The Use of Heart Rate Variability-Biofeedback (HRV-BF) as an Adjunctive Intervention in Chronic Fatigue Syndrome (CSF/ME) in Long COVID: Results of a Phase II Controlled Feasibility Trial
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Intervention Protocol
2.4. Instruments
2.5. Feasibility
2.6. Participant Satisfaction
2.7. Side Effects
2.8. Outcomes
2.9. Statistical Analysis
2.10. Ethical Considerations
3. Results
3.1. Feasibility (Drop-Out Rate)
3.2. Participant Satisfaction
3.3. Side Effects
3.4. Outcome Measures
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bonk, J.S.; Khedkar, P.H. Chronic fatigue syndrome: An old public health issue highlighted by the COVID-19 pandemic. Acta Physiol. 2022, 236, e13863. [Google Scholar] [CrossRef]
- Committee on the Diagnostic Criteria for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Beyond Myalgic Encephalomyelitis/Chronic Fatigue Syndrome; National Academies Press: Washington, DC, USA, 2015. [Google Scholar] [CrossRef]
- Lim, E.J.; Ahn, Y.C.; Jang, E.S.; Lee, S.W.; Lee, S.H.; Son, C.G. Systematic review and meta-analysis of the prevalence of chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME). J. Transl. Med. 2020, 18, 100. [Google Scholar] [CrossRef]
- NICE. Myalgic Encephalomyelitis (or Encephalopathy)/Chronic Fatigue Syndrome: Diagnosis and Management; NICE guideline [NG206]; NICE: London, UK, 2021; Available online: https://www.nice.org.uk/guidance/ng206/chapter/Recommendations#symptom-management-for-people-with-mecfs (accessed on 23 July 2025).
- Arron, H.E.; Marsh, B.D.; Kell, D.B.; Khan, M.A.; Jaeger, B.R.; Pretorius, E. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: The biology of a neglected disease. Front. Immunol. 2024, 15, 1386607. [Google Scholar] [CrossRef] [PubMed]
- Fluge, Ø.; Tronstad, K.J.; Mella, O. Pathomechanisms and possible interventions in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). J. Clin. Investig. 2021, 131, e150377. [Google Scholar] [CrossRef] [PubMed]
- Froehlich, L.; Hattesohl, D.B.R.; Jason, L.A.; Scheibenbogen, C.; Behrends, U.; Thoma, M. Medical Care Situation of People with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome in Germany. Medicina 2021, 57, 646. [Google Scholar] [CrossRef] [PubMed]
- Falk Hvidberg, M.; Brinth, L.S.; Olesen, A.V.; Petersen, K.D.; Ehlers, L. The Health-Related Quality of Life for Patients with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). PLoS ONE 2015, 10, e0132421. [Google Scholar] [CrossRef]
- Lopez-Leon, S.; Wegman-Ostrosky, T.; Perelman, C.; Sepulveda, R.; Rebolledo, P.A.; Cuapio, A.; Villapol, S. More than 50 Long-term effects of COVID-19: A systematic review and meta-analysis. Medrxiv Prepr. Serv. Health Sci. 2021, 11, 16144. [Google Scholar] [CrossRef]
- González-Hermosillo, J.A.; Martínez-López, J.P.; Carrillo-Lampón, S.A.; Ruiz-Ojeda, D.; Herrera-Ramírez, S.; Amezcua-Guerra, L.M.; Martínez-Alvarado, M.d.R. PostAcute COVID19 Symptoms, a Potential Link with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A 6 Month Survey in a Mexican Cohort. Brain Sci. 2021, 11, 760. [Google Scholar] [CrossRef]
- Seighali, N.; Abdollahi, A.; Shafiee, A.; Amini, M.J.; Teymouri Athar, M.M.; Safari, O.; Faghfouri, P.; Eskandari, A.; Rostaii, O.; Salehi, A.H.; et al. The global prevalence of depression, anxiety, and sleep disorder among patients coping with Post COVID-19 syndrome (long COVID): A systematic review and meta-analysis. BMC Psychiatry 2024, 24, 105. [Google Scholar] [CrossRef]
- Mazza, M.G.; Palladini, M.; Villa, G.; De Lorenzo, R.; Rovere Querini, P.; Benedetti, F. Prevalence, trajectory over time, and risk factor of post-COVID-19 fatigue. J. Psychiatr. Res. 2022, 155, 112–119. [Google Scholar] [CrossRef]
