazopoulou, E.; Leventogiannis, K.; Tavoulareas, G.; Mainas, E.; Toutouzas, K.; Mathas, C.; Prekates, A.; Sakka, V.; Panagopoulos, P.; Syrigos, K.; et al. Presepsin as a diagnostic and prognostic biomarker of severe bacterial infections and COVID-19. Sci. Rep. 2023, 13, 3814. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.B.; Lee, J.W.; Yoon, S.H.; Hwang, W.M.; Yun, S.R.; Koh, D.H.; Park, Y. Plasma presepsin for mortality prediction in patients with sepsis-associated acute kidney injury requiring continuous kidney replacement therapy. Kidney Res. Clin. Pract. 2024, 43, 457–468. [Google Scholar] [CrossRef] [PubMed]
- Pluta, M.P.; Czempik, P.F.; Kwiatkowska, M.; Marczyk-Bełbot, K.; Maślanka, S.; Mika, J.; Krzych, Ł.J. Presepsin Does Not Predict Risk of Death in Sepsis Patients Admitted to the Intensive Care Unit: A Prospective Single-Center Study. Biomedicines 2024, 12, 2313. [Google Scholar] [CrossRef] [PubMed]
- Verras, C.; Bezati, S.; Bistola, V.; Ventoulis, I.; Matsiras, D.; Tsiodras, S.; Parissis, J.; Polyzogopoulou, E. Point-of-Care Serum Proenkephalin as an Early Predictor of Mortality in Patients Presenting to the Emergency Department with Septic Shock. Biomedicines 2024, 12, 1004. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.-C.; Chuan, M.-H.; Liu, J.-H.; Liao, H.-W.; Ng, L.L.; Magnusson, M.; Jujic, A.; Pan, H.-C.; Wu, V.-C.; Forni, L.G. Proenkephalin as a biomarker correlates with acute kidney injury: A systematic review with meta-analysis and trial sequential analysis. Crit. Care 2023, 27, 481. [Google Scholar] [CrossRef] [PubMed]
- Walczak-Wieteska, P.; Zuzda, K.; Małyszko, J.; Andruszkiewicz, P. Proenkephalin A 119–159 in Perioperative and Intensive Care—A Promising Biomarker or Merely Another Option? Diagnostics 2024, 14, 2364. [Google Scholar] [CrossRef] [PubMed]
- Shi, K.; Jiang, W.; Song, L.; Li, X.; Zhang, C.; Li, L.; Feng, Y.; Yang, J.; Wang, T.; Wang, H.; et al. Persistent acute kidney injury biomarkers: A systematic review and meta-analysis. Clin. Chim. Acta 2025, 564, 119907. [Google Scholar] [CrossRef] [PubMed]
- Suarez De La Rica, A.; Gilsanz, F.; Maseda, E. Epidemiologic trends of sepsis in western countries. Ann. Transl. Med. 2016, 4, 325. [Google Scholar] [CrossRef] [PubMed]
- Fleischmann-Struzek, C.; Mellhammar, L.; Rose, N.; Cassini, A.; Rudd, K.E.; Schlattmann, P.; Allegranzi, B.; Reinhart, K. Incidence and mortality of hospital- and ICU-treated sepsis: Results from an updated and expanded systematic review and meta-analysis. Intensive Care Med. 2020, 46, 1552–1562. [Google Scholar] [CrossRef] [PubMed]
- Rhee, C.; Dantes, R.; Epstein, L.; Murphy, D.J.; Seymour, C.W.; Iwashyna, T.J.; Kadri, S.S.; Angus, D.C.; Danner, R.L.; Fiore, A.E.; et al. Incidence and Trends of Sepsis in US Hospitals Using Clinical vs Claims Data, 2009-2014. JAMA 2017, 318, 1241–1249. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, M.; Ramazani, J. Evaluation of Acute Physiology and Chronic Health Evaluation II and sequential organ failure assessment scoring systems for prognostication of outcomes among Intensive Care Unit’s patients. Saudi J. Anaesth. 2016, 10, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Cheon, S.; Kwon, H.; Ryu, J.-A. Evaluating the Prognostic Efficacy of Scoring Systems in Neurocritical and Neurosurgical Care: An Insight into APACHE II, SOFA, and GCS. J. Neurointensive Care 2023, 6, 123–129. [Google Scholar] [CrossRef]
- Oliveira, A.M.; Oliveira, A.; Vidal, R.; Gonçalves-Pereira, J. Infectious Foci, Comorbidities and Its Influence on the Outcomes of Septic Critically Ill Patients. Microorganisms 2024, 12, 1705. [Google Scholar] [CrossRef] [PubMed]
- Al Omar, S.; Alshraideh, J.A.; Oweidat, I.; Al Qadire, M.; Khalaf, A.; Abu Sumaqa, Y.; Al-Mugheed, K.; Saeed Alabdullah, A.A.; Farghaly Abdelaliem, S.M. Mortality of patients with sepsis in intensive care units at tertiary hospitals in Jordan: Prospective cohort study. Medicine 2024, 103, e40169. [Google Scholar] [CrossRef] [PubMed]
- Ko, R.E.; Kang, D.; Cho, J.; Na, S.J.; Chung, C.R.; Lim, S.Y.; Lee, Y.J.; Park, S.; Oh, D.K.; Lee, S.Y.; et al. Influence of gender on age-associated in-hospital mortality in patients with sepsis and septic shock: A prospective nationwide multicenter cohort study. Crit. Care 2023, 27, 229. [Google Scholar] [CrossRef] [PubMed]
- Cui, N.; Zhang, H.; Chen, Z.; Yu, Z. Prognostic significance of PCT and CRP evaluation for adult ICU patients with sepsis and septic shock: Retrospective analysis of 59 cases. J. Int. Med. Res. 2019, 47, 1573–1579. [Google Scholar] [CrossRef] [PubMed]
- Molano-Franco, D.; Arevalo-Rodriguez, I.; Muriel, A.; Del Campo-Albendea, L.; Fernández-García, S.; Alvarez-Méndez, A.; Simancas-Racines, D.; Viteri, A.; Sanchez, G.; Fernandez-Felix, B.; et al. Basal procalcitonin, C-reactive protein, interleukin-6, and presepsin for prediction of mortality in critically ill septic patients: A systematic review and meta-analysis. Diagn. Progn. Res. 2023, 7, 15. [Google Scholar] [CrossRef] [PubMed]