- Liew, F.; Efstathiou, C.; Fontanella, S.; Richardson, M.; Saunders, R.; Swieboda, D.; Sidhu, J.K.; Ascough, S.; Moore, S.C.; Mohamed, N.; et al. Large-scale phenotyping of patients with long COVID post-hospitalization reveals mechanistic subtypes of disease. Nat. Immunol. 2024, 25, 607–621. [Google Scholar] [CrossRef]
- Townsend, L.; Moloney, D.; Finucane, C.; McCarthy, K.; Bergin, C.; Bannan, C.; Kenny, R.A. Fatigue following COVID-19 infection is not associated with autonomic dysfunction. PLoS ONE 2021, 16, e0247280. [Google Scholar] [CrossRef] [PubMed]
- Mandal, S.; Barnett, J.; Brill, S.E.; Brown, J.S.; Denneny, E.K.; Hare, S.S.; Heightman, M.; Hillman, T.E.; Jacob, J.; Jarvis, H.C.; et al. ‘Long-COVID’: A cross-sectional study of persisting symptoms, biomarker and imaging abnormalities following hospitalisation for COVID-19. Thorax 2021, 76, 396–398. [Google Scholar] [CrossRef] [PubMed]
- Steardo, L.; Steardo, L., Jr.; Zorec, R.; Verkhratsky, A. Neuroinfection may contribute to pathophysiology and clinical manifestations of COVID-19. Acta Physiol. 2020, 229, e13473. [Google Scholar] [CrossRef]
- Steardo, L., Jr.; Steardo, L.; Verkhratsky, A.; Scuderi, C. Post-COVID-19 neuropsychiatric syndrome: Is maladaptive glial recovery to blame? Acta Physiol. 2021, 233, e13717. [Google Scholar] [CrossRef] [PubMed]
- Lam, M.H.B.; Wing, Y.K.; Yu, M.W.M.; Leung, C.M.; Ma, R.C.W.; Kong, A.P.S.; So, W.Y.; Fong, S.Y.Y.F.; Lam, S.P. Mental Morbidities and Chronic Fatigue in Severe Acute Respiratory Syndrome Survivors: Longterm Followup. Arch. Intern. Med. 2009, 169, 2142–2147. [Google Scholar] [CrossRef]
- Carta, M.G.; Testa, G.; Stocchino, S.; Finco, G.; Sancassiani, F.; Littera, M.T.; Deidda, M.C.; Ventriglio, A.; Bhugra, D.; Cossu, G. The efficacy of heart rate variability biofeedback training on sleep disorders and impact of fibromyalgia: Results of a phase II randomized controlled trial. J. Psychosom. Res. 2024, 181, 111664. [Google Scholar] [CrossRef]
- Carta, M.G.; Cossu, G.; Primavera, D.; Aviles Gonzalez, C.I.; Testa, G.; Stocchino, S.; Finco, G.; Littera, M.T.; Deidda, M.C.; Lorrai, S.; et al. Heart Rate Variability Biofeedback Efficacy on Fatigue and Energy Levels in Fibromyalgia: A Secondary Analysis of RCT NCT0412183. J. Clin. Med. 2024, 13, 4008. [Google Scholar] [CrossRef]
- Khazan, I.Z. The Clinical Handbook of Biofeedback: A Step-by-Step Guide for Training and Practice with Mindfulness; Wiley: Hoboken, NJ, USA, 2013. [Google Scholar]
- Schwartz, M.S.; Frank, A. Biofeedback: A Practitioner’s Guide; Guilford Publications: New York, NY, USA, 2017. [Google Scholar]
- Kim, H.G.; Cheon, E.J.; Bai, D.S.; Lee, Y.H.; Koo, B.H. Stress and Heart Rate Variability: A Meta-Analysis and Review of the Literature. Psychiatry Investig. 2018, 15, 235–245. [Google Scholar] [CrossRef]
- Moss, D.; Shaffer, F. The application of heart rate variability biofeedback to medical and mental health disorders. Biofeedback 2017, 45, 2–8. [Google Scholar] [CrossRef]
- Nestoriuc, Y.; Martin, A. Efficacy of biofeedback for migraine: A meta-analysis. Pain 2007, 128, 111–127. [Google Scholar] [CrossRef]
- Kremer, S.; Blue, T. Biofeedback as an Adjunct or Alternative Intervention to Cognitive Behavioral Therapy for Insomnia. Sleep Med. Clin. 2023, 18, 85–93. [Google Scholar] [CrossRef]
- Litwic-Kaminska, K.; Kotyśko, M.; Pracki, T.; Wiłkość-Dębczyńska, M.; Stankiewicz, B. The Effect of Autogenic Training in a Form of Audio Recording on Sleep Quality and Physiological Stress Reactions of University Athletes-Pilot Study. Int. J. Environ. Res. Public Health 2022, 19, 16043. [Google Scholar] [CrossRef] [PubMed]
- Windthorst, P.; Mazurak, N.; Kuske, M.; Hipp, A.; Giel, K.E.; Enck, P.; Nieß, A.; Zipfel, S.; Teufel, M. Heart rate variability biofeedback therapy and graded exercise training in management of chronic fatigue syndrome: An exploratory pilot study. J. Psychosom. Res. 2017, 93, 6–13. [Google Scholar] [CrossRef] [PubMed]
- Oosterhaven, J.; Wittink, H.; Mollema, J.; Kruitwagen, C.L.; Devillé, W. Predictors of dropout in interdisciplinary chronic pain management programmes: A systematic review. J. Rehabil. Med. 2018, 51, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Bicego, A.; Monseur, J.; Rousseaux, F.; Faymonville, M.E.; Malaise, N.; Salamun, I.; Collinet, A.; Nyssen, A.S.; Vanhaudenhuyse, A. Drop-out from chronic pain treatment programmes: Is randomization justified in biopsychosocial approaches? J. Rehabil. Med. 2021, 53, jrm00185. [Google Scholar] [CrossRef]
- Sancassiani, F.; Cocco, A.; Cossu, G.; Lorrai, S.; Trincas, G.; Floris, F.; Mellino, G.; Machado, S.; Nardi, A.E.; Fabrici, E.P.; et al. “VelaMente?!”—Sailin in a Crew to Improve Self-Efficacy in People with Psychosocial Disabilities: A Randomized Controlled Trial. Clin. Pract. Epidemiol. Ment. Health CP EMH 2017, 13, 200–212. [Google Scholar] [CrossRef]
- Sancassiani, F.; Lorrai, S.; Cossu, G.; Cocco, A.; Trincas, G.; Floris, F.; Mellino, G.; Machado, S.; Nardi, A.E.; Fabrici, E.P.; et al. The Effects of “VelaMente?!” Project on Social Functioning of People with Severe Psychosocial Disabilities. Clin. Pract. Epidemiol. Ment. Health CP EMH 2017, 13, 220–232. [Google Scholar] [CrossRef]
- Kennedy, R.S.; Drexler, J.M.; Compton, D.E.; Stanney, K.M.; Harm, D.L. Configural scoring of simulator sickness, cybersickness and space adaptation syndrome: Similarities and differences. In Virtual and Adaptive Environments: Applications, Implications, and Human Performance Issues; Hettinger, L.J., Haas, M.W., Eds.; Lawrence Erlbaum Associates Publishers: Mahwah, NJ, USA, 2003; pp. 247–278. [Google Scholar] [CrossRef]
- Balk, S.A.; Bertola, D.B.; Inman, V.W. Simulator sickness questionnaire: Twenty years later. In Proceedings of the Driving Assessment Conference 7, New York, NY, USA, 17–20 June 2013; University of Iowa: Iowa, IA, USA, 2013. [Google Scholar]
- Saredakis, D.; Szpak, A.; Birckhead, B.; Keage, H.A.D.; Rizzo, A.; Loetscher, T. Factors Associated With Virtual Reality Sickness in Head-Mounted Displays: A Systematic Review and Meta-Analysis. Front. Hum. Neurosci. 2020, 14, 96. [Google Scholar] [CrossRef]
- Bateman, R.M.; Sharpe, M.D.; Jagger, J.E.; Ellis, C.G.; Solé-Violán, J.; López-Rodríguez, M.; Herrera-Ramos, E.; Ruíz-Hernández, J.; Borderías, L.; Horcajada, J.; et al. 36th International Symposium on Intensive Care and Emergency Medicine. Crit. Care 2016, 20 (Suppl. S2), 94. [Google Scholar] [CrossRef]
- Stanney, K.M.; Kennedy, R.S. The psychometrics of cybersickness. Commun. ACM 1997, 40, 66–68. [Google Scholar] [CrossRef]
- Mendoza, T.R.; Wang, X.S.; Cleeland, C.S.; Morrissey, M.; Johnson, B.A.; Wendt, J.K.; Huber, S.L. The rapid assessment of fatigue severity in cancer patients: Use of the Brief Fatigue Inventory. Cancer 1999, 85, 1186–1196. [Google Scholar] [CrossRef]
- Chen, Y.W.; Camp, P.G.; Coxson, H.O.; Road, J.D.; Guenette, J.A.; Hunt, M.A.; Reid, W.D. A Comparison of Pain, Fatigue, Dyspnea and their Impact on Quality of Life in Pulmonary Rehabilitation Participants with Chronic Obstructive Pulmonary Disease. COPD 2018, 15, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, K.; Nakayasu, K.; Mori, M.; Sanda, R.; Shibayama, A.; Kusunose, M. Are Fatigue and Pain Overlooked in Subjects with Stable Chronic Obstructive Pulmonary Disease? Diagnostics 2021, 11, 2029. [Google Scholar] [CrossRef] [PubMed]