- White, K.C.; Serpa-Neto, A.; Hurford, R.; Clement, P.; Laupland, K.B.; See, E.; McCullough, J.; White, H.; Shekar, K.; Tabah, A.; et al. Sepsis-associated acute kidney injury in the intensive care unit: Incidence, patient characteristics, timing, trajectory, treatment, and associated outcomes. A multicenter, observational study. Intensive Care Med. 2023, 49, 1079–1089. [Google Scholar] [CrossRef] [PubMed]
- Valley, T.S.; Nallamothu, B.K.; Heung, M.; Iwashyna, T.J.; Cooke, C.R. Hospital Variation in Renal Replacement Therapy for Sepsis in the United States. Crit. Care Med. 2018, 46, e158–e165. [Google Scholar] [CrossRef] [PubMed]
- Legrand, M.; Bagshaw, S.M.; Bhatraju, P.K.; Bihorac, A.; Caniglia, E.; Khanna, A.K.; Kellum, J.A.; Koyner, J.; Harhay, M.O.; Zampieri, F.G.; et al. Sepsis-associated acute kidney injury: Recent advances in enrichment strategies, sub-phenotyping and clinical trials. Crit. Care 2024, 28, 92. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Xie, H.; Ye, Z.; Li, F.; Wang, L. Rates, predictors, and mortality of sepsis-associated acute kidney injury: A systematic review and meta-analysis. BMC Nephrol. 2020, 21, 318. [Google Scholar] [CrossRef] [PubMed]
- Barbar, S.D.; Binquet, C.; Monchi, M.; Bruyère, R.; Quenot, J.P. Impact on mortality of the timing of renal replacement therapy in patients with severe acute kidney injury in septic shock: The IDEAL-ICU study (initiation of dialysis early versus delayed in the intensive care unit): Study protocol for a randomized controlled trial. Trials 2014, 15, 270. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Hou, S.; Tian, X. Risk Factors of Sepsis Associated Acute Kidney Injury in Patients with Sepsis: A Meta-Analysis. Intensive Care Res. 2023, 3, 163–170. [Google Scholar] [CrossRef]
- Canbaz, M.; Orhun, G.; Polat, Ö.; Anaklı, İ.; Aydın, A.F.; Kılınç, S.; Özcan, P.E.; Esen, F. Evaluation of Potential Biomarkers to Diagnose Sepsis-associated Acute Kidney Injury and Prognosticate Sepsis Severity. In Proceedings of the 25th International Intensive Care Symposium, İstanbul, Turkey, 3–4 May 2025. [Google Scholar]
Parameter | AKI (77, 55%) | Non-AKI (63, 45%) | p | RRT-Positive (24, 17.2%) | RRT-Negative (116, 82.8%) | p |
---|---|---|---|---|---|---|
Clinical variables | ||||||
Age (years) | 67.8 ± 13.4 | 62 ± 1.6 | 0.036 | 65.3 ± 12.8 | 65.2 ± 16.8 | 0.961 |
Gender (Male) | 52, 67.5% | 36, 57.1% | 0.206 | 15, 62.5% | 73, 62.9% | 0.968 |
BMI (kg/m2) | 30.7 (26.2–33.2) | 29.7 (24.8–32.3) | 0.186 | 26.6 (23.6–32.3) | 30.3 (26.2–33.1) | 0.137 |