- Von Etzdorf, A.; Harzen, M.; Heinrichs, H.; Seifert, H.; Groiß, S.J.; Balloff, C.; Feldt, T.; Jensen, B.O.; Lüdde, T.; Bernhard, M.; et al. The population based cognitive testing in subjects with SARS-CoV-2 (POPCOV2) study: Longitudinal investigation of remote cognitive and fatigue screening in PCR-positive cases and negative controls. Front. Hum. Neurosci. 2024, 18, 1468204. [Google Scholar] [CrossRef]
- Spitzer, R.L.; Kroenke, K.; Williams, J.B. Primary Care Evaluation of Mental Disorders Validation and utility of a self-report version of PRIME-MD: The PHQ primary care study. Primary Care Evaluation of Mental Disorders. Patient Health Quest. JAMA 1999, 282, 1737–1744. [Google Scholar] [CrossRef]
- Carta, M.G.; Ouali, U.; Perra, A.; Ben Cheikh Ahmed, A.; Boe, L.; Aissa, A.; Lorrai, S.; Cossu, G.; Aresti, A.; Preti, A.; et al. Living With Bipolar Disorder in the Time of COVID-19: Biorhythms During the Severe Lockdown in Cagliari, Italy, and the Moderate Lockdown in Tunis, Tunisia. Front. Psychiatry 2021, 12, 634765. [Google Scholar] [CrossRef]
- Cole, S.; Raju, M.; Barrett, J.; Gerrity, M.; Dietrich, A. The MacArthur Foundation Depression Education Program for Primary Care Physicians: Background, Participant’s Workbook, and Facilitator’s Guide. Gen. Hosp. Psychiatry 2000, 22, 299–358. [Google Scholar] [CrossRef]
- Gilbody, S.; Richards, D.; Barkham, M. Diagnosing depression in primary care using self-completed instruments: UK validation of PHQ-9 and CORE-OM. Br. J. Gen. Pract. J. R. Coll. Gen. Pract. 2007, 57, 650–652. [Google Scholar] [PubMed]
- Kroenke, K.; Spitzer, R.L.; Williams, J.B. The PHQ-9: Validity of a brief depression severity measure. J. Gen. Intern. Med. 2001, 16, 606–613. [Google Scholar] [CrossRef]
- Carta, M.G.; Angst, J. Screening for bipolar disorders: A public health issue. J. Affect. Disord. 2016, 205, 139–143. [Google Scholar] [CrossRef]
- Carta, M.G.; Preti, A.; Akiskal, H.S. Coping with the New Era: Noise and Light Pollution, Hperactivity and Steroid Hormones. Towards an Evolutionary View of Bipolar Disorders. Clin. Pract. Epidemiol. Ment. Health CP EMH 2018, 14, 33–36. [Google Scholar] [CrossRef]
- Wallensten, J.; Ljunggren, G.; Nager, A.; Wachtler, C.; Petrovic, P.; Carlsson, A.C. Differences in psychiatric comorbidity patterns in patients diagnosed with chronic stress-induced exhaustion disorder and depression—A cohort study in the total population of Region Stockholm. J. Affect. Disord. 2024, 351, 765–773. [Google Scholar] [CrossRef] [PubMed]
- Savitz, J.; Yolken, R.H. Therapeutic Implications of the Microbial Hypothesis of Mental Illness. Curr. Top. Behav. Neurosci. 2023, 61, 315–351. [Google Scholar] [CrossRef] [PubMed]
- Zung, W.W. A self-rating depression scale. Arch. Gen. Psychiatry 1965, 12, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Dunstan, D.A.; Scott, N. Norms for Zung’s Self-rating Anxiety Scale. BMC Psychiatry 2020, 20, 90. [Google Scholar] [CrossRef]
- Merz, W.A.; Ballmer, U. Demographic factors influencing psychiatric rating scales (Zung SDS and SAS). Pharmacopsychiatry 1984, 17, 50–56. [Google Scholar] [CrossRef]
- Ware, J., Jr.; Kosinski, M.; Keller, S.D. A 12-Item Short-Form Health Survey: Construction of scales and preliminary tests of reliability and validity. Med. Care 1996, 34, 220–233. [Google Scholar] [CrossRef]
- Primavera, D.; Carta, M.G.; Romano, F.; Sancassiani, F.; Chessa, E.; Floris, A.; Cossu, G.; Nardi, A.E.; Piga, M.; Cauli, A. Quality of Life in Systemic Lupus Erythematosus and Other Chronic Diseases: Highlighting the Amplified Impact of Depressive Episodes. Healthcare 2024, 12, 233. [Google Scholar] [CrossRef]
- Williamson, A.; Hoggart, B. Pain: A review of three commonly used pain rating scales: Pain rating scales. J. Clin. Nurs. 2005, 14, 798–804. [Google Scholar] [CrossRef]
- Hawker, G.A.; Mian, S.; Kendzerska, T.; French, M. Measures of adult pain: Visual Analog Scale for Pain (VAS Pain), Numeric Rating Scale for Pain (NRS Pain), McGill Pain Questionnaire (MPQ), Short-Form McGill Pain Questionnaire (SF-MPQ), Chronic Pain Grade Scale (CPGS), Short Form-36 Bodily Pain Scale (SF-36 BPS), and Measure of Intermittent and Constant Osteoarthritis Pain (ICOAP). Arthritis Care Res. 2011, 63 (Suppl. S11), S240–S252. [Google Scholar] [CrossRef]
- Kersten, P.; Küçükdeveci, A.A.; Tennant, A. The use of the Visual Analogue Scale (VAS) in rehabilitation outcomes. J. Rehabil. Med. 2012, 44, 609–610. [Google Scholar] [CrossRef]
- Hjermstad, M.J.; Fayers, P.M.; Haugen, D.F.; Caraceni, A.; Hanks, G.W.; Loge, J.H.; Fainsinger, R.; Aass, N.; Kaasa, S. Studies comparing numerical rating scales, verbal rating scales, and visual analogue scales for assessment of pain intensity in adults: A systematic literature review. J. Pain Symptom Manag. 2011, 41, 1073–1093. [Google Scholar] [CrossRef]
- Joos, E.; Peretz, A.; Beguin, S.; Famaey, J.P. Reliability and reproducibility of visual analogue scale and numeric rating scale for therapeutic evaluation of pain in rheumatic patients. J. Rheumatol. 1991, 18, 1269–1270. [Google Scholar] [PubMed]
- Von Korff, M.; Jensen, M.P.; Karoly, P. Assessing global pain severity by self-report in clinical and health services research. Spine 2000, 25, 3140–3151. [Google Scholar] [CrossRef] [PubMed]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef] [PubMed]
- Price, J.R.; Mitchell, E.; Tidy, E.; Hunot, V. Cognitive behaviour therapy for chronic fatigue syndrome in adults. Cochrane Database Syst. Rev. 2008, 2008, CD001027. [Google Scholar] [CrossRef]
- Sharpe, M. Non-pharmacological approaches to treatment. In Ciba Foundation Symposium 173—Chronic Fatigue Syndrome: Chronic Fatigue Syndrome: Ciba Foundation Symposium 173; John Wiley & Sons, Ltd.: Chichester, UK, 1993; pp. 298–317. [Google Scholar] [CrossRef]
- Whitehead, L.; Campion, P. Can general practitioners manage chronic fatigue syndrome? J. Chronic Fatigue Syndr. 2002, 10, 55–64. [Google Scholar] [CrossRef]
- Prins, J.B.; Bleijenberg, G.; Bazelmans, E.; Elving, L.D.; de Boo, T.M.; Severens, J.L.; van der Wilt, G.J.; Spinhoven, P.; van der Meer, J.W. Cognitive behaviour therapy for chronic fatigue syndrome: A multicentre randomised controlled trial. Lancet 2001, 357, 841–847. [Google Scholar] [CrossRef]
- Chisholm, D.; Godfrey, E.; Ridsdale, L.; Chalder, T.; King, M.; Seed, P.; Wallace, P.; Wessely, S.; Fatigue Trialists’ Group. Chronic fatigue in general practice: Economic evaluation of counselling versus cognitive behaviour therapy. Br. J. Gen. Pract. J. R. Coll. Gen. Pract. 2001, 51, 15–18. [Google Scholar] [PubMed]
- Strang, J.M. Treatment of Chronic Fatigue Syndrom: A Cognitive-Behavioral Approach to Enhance Personal. Mastery. Ph.D. Thesis, Arizona State University, Tempe, AZ, USA, August 2002. [Google Scholar]
- Ridsdale, L.; Darbishire, L.; Seed, P.T. Is graded exercise better than cognitive behaviour therapy for fatigue? A UK randomized trial in primary care. Psychol. Med. 2004, 34, 37–49. [Google Scholar] [CrossRef]
- Jason, L.A.; Torres-Harding, S.; Friedberg, F.; Corradi, K.; Njoku, M.G.; Donalek, J.; Reynolds, N.; Brown, M.; Weitner, B.B.; Rademaker, A.; et al. Non-pharmacologic interventions for CFS: A randomized trial. J. Clin. Psychol. Med. Settings 2007, 14, 275–296. [Google Scholar] [CrossRef]