Reason for admission Abdominal Respiratory Soft tissue Urinary Endocarditis Neurological | 37, 48.1% 33, 42.9% 4, 5.2% 1, 1.3% 2, 2.6% 0, 0% | 30, 47.6% 28, 44.4% 2, 3.2% 1, 1.6% 0, 0% 2, 3.2% | 0.486 | 11, 45.8% 12, 50.0% 1, 4.2% 0, 0% 0, 0% 0, 0% | 56, 48.2% 49, 42.2% 5, 4.3% 2, 1.7% 2, 1.7% 2, 1.7% | 0.908 |
Patient category Surgical Medical | 41, 53.2% 36, 46.8% | 31, 49.2% 32, 50.8% | 0.634 | 12, 50% 12, 50% | 60, 51.7% 56, 48.2% | 0.878 |
Comorbidities Cardiac Respiratory Neurologic Endocrinology Gastrointestinal Malignancy | 52, 67.5% 34, 44.2% 20, 26% 34, 44.2% 15, 19.5% 29, 37.3% | 36, 57.1% 16, 25.4% 17, 27% 21, 33.3% 24, 38.1% 30, 47.6% | 0.206 0.021 0.893 0.192 0.015 0.235 | 16, 66.7% 11, 45.8% 5, 20.8% 11, 45.8% 4, 16.7% 8, 33.3% | 72, 37.9% 39, 33.6% 32, 27.6% 44, 37.9% 35, 30.2% 51, 44% | 0.671 0.349 0.495 0.471 0.179 0.373 |
CCI | 6.0 (4.0–8.5) | 5.0 (3.0–7.0) | 0.066 | 5.0 (3.3–8.8) | 6.0 (3.0–8.0) | 0.870 |
APACHE II score (on the first day of admission) | 18.0 (11.5–26.0) | 13.0 (9.0–18.0) | <0.001 | 14.0 (10.5–21.3) | 15.5 (10.0–22.0) | 0.750 |
GCS | 10.0 (8.0–13.0) | 11.5 (10.0–13.0) | 0.054 | 10.0 (8.3–11.8) | 11.0 (9.0–13.0) | 0.084 |
MV | 69, 89.6% | 52, 82.5% | 0.224 | 23, 95.8% | 98, 84.5% | 0.197 |
Vasopressor support | 70, 90.9% | 59, 93.7% | 0.754 | 22, 91.7% | 107, 92.2% | 1000 |
The initial SOFA score | 8.0 (6.0–10.0) | 5.0 (4.0–7.0) | <0.001 | 8.0 (5.0–10.0) | 7.0 (5.0–9.0) | 0.05 |
Mortality | 48, 62.3% | 22, 34.9% | 0.001 | 19, 79.2% | 51, 44.0% | 0.003 |
Laboratory data | ||||||
WBC count (103/µL) | 12.1 (7.8–16.6) | 10.3 (7.1–16.5) | 0.432 | 11.5 (8.1–17.5) | 11.7 (7.4–16.1) | 0.849 |
Neutrophil count (103/µL) | 10.6 (6.3–15.3) | 9.2 (5.4–14.5) | 0.312 | 10.3 (5.9–15.8) | 9.8 (6.0–14.7) | 0.774 |
Lymphocyte count (103/µL) | 0.7 (0.4–1.3) | 0.8 (0.5–1.1) | 0.534 | 0.6 (0.3–1.2) | 0.8 (0.5–1.1) | 0.327 |
NLR | 12.8 (6.7–23.5) | 12.2 (6.1– 21.0) | 0.419 | 17.8 (6.3–37.5) | 12.4 (6.3–21.2) | 0.249 |
TLR | 251.6 (114.9–563.1) | 376.7 (202.5–538.0) | 0.125 | 245.0 (87.8–703.3) | 332.5 (157.2–516.7) | 0.854 |
CRP (mg/L) | 198.1 (115.2–294.6) | 155.0 (49.0–257.0) | 0.043 | 226.5 (114.8–342.5) | 173.5 (65.5–259.3) | 0.077 |
PCT (ng/mL) | 4.1 (0.87–36.8) | 1.4 (0.38–7.7) | 0.007 | 2.48 (0.6–50.9) | 3.3 (0.6, 14.9) | 0.707 |
Albumin (g/dL) | 2.74 (2.48–3.1) | 2.71 (2.5–3.3) | 0.755 | 2.89 (2.53–3.43) | 2.71 (2.47–3.12) | 0.263 |
Lactate (mmol/L) | 2.2 (1.5–4.8) | 1.6 (1.1–2.4) | 0.003 | 2.0 (1.5–4.5) | 1.9 (1.2–3.4) | 0.306 |
NT-proBNP (µg/L) | 6252 (2032–15,701) | 2242 (542–8416) | 0.004 | 7545 (1203–13,907) | 4408 (1186–10,704) | 0.465 |
D-dimer (µg/L) | 2385 (1038–5829) | 1482 (884–4144) | 0.182 | 2340 (1038–6046) | 1640 (950–4649) | 0.545 |