- Ebell, M.H. Cognitive Behavior Therapy Effective in Patients with Fatigue Associated with Long COVID. Am. Fam. Physician 2024, 109, 283B–283C. [Google Scholar] [PubMed]
- Deale, A.; Chalder, T.; Marks, I.; Wessely, S. Cognitive behavior therapy for chronic fatigue syndrome: A randomized controlled trial. Am. J. Psychiatry 1997, 154, 408–414. [Google Scholar] [CrossRef] [PubMed]
- Barrett, E. Cognitive-Behaviour Therapy in the Management of Chronic Fatigue Syndrome. Master’s Thesis, University of Sydney, Sydney, Australia, 1992. [Google Scholar]
- O’Dowd, H.; Gladwell, P.; Rogers, C.A.; Hollinghurst, S.; Gregory, A. Cognitive behavioural therapy in chronic fatigue syndrome: A randomised controlled trial of an outpatient group programme. Health Technol. Assess. 2006, 10, 37. [Google Scholar] [CrossRef] [PubMed]
- Caballol Angelats, R.; Gonçalves, A.Q.; Abellana, R.; Carrasco-Querol, N.; Pàmies Corts, A.; González Serra, G.; Gràcia Benaiges, D.; Sancho Sol, M.C.; Fusté Anguera, I.; Chavarria Jordana, S.; et al. Effectiveness of a Multicomponent Program for Fibromyalgia Patients in a Primary Care Setting (FIBROCARE Program): A Pragmatic Randomized Controlled Trial. J. Clin. Med. 2025, 14, 161. [Google Scholar] [CrossRef] [PubMed]
- ME Association. The ME Association Raises Concerns about New Research Promoting CBT as a Treatment for ME/CFS. 6 November 2023. Available online: https://meassociation.org.uk/2023/11/the-me-association-raises-concerns-about-new-research-promoting-cbt-as-a-treatment-for-me-cfs/ (accessed on 23 July 2025).
- Kuut, T.A.; Buffart, L.M.; Braamse, A.M.J.; Müller, F.; Knoop, H. Is the effect of cognitive behaviour therapy for chronic fatigue syndrome (ME/CFS) moderated by the presence of comorbid depressive symptoms? A meta-analysis of three treatment delivery formats. J. Psychosom. Res. 2024, 184, 111850. [Google Scholar] [CrossRef]
- Carta, M.G.; Aguglia, E.; Caraci, F.; Dell’Osso, L.; Di Sciascio, G.; Drago, F.; Del Giudice, E.; Faravelli, C.; Hardoy, M.C.; Lecca, M.E.; et al. Quality of life and urban/rural living: Preliminary results of a community survey in Italy. Clin. Pract. Epidemiol. Ment. Health CP EMH 2012, 8, 169–174. [Google Scholar] [CrossRef]
- Burch, J.B.; Alexander, M.; Balte, P.; Sofge, J.; Winstead, J.; Kothandaraman, V.; Ginsberg, J.P. Shift Work and Heart Rate Variability Coherence: Pilot Study Among Nurses. Appl. Psychophysiol. Biofeedback 2019, 44, 21–30. [Google Scholar] [CrossRef]
- Machado, S.; Sant’Ana, L.O.; Travassos, B.; Monteiro, D. Anodal Transcranial Direct Current Stimulation Reduces Competitive Anxiety and Modulates Heart Rate Variability in an eSports Player. Clin. Pract. Epidemiol. Ment. Health CP EMH 2022, 18, e174501792209270. [Google Scholar] [CrossRef]
- Primavera, D.; Cossu, G.; Marchegiani, S.; Preti, A.; Nardi, A.E. Does the Dysregulation of Social Rhythms Syndrome (DYMERS) be Considered an Essential Component of Panic Disorders? Clin. Pract. Epidemiol. Ment. Health CP EMH 2024, 20, e17450179293272. [Google Scholar] [CrossRef]
- Larun, L.; Brurberg, K.G.; Odgaard-Jensen, J.; Price, J.R. Exercise therapy for chronic fatigue syndrome. Cochrane Database Syst. Rev. 2024, 12, CD003200. [Google Scholar] [CrossRef]
- Vink, M.; Vink-Niese, A. CBT and graded exercise therapy studies have proven that ME/CFS and long COVID are physical diseases, yet no one is aware of that. Front. Hum. Neurosci. 2025, 19, 1495050. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Garner, P. Paul Garner: On his recovery from long covid, 2021. BMJ Opinion. Available online: https://blogs.bmj.com/bmj/2021/01/25/paul-garner-on-his-recovery-from-long-covid/ (accessed on 23 July 2025).
- Carta, M.G.; Cossu, G.; Pintus, E.; Zaccheddu, R.; Callia, O.; Conti, G.; Pintus, M.; Aviles Gonzalez, C.I.; Massidda, M.V.; Mura, G.; et al. Moderate Exercise Improves Cognitive Function in Healthy Elderly People: Results of a Randomized Controlled Trial. Clin. Pract. Epidemiol. Ment. Health CP EMH 2021, 17, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Okour, A.; Amarneh, B. Physical Activity Reduces Depression among Healthcare Workers during the COVID-19 Pandemic in Jordan. Clin. Pract. Epidemiol. Ment. Health CP EMH 2023, 19, e174501792306220. [Google Scholar] [CrossRef] [PubMed]
- OxCATTS. Evaluation of a Survey Exploring the Experiences of Adults and Children with ME/CFS Who Have Participated in CBT and GET Interventional Programmes; Final Report; Oxford Clinical Allied Technology and Trials Services Unit (OxCATTS), Oxford Brookes University: Oxford, MS, USA, 2019; Available online: https://www.meresearch.org.uk/wp-content/uploads/2019/04/Amended-Final-Consolidated-Report.pdf (accessed on 23 July 2025).
- Vogt, H.; Garner, P. ‘Long covid’ and how medical information is causing illness: A philosophical issue affecting public health. J. Eval. Clin. Pract. 2024, 30, 838–841. [Google Scholar] [CrossRef] [PubMed]
Experimental Group (N = 8) | Control Group (N = 9) | |||
---|---|---|---|---|
Age | 49.75 ± 9.98 | 49.33 ± 19.33 | H = 0.037 Kruskal–Wallis Test | p = 0.837 |
Sex (female) | 5 (62.5%) | 9 (100%) | Fisher Exact Test | p = 0.165 |
Graduated or More | 3 (37.8%) | 5 (55.5%) | Fisher Exact Test | p = 0.637 |
Brief Fatigue Inventory score | 6.44 ± 1.94 | 6.36 ± 1.29 | H = 0.070 Kruskal–Wallis Test | p = 0.791 |
Shapiro–Wilk Test | p = 0.850 | p = 0.430 | ||
With severe Fatigue | 4 (50%) | 2 (22.22%) | Fisher Exact Test | p = 0.335 |
PHQ-9 score | 6.44 ± 1.94 | 6.36 ± 1.29 | H = 0.079 Kruskal–Wallis Test | p = 0.701 |
Shapiro–Wilk Test | p = 0.850 | p = 0.430 | ||
With depression mild or more | 4 (50%) | 6 (66.67%) | Fisher Exact Test | p = 0.637 |
Self-Rating Anxiety Scale Score | 56.66 ± 11.01 | 57.00 ± 8.51 | H = 0.194 Kruskal–Wallis Test | p = 0.658 |
Shapiro-Wilk Test | p = 0.931 | p = 0.049 | ||
People with Anxiety State | 6 (75%) | 8 (88.89%) | Fisher Exact Test | p = 0.620 |
SF-12 score | 23.77 ± 3.57 | 24.00 ± 3.552 | H = 0.007 Kruskal–Wallis Test | p = 0.929 |
Shapiro–Wilk Test | 0.490 | 0.790 | ||
People with low H-QoL | 5 (62.5%) | 7 (77.78%) | Fisher Exact Test | p = 0.999 |
Pain Visual Analogue score | 41.05 ± 27.30 | 44.00 ± 32.06 | H = 0.175 Kruskal–Wallis Test | p = 0.894 |
Shapiro–Wilk Test | 0.999 | 0.669 | ||
People with moderate pain or more | 4 (50%) | 4 (44.44%) | Fisher Exact Test | p = 0.999 |
Remission from Condition | Not Changed | Condition Appeared to Worsen | ||
---|---|---|---|---|
Severe Fatigue | ||||