Mortality | |||
---|---|---|---|
Nonsurvivor | Survivor | p | |
SDC1(ng/mL) | 3.85 (2.37–7.09) | 3.83 (2.63–6.76) | 0.891 |
NGAL(ng/mL) | 5.38 (2.88–8.44) | 5.33 (2.37–8.22) | 0.678 |
PENK(ng/L) | 361.9 (321.1–470.2) | 357.4 (306.9–440.6) | 0.671 |
PSPN(ng/L) | 131.9 (107.1–154.0) | 126.3 (97.8–159.5) | 0.780 |
Severity/1 | |||
APACHE < 20 (101, 72.1%) | APACHE > 20 (39, 27.9%) | p | |
SDC1(ng/mL) | 3.83 (2.38–6.54) | 3.92 (2.74–7.47) | 0.492 |
NGAL(ng/mL) | 5.02 (2.32–7.66) | 6.22 (3.38–10.5) | 0.075 |
PENK(ng/L) | 353.8 (310.2–441.3) | 363.9 (322.9–471.5) | 0.468 |
PSPN(ng/L) | 125.6 (98.2–152.4) | 136.7 (111.4–162.1) | 0.109 |
Severity/2 | |||
SOFA < 9 (99, 70.7%) | SOFA > 9 (41, 29.3%) | p | |
SDC1(ng/mL) | 3.50 (2.36–6.05) | 4.65 (2.96–7.92) | 0.032 |
NGAL(ng/mL) | 4.57 (2.19–7.34) | 7.48 (4.19–10.5) | <0.001 |
PENK(ng/L) | 358.9 (306–424.7) | 359.4 (325.6–493.3) | 0.266 |
PSPN(ng/L) | 128.5 (99.5–152.8) | 131.2 (103.8–167.0) | 0.438 |
AKI evaluation | |||
AKI | Non-AKI | p | |
SDC1(ng/mL) | 5.01 (2.94–7.87) | 3.13 (1.83–5.17) | <0.001 |
NGAL(ng/mL) | 7.22 (3.12–10.5) | 4.15 (2.14–6.5) | <0.001 |
PENK(ng/L) | 350.6 (313.9–462.1) | 368.8 (311.5–440.7) | 0.859 |
PSPN(ng/L) | 131.2 (104.8–159.5) | 125.7 (98.2–147.5) | 0.425 |
RRT initiation | |||
RRT-positive | RRT-negative | p | |
SDC1(ng/mL) | 6.89 (3.98–8.28) | 3.50 (2.32–613) | <0.001 |
NGAL(ng/mL) | 6.22 (1.21–10.5) | 5.38 (2.56–8.14) | 0.957 |
PENK(ng/L) | 344.7 (293.2–493.3) | 362.2 (315.2–440.7) | 0.580 |
PSPN(ng/L) | 122.4 (103.7–152.5) | 130.3 (102.1–158.0) | 0.752 |
Renal recovery (for AKI patients) | |||
Renal recovery-positive (30, 39.0%) | Renal recovery-negative (47, 61.0%) | p | |
SDC1 (ng/mL) | 4.77 (3.27–7.89) | 5.16 (2.87–7.89) | 0.766 |
NGAL (ng/mL) | 7.29 (3.66–10.5) | 6.28 (2.93–10.5) | 0.361 |
PENK (ng/L) | 340.3 (304.0–425.2) | 361.2 (327.5–486.5) | 0.185 |
PSPN (ng/L) | 127.4 (97.1–164.1) | 132.7 (108.3–157.3) | 0.884 |
AKI Evaluation | ||
---|---|---|
Parameter | OR (%95, CI) | p |
Comorbidities, Respiratory | 0.482 (0.184–1.262) | 0.137 |
Comorbidities, Gastrointestinal | 1.979 (0.726–5.392) | 0.182 |
APACHE II score (on the first day of admission) | 1.047 (0.985–1.113) | 0.142 |
The initial SOFA score | 1.258 (1.047–1.511) | 0.014 |
Age (years) | 1.022 (0.994–1.051) | 0.118 |
CRP (mg/L) | 1.003 (1.000–1.007) | 0.079 |
PCT (ng/mL) | 1.010 (0.992–1.029) | 0.270 |
Lactate (mmol/L) | 1.158 (0.939–1.427) | 0.171 |
NT-proBNP (µg/L) | 1 (1–1) | 0.389 |
SDC1 (ng/mL) | 1.201 (1.025–1.406) | 0.024 |
NGAL (ng/mL) | 1.120 (0.967–1.299) | 0.131 |
p < 0.001, Nagelkerke R Square: 0.421 | ||
RRT initiation | ||
The initial SOFA score | 1.133 (0.967–1.328) | 0.122 |
SDC1 (ng/mL) | 1.260 (1.078–1.472) | 0.004 |
p:0.002, Nagelkerke R Square: 0.147 |
Parameter | Cutoff | AUC (95% CI) | Sensitivity | Specificity | p | Youden Index |
---|---|---|---|---|---|---|
AKI evaluation | ||||||
SDC1 (ng/mL) | 2.73 | 0.659 (0.566–0.752) | 0.800 | 0.450 | 0.002 | 0.250 |
NGAL (ng/mL) | 7.08 | 0.666 (0.575– 0.758) | 0.520 | 0.850 | 0.001 | 0.370 |
APACHE II score (on the first day of admission) | 16.5 | 0.659 (0.567–0.751) | 0.600 | 0.720 | 0.002 | 0.320 |
The initial SOFA score | 8.5 | 0.736 (0.653–0.820) | 0.467 | 0.920 | <0.001 | 0.387 |
CRP (mg/L) | 72.9 | 0.606 (0.509–0.702) | 0.853 | 0.400 | 0.035 | 0.253 |
PCT (ng/mL) | 10.8 | 0.639 (0.546–0.732) | 0.400 | 0.833 | 0.006 | 0.233 |
Lactate (mmol/L) | 3.7 | 0.660 (0.568–0.752) | 0.360 | 0.917 | 0.001 | 1.277 |
NT-proBNP (µg/L) | 5737 | 0.640 (0.545–0.735) | 0.547 | 0.700 | 0.005 | 0.247 |
RRT initiation | ||||||
SDC1 (ng/mL) | 5.32 | 0.715 (0.606–0.824) | 0.667 | 0.698 | 0.001 | 0.365 |
The initial SOFA score | 7.5 | 0.626 (0.496–0.757) | 0.667 | 0.621 | 0.052 | 0.288 |
Parameter | Nonsurvivor (70, 50%) | Survivor (70, 50%) | p | OR (%95 CI) | p |
---|---|---|---|---|---|
Clinical variables | |||||
Age (years) | 65.8 ± 15.6 | 64.6 ± 16.8 | 0.654 | ||
Gender (Male) | 42, 60% | 46, 65.7% | 0.484 | ||
BMI (kg/m2) | 29.7 (24.7–33.2) | 30.1 (26.5–32.5) | 0.882 | ||
Reason for admission Abdominal Respiratory Soft tissue Urinary Endocarditis Neurological | 23, 35.7% 39, 55.7% 3, 4.3% 0, 0% 2, 2.9% 1, 1.4% | 42, 60% 22, 31.4% 3, 4.3% 2, 2.9% 0, 0% 1, 1.4% | 0.023 | ||
Patient category Surgical Medical | 27, 38.6% 43, 61.4% | 45, 64.3% 25, 35.7% | 0.002 | 3.014 (1.217–7.466) | 0.017 |
Comorbidities Cardiac Respiratory Neurologic Endocrinology Gastrointestinal system Malignancy | 45, 64.3% 33, 47.1% 20, 28.6% 31, 44.3% 15, 21.4% 28, 40% | 43, 61.4% 17, 24.3% 17, 24.3% 24, 34.3% 24, 34.3% 31, 44.3% | 0.726 0.005 0.565 0.226 0.09 0.608 | 3.001 (1.139–7.907) | 0.026 |
CCI | 6.0 (3.0–8.0) | 5.0 (3.0–7.0) | 0.379 | ||
APACHE II score (on the first day of admission) | 18.0 (12.8–23.3) | 12.0 (10.0–18.3) | 0.007 | 0.973 (0.911–1.039) | 0.416 |
GCS | 10.0 (8.0–11.3) | 13.0 (10.0–13.0) | <0.001 | 0.737 (0.595–0.914) | 0.005 |
The initial SOFA score | 8.0 (5.0–10.0) | 7.0 (5.0–8.0) | 0.012 | 0.951 (0.780–1.159) | 0.616 |
ICU length of stay | 9.0 (5.0–19.0) | 7.0 (4.0–15) | 0.036 | ||
MV | 69, 98.6% | 52, 74.3% | <0.001 | 6.321 (0.652–61.257) | 0.112 |