Experimental group | 3 (37.5%) | 5 (62.5%) | 0 (0%) | Kruskal–Wallis test |
Control group | 0 (0%) | 7 (77.78%) | 2 (13.33%) | H = 4.083—p = 0.043 |
Depression mild or more | ||||
Experimental group | 2 (22.2%) | 6 (77.8%) | 0 (0%) | Kruskal–Wallis test |
Control group | 0 (0%) | 8 (88.9%) | 1 (11.9%) | H = 0.079, p = 0.701 |
Anxiety State | ||||
Experimental group | 2 (25%) | 6 (75%) | 0 (0%) | Kruskal–Wallis test |
Control group | 1 (11.11%) | 8 (88.89%) | 0 (0%) | H = 0.231—p = 0.630 |
Low H-QoL | ||||
Experimental group | 3 (37.5%) | 5 (62.5%) | 0 (0%) | Kruskal–Wallis test |
Control group | 1 (11.11%) | 8 (88.89%) | 0 (0%) | H = 0.836—p = 0.360 |
Moderate pain or more | ||||
Experimental group | 1 (12.50%) | 7 (87.5%) | 0 (0%) | Kruskal–Wallis test |
Control group | 0 (0%) | 9 (100%) | 0 (0%) | H = 0.187—p = 0.669 |
Total improvements | ||||
Experimental group | 11 (27.5%) | 29 (72.5%) | 0 (0%) | Kruskal-Wallis test |
Control group | 3 (6.67%) | 39 (86.66%) | 3 (6.67%) | H = 4.136—p = 0.041 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cossu, G.; Kalcev, G.; Primavera, D.; Lorrai, S.; Perra, A.; Galetti, A.; Demontis, R.; Tramontano, E.; Bert, F.; Montisci, R.; et al. The Use of Heart Rate Variability-Biofeedback (HRV-BF) as an Adjunctive Intervention in Chronic Fatigue Syndrome (CSF/ME) in Long COVID: Results of a Phase II Controlled Feasibility Trial. J. Clin. Med. 2025, 14, 5363. https://doi.org/10.3390/jcm14155363
Cossu G, Kalcev G, Primavera D, Lorrai S, Perra A, Galetti A, Demontis R, Tramontano E, Bert F, Montisci R, et al. The Use of Heart Rate Variability-Biofeedback (HRV-BF) as an Adjunctive Intervention in Chronic Fatigue Syndrome (CSF/ME) in Long COVID: Results of a Phase II Controlled Feasibility Trial. Journal of Clinical Medicine. 2025; 14(15):5363. https://doi.org/10.3390/jcm14155363
Chicago/Turabian StyleCossu, Giulia, Goce Kalcev, Diego Primavera, Stefano Lorrai, Alessandra Perra, Alessia Galetti, Roberto Demontis, Enzo Tramontano, Fabrizio Bert, Roberta Montisci, and et al. 2025. "The Use of Heart Rate Variability-Biofeedback (HRV-BF) as an Adjunctive Intervention in Chronic Fatigue Syndrome (CSF/ME) in Long COVID: Results of a Phase II Controlled Feasibility Trial" Journal of Clinical Medicine 14, no. 15: 5363. https://doi.org/10.3390/jcm14155363
APA StyleCossu, G., Kalcev, G., Primavera, D., Lorrai, S., Perra, A., Galetti, A., Demontis, R., Tramontano, E., Bert, F., Montisci, R., Maleci, A., Castilla, P. J. F., Jaramillo, S. G., Kurotschka, P. K., Rocha, N. B., & Carta, M. G. (2025). The Use of Heart Rate Variability-Biofeedback (HRV-BF) as an Adjunctive Intervention in Chronic Fatigue Syndrome (CSF/ME) in Long COVID: Results of a Phase II Controlled Feasibility Trial. Journal of Clinical Medicine, 14(15), 5363. https://doi.org/10.3390/jcm14155363