MV duration | 7.5 (3.0–16.3) | 1.0 (0–3.0) | <0.001 | ||
Vasopressor support | 69, 98.6% | 60, 85.7% | 0.005 | 9.658 (0.497–187.815) | 0.134 |
Vasopressor support duration | 7.0 (3.8–16) | 2.0 (1–4) | <0.001 | ||
AKI | 48, 68.6% | 29, 41.4% | 0.001 | 2.249 (0.791–6.399) | 0.129 |
RRT | 19, 27.1% | 5, 7.1% | 0.002 | 3.268 (0.871–12.260) | 0.079 |
Laboratory data | |||||
WBC count (103/µL) | 11.9 (8.1–15.7) | 10.8 (7.1–17.3) | 0.672 | ||
Neutrophil count (103/µL) | 10.7 (6.1–14.3) | 9.4 (5.6–15.1) | 0.647 | ||
Lymphocyte count (103/µL) | 0.8 (0.4–1.3) | 0.8 (0.5–1.0) | 0.487 | ||
NLR | 11.9 (5.3–22.6) | 12.8 (6.9–22.8) | 0.523 | ||
PLR | 258.2 (109.3–563.8) | 358.9 (214.9–534.5) | 0.111 | ||
CRP (mg/L) | 171.9 (64.1–286.5) | 189.5 (80.0–288.7) | 0.591 | ||
PCT (ng/mL) | 2.48 (0.54–14.8) | 3.28 (0.60–18.3) | 0.571 | ||
Creatinine (mg/dL) | 1.25 (0.74–2.22) | 1.13 (0.7–1.7) | 0.305 | ||
Albumin (g/dL) | 2.71 (2.43–3.15) | 2.85 (2.53–3.25) | 0.548 | ||
Lactate (mmol/L) | 1.9 (1.5–3.8) | 1.85 (1.2–3.4) | 0.510 | ||
NT-proBNP (µg/L) | 7566 (1885–18,027) | 2617 (651–8204) | 0.004 | 1 (1–1) | 0.148 |
D-dimer (µg/L) | 2316 (1021–4430) | 1248 (944–4932) | 0.270 | ||
p < 0.001,Nagelkerke R Square: 0.487 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Canbaz, M.; Orhun, G.; Polat, Ö.; Anaklı, İ.; Aydın, A.F.; Kılınç, S.; Ergin Özcan, P.; Esen, F. The Prognostic Utility of Pathophysiologically Distinct Biomarkers for Renal Outcomes in Sepsis: A Prospective ICU Cohort Study. J. Clin. Med. 2025, 14, 5370. https://doi.org/10.3390/jcm14155370
Canbaz M, Orhun G, Polat Ö, Anaklı İ, Aydın AF, Kılınç S, Ergin Özcan P, Esen F. The Prognostic Utility of Pathophysiologically Distinct Biomarkers for Renal Outcomes in Sepsis: A Prospective ICU Cohort Study. Journal of Clinical Medicine. 2025; 14(15):5370. https://doi.org/10.3390/jcm14155370
Chicago/Turabian StyleCanbaz, Mert, Günseli Orhun, Özlem Polat, İlkay Anaklı, Abdurrahman Fatih Aydın, Serhat Kılınç, Perihan Ergin Özcan, and Figen Esen. 2025. "The Prognostic Utility of Pathophysiologically Distinct Biomarkers for Renal Outcomes in Sepsis: A Prospective ICU Cohort Study" Journal of Clinical Medicine 14, no. 15: 5370. https://doi.org/10.3390/jcm14155370
APA StyleCanbaz, M., Orhun, G., Polat, Ö., Anaklı, İ., Aydın, A. F., Kılınç, S., Ergin Özcan, P., & Esen, F. (2025). The Prognostic Utility of Pathophysiologically Distinct Biomarkers for Renal Outcomes in Sepsis: A Prospective ICU Cohort Study. Journal of Clinical Medicine, 14(15), 5370. https://doi.org/10.3390/jcm14155